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Abstract 

Stem cells are considered as promising candidates to effectively hinder the proliferation of different types of cancers 
including hepatocellular carcinoma, Kaposi's sarcoma, as well as gastric and breast cancers. Mesenchymal stem cells 
(MSCs) have attracted a lot of attention among the different categories of such cells. Adipose tissue offers unique advantages 
as a source of MSCs. Based on some studies, the released substances from MSCs which are regarded as secretome can 
modulate the growth and survival of tumor cells, along with immunity and angiogenesis by affecting different signaling 
pathways. JAK/STAT and PI3k/AKT/mTOR signaling pathways play the main role in regulating growth, proliferation, 
apoptosis, and cancer metastasis. This study aims to assess the cytotoxic effect of human adipose-derived MSC (adMSC) 
secretome on two cancerous cell lines by co-culturing each cancerous cell line with adMSCs and performing MTT assay, as 
well as evaluating simultaneous inhibitory effect of adMSC secretome on the expression rates of the genes related to 
JAK2/STAT3 and PI3k/AKT/mTOR signaling pathways by conducting real-time PCR after co-culturing. The results 
indicated that adMSC secretome did not exert cytotoxic effect against epidermoid carcinoma (A431) cell line, leading to 
increased cell viability. However, the percentage of viable cancerous cells significantly reduced following co-culturing of 
gastric adenocarcinoma (AGS) cell line with adMSCs, indicating different cytotoxic potency of adMSC secretome towards 
these cell lines. adMSC secretome downregulated the expression rates of Jak2, STAT3, PI3k, and mTOR genes in both co-
cultured cell lines, despite different effects against A431 and AGS cell lines, indicating the significance of such signaling 
pathways in the growth and proliferation of each cancerous cell lines. The results provide opportunities for examining in 
vitro and in vivo cytotoxic potency of adMSC secretome against other types of cancers and further evaluation of its 
downstream mechanisms of action through cancer signaling pathways. Thus, they may lead to the use of adMSC secretome 
as a novel therapeutic agent in different types of cancers. 
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1. Introduction  

The incidence of cancer is increasing worldwide and 
the American Cancer Society reports that cancer continues 
to be the second most prevalent reason for mortality, 
following heart disease. In addition, cancer stands as the 
primary reason for death among women aged 40-79 and 
men aged 60-79 years old (Sung et al., 2021). The survival 
rate may remain low due to a delay in cancer treatment, 
resulting in increasing advanced cases, despite the 
advancements in early detection and treatment strategies 
for various types of cancer over the past few decades 
(Siegel et al., 2023). Therefore, innovative therapeutic 
strategies should be adopted to address advanced or 
metastatic cancers. 

Stem cell therapy has become a hopeful strategy for 
addressing different forms of cancer including 
hepatocellular carcinoma, Kaposi's sarcoma, as well as 
gastric and breast cancers (Alzahrani et al., 2018; Khakoo 
et al., 2006; Li et al., 2013; Liu et al., 2020; Mohamed et 
al., 2019; Pakravan et al., 2017). Because of different 
source of origin, differentiation potency and the ability of 
transplant to variety of people, mesenchymal stem cells 
(MSCs) have attracted a lot of attention among the 
different categories of stem cells (Gopalarethinam et al., 
2023). They can be isolated from umbilical cord, amniotic 
membrane, adipose tissue, bone marrow, and other tissues 
(Bhat et al., 2021; Cho et al., 2019; Hendrijantini and 
Hartono, 2019; Zhang et al., 2019). Adipose tissue, which 
offers unique advantages as a source of MSCs, can be 
easily obtained from the medical waste of bariatric 
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surgery, resulting in eliminating any ethical concerns. 
Additionally, MSCs derived from adipose tissue (adMSCs) 
can be extracted from patients without the risk of immune 
rejection (Palencar et al., 2019; Wyles et al., 2015). 

The MSCs can interact with tumor cells either by direct 
contact or by releasing certain substances such as 
chemokines, growth factors, cytokines, microvesicles, and 
exosomes with immunomodulatory effects (Crivelli et al., 
2017; Jayaramayya et al., 2020). Based on some studies, 
these released substances, which are considered as 
secretome, inhibit cancer cell proliferation (Aslam et al., 
2021; Mirabdollahi et al., 2019; Moeinabadi-Bidgoli et al., 
2022; Sousa et al., 2023). The MSCs can affect different 
signaling pathways through their secretome (Chang et al., 
2022; Jantalika et al., 2022; Ko et al., 2023; Rezaei-
Tazangi et al., 2020; Sousa et al., 2023; Yuan et al., 2018) 
and induce cell apoptosis or suppress cell proliferation, 
migration, and invasion. Janus kinase 2 (JAK2)/signal 
transducer and activator of transcription 3 (STAT3) and 
phosphoinositide 3-kinase (PI3k)/protein kinase B 
(AKT)/mammalian target of rapamycin (mTOR) signaling 
pathways play the main roles in controlling cell growth 
and proliferation, apoptosis, and metastasis in different 
types of cancers (Al-Husein et al., 2020; Fattahi et al., 
2020; Liang et al., 2020; Ma et al., 2020; Mengie Ayele et 
al., 2022; Miricescu et al., 2020; Mohrherr et al., 2020; 
Rah et al., 2022; Tewari et al., 2022; Wu et al., 2017; 
Yang et al., 2020). In addition, aberrant activation of 
PI3k/AKT/mTOR pathway may result in the development 
of resistance to apoptosis (Fattahi et al., 2020; Tewari et 
al., 2022). Based on some reports, simultaneous inhibition 
of JAK2/STAT5 and PI3k/AKT/mTOR signaling 
pathways was more effective in reducing cancer cell 
number, growth of tumor and metastasis, as well as 
increasing survival in vivo compared to only 
PI3k/AKT/mTOR pathway inhibition (Yeh et al., 2013). 
Only PI3k/AKT/mTOR signaling pathway inhibition led to 
uncontrolled activation of the JAK/STAT one and 
occurrence of metastatic and aggressive behaviors in 
tumor cells.  

Based on the results, (Yeh et al., 2013), simultaneous 
inhibition of STAT3 and JAK2, as key molecules in 
JAK2/STAT3 signaling pathway, and PI3k and mTOR, as 
vital molecules in PI3k/AKT/mTOR signaling pathway, 
can be regarded as prospective therapeutic targets for 
cancer treatment. 

This study seeks to evaluate the cytotoxicity of MSC-
secretome on two distinct cancers including gastric 
adenocarcinoma (AGS, RRID: CVCL_0139) and 
epidermoid carcinoma cell lines (A431, RRID: 
CVCL_0037), as well as reviewing MSC-secretome effect 
on gene expression rates of Jak2, STAT3, PI3k, and 
mTOR for achieving a deeper comprehension of the 
molecular mechanisms by which MSCs exert their 
influence on cancerous cells.  

2. Materials and methods  

2.1. Cell culture 

Gastric adenocarcinoma (AGS, RRID: CVCL_0139) 
and epidermoid carcinoma (A431, RRID: CVCL_0037) 
cell lines (purchased from Pasteur Institute of Iran) and 
mesenchymal stem cells derived from human adipose 

(adMSCs, IBRC: C11347, purchased from Iranian 
Biological Resource Center, Iran) were cultured in 
Dulbecco's Modified Eagle Medium (DMEM) (Bioidea, 
Iran) by adding 10% fetal bovine serum (FBS) (Bioidea) 
and incubated at 37°C in a humidified atmosphere, 
containing 5% CO2. Every 48-72 h the culture medium 
was refreshed and passages 3-5 were utilized for further 
experiments. 

2.2. Assessing cytotoxic effect of adMSC-secretome 
against cancerous cell lines 

In order to determine the cytotoxic effect of adMSC-
secretome against cancerous cell lines (A431 and AGS), 
each cancerous cell line was co-cultured with ad-MSCs for 
96 h, followed by conducting MTT assay 
(Mohammadalizadeh et al., 2022). Briefly, cell line (either 
A431 or AGS) was seeded in the lower compartments of 
each well in an insert-containing 6-well plate (SPL, China) 
at 1.5×105 cells/well in complete DMEM medium. Then, 
ad-MSCs were seeded in the upper compartments (the 
inserts with the pore size of 8µm) at a density of 6×104 
cells/well and further incubated for 96 h in the same 
condition after being incubated for 24 h at 37°C in a 
humidified atmosphere containing 5% CO2. Cancerous cell 
line was included as control without being co-cultured 
with ad-MSCs. In the next step, all of the inserts were 
taken out and cancerous cells were washed with phosphate 
buffered saline (PBS) twice. In the next procedure, MTT 
(Sigma, Germany) solution were instilled into each well 
and incubated for 3 h in the same condition. Then, 150 µL 
of dimethyl sulfoxide (DMSO) (Sigma, Germany) was 
added to each well after the complete removal of the 
supernatants. The absorbance microplate reader (Epoch, 
USA) was applied for determining the optical density 
(OD) of the solution at 570 nm with the wavelength of 630 
nm serving as a reference when formazan crystals were 
completely dissolved. Each procedure was conducted three 
times. The subsequent equation was used to determine the 
percentage of viable cells. 
(ODtest/ODcontrol) ×100 

2.3. Evaluating adMSC-secretome effect on JAk2, 
STAT3, PI3k, and mTOR gene expressions in cancerous 
cells 

For studying the adMSC-secretome effect on 
expression rates of JAk2, STAT3, PI3k, and mTOR genes 
in A431 and AGS cell lines, each cancerous cell line was 
co-cultured with ad-MSCs for 96 h, followed by 
conducting real-time PCR. Briefly, all of the inserts were 
removed and cancerous cells were washed twice with PBS 
after co-culturing of cancerous cell lines with adMSCs for 
96 h (as indicated). Then, total RNA from each cancerous 
cell line was extracted by use of a Total RNA Extraction 
kit (Parstous, Iran). The quality of extracted RNA (its 
concentration and purification) was determined by 
Take3TM spectrophotometer (BioTek, USA) at A260/A280 
ratio. Easy cDNA Synthesis kit (Parstous, Iran) was 
utilized for cDNA synthesis based on manufacturing 
instructions. In the next step, the expression rates of genes 
(JAK2, STAT3, PI3k, and mTOR) in cancerous cell lines 
were determined by quantitative real-time PCR applying 
RealQ Plus 2x Master Mix Green High ROX™ 
(Ampliqon, Denmark) based on manufacturing 
instructions. Table 1 indicates the list of primers. GAPDH 
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was considered as the reference gene here. The experiment 
was conducted in triplicate for each sample. The Livak   

(2-ΔΔC
T) method was employed to determine the gene 

expression levels (Livak and Schmittgen, 2001).  
Table 1. Primer set sequences for quantitative real-time PCR 

Gene 
name 

NCBI reference sequence Primer sequence ('5' - '3') Product size (bp) Annealing 
temperature (°C) 

JAK2 NM_004972.4 Forward ATCTGGGGAGTATGTTGCAGAA 

Reverse GTTGGGTGGATACCAGATCCTTT 

124 60 

STAT3 NM_139276.3 Forward GAATCACGCCTTCTACAGACT 

Reverse TTCCGGACATCCTGAAGGT 

125 60 

PI3k NM_006218.4 Forward CATGGAGGAGAACCCTTATGTGA 

Reverse AGCACGAGGAAGATCAGGAATG 

114 60 

mTOR NM_004958.4 Forward CAACAAGCGATCCCGAACGA 

Reverse CCAAGTTCCACACCGTCCAA 

78 60 

GAPDH NM_002046.7 Forward TGAAGGTCGGAGTCAACGG 

Reverse TGGGTGGAATCATATTGGAACA 

148 60 

2.4. Statistical analysis 

Results are expressed as mean ± standard deviation 
(SD). Statistical analyses were conducted by use of 
GraphPad Prism Version 9 software (GraphPad Software, 
USA). The difference between test and control groups in 
each experiment was calculated utilizing an independent 
Student's t-test and one-way ANOVA (tukey post-test). A 
p-value less than 0.05 was considered to be a statistically 
significant difference. 

3. Results 

3.1.  adMSC-secretome showed cytotoxic effect against 
AGS cell line with no cytotoxicity against A431 cell line 

For examining the cytotoxicity of adMSC-secretome on 
cancerous cell lines, an MTT assay was performed after a 
96-h co-culturing of each cell line with adMSCs. As 
shown in Fig. 1a, the percentage of viable cells in the test 
group of AGS cell line (76.71 ± 3.97%) is significantly 
reduced as compared to its control group (p-value < 
0.0001), while cell viability increases in test group of 
A431 cell line by 30.12 ± 5.97% (in comparison with 
control, p-value < 0.001) (Fig. 1b), indicating cytotoxicity 
of adMSC-secretome against AGS cell line. 

 

 
Figure 1. The percentages of viable cells in A431 (1a) and AGS 
(1b) cell lines after co-culturing with adMSCs; Values are 
presented as Mean ± SD; ** Significantly different compared to 
the control group (p-value < 0.001); *** Significantly different 
compared to the control group (p-value < 0.0001). 
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3.2.  adMSC-secretome downregulated expression rates 
of JAk2, STAT3, PI3k, and mTOR genes in both 
cancerous cell lines 

In order to analyze the changes in expression rates of 
genes related to JAK2/STAT3 and PI3k/AKT/mTOR 
signaling pathways in each cancerous cell line, real-time 
PCR was conducted following co-culturing of either A431 
or AGS cell lines with adMSCs. As illustrated in Fig. 2, 
the expression rates of JAk2, STAT3, PI3k, and mTOR 
genes in both co-cultured cancerous cell lines with 
adMSCs are significantly reduced compared to control 
groups (p-value < 0.05 for all of the genes in both cell 
lines in comparison with control).  

 

 

 
Figure 2. Relative gene expression of mTOR, PI3k, STAT3, JAk2 
of in A431 (2a) and AGS (2b) cell lines after co-culturing with 
adMSCs; Values are presented as Mean ± SD; * Significantly 
different compared to the control group (p-value < 0.05). 

4. Discussion 

Stem cells and their secretomes could be regarded as 
effective cancer therapeutic agents with minimum side 
effects. Based on the evidence, the MSC and its secretome 
comprising a diverse range of cytokines and other 
bioactive molecules can impede the growth of numerous 
cancer cell types such as cholangiocarcinoma (Jantalika et 
al., 2022), hepatocellular carcinoma (Hou et al., 2014; 
Opo et al., 2023; Tang et al., 2016), prostate cancer (Sousa 
et al., 2023; Takahara et al., 2014), ovarian (Kalamegam et 
al., 2019), leukemia (Zhu et al., 2009), breast cancer 
(Pakravan et al,. 2017), and melanoma (Ahn et al., 2015). 
In addition, some studies revealed that the cancerous 
behavior in tumor cells is promoted by MSCs (Chen et al., 
2019; Halpern et al., 2011; Spaeth et al., 2009; Suzuki et 

al., 2011; Xu et al., 2009; Yan et al., 2012; Zhu et al., 
2006). Additional investigations are required to thoroughly 
define the safety and effectiveness of MSC/its secretome 
and determine its mechanisms of action, considering the 
opposite effects of MSC or its secretome against cancerous 
cells. This study aims to evaluate the cytotoxicity of 
adMSC secretome against gastric adenocarcinoma (AGS) 
and epidermoid carcinoma (A431) cell lines and determine 
its inhibitory effect on JAK/STAT and PI3k/AKT/mTOR, 
as two main cancer signaling pathways. 

To this aim, each cancerous cell lines (either AGS or 
A431) were co-cultured with adMSCs for 96 h, followed 
by an MTT assay. The results represented that MSC 
secretome affected AGS and A431cell lines differently, 
while MSC secretome reduced viable cells in AGS cell 
line with no cytotoxic effect against A431 cell line. These 
results are in line with those reported before and confirm 
the opposite behavior of MSCs towards different 
cancerous cells. Some researchers (e.g., Goldstein et al., 
2010; Sousa et al., 2023) revealed that the proliferative 
effect of MSCs varied depending on the type of tumor, 
indicating their different responsiveness toward external 
stimuli. Besides the type of tumor or cancerous cell line, 
some other factors may explain such discrepancies in MSC 
behavior, source of MSCs, co-culturing method, treatment 
duration, and concertation of MSC conditioned media. The 
dose- and time-dependent effects of MSCs were shown in 
different studies (Jantalika et al., 2022; Opo et al., 2023; 
Sousa et al., 2023). 

In addition, this study seeks to determine the effect of 
adMSC secretome on the expression rates of genes such as 
JAk2, STAT3, PI3k, and mTOR related to JAK2/STAT3 
and PI3k/AKT/mTOR signaling pathways by conducting 
real-time PCR. Based on the literature review, any 
alterations in the mRNA level of a gene could be related to 
the same change in its protein level (Creighton et al., 2010; 
Deng et al., 2015; Fu et al., 2021; Riquelme et al., 2016). 
The results represented that adMSC secretome 
significantly downregulated the expression rates in all of 
the indicated genes in both cell lines, resulting in inhibiting 
JAK2/STAT3 and PI3k/AKT/mTOR signaling pathways. 
Jantalika et al. argued that cholangiocarcinoma cell lines 
underwent apoptosis due to the suppression of 
JAK2/STAT3 signaling pathways by human chorion-
derived mesenchymal stem cells (Jantalika et al., 2022). 
The findings of this study are consistent with those 
reported by Sousa et al. (2023), indicating that umbilical 
cord-MSC secretome decreased PI3K/AKT activation in 
prostate cancer cell lines. 

Based on some studies, excessive activation of 
JAK/STAT and PI3k/AKT/mTOR signaling pathways 
leads to proliferation, metastasis, and survival in different 
types of tumor cells (Fattahi et al., 2020; Mengie Ayele et 
al., 2022; Rah et al., 2022; Tewari et al., 2022). Thus, it is 
expected that the inhibition of the above-mentioned 
signaling pathways reduces the cancerous cell viability. 
The gene downregulation in A431 cell line increased cell 
viability although downregulation in JAk2, STAT3, PI3k, 
and mTOR genes might be responsible for the cytotoxic 
effect of adMSC secretome against AGS cell line. 
Therefore, it is hypothesized that JAK/STAT and 
PI3k/AKT/mTOR are not considered as the main 
proliferative signaling pathways in epidermoid 
adenocarcinoma and cannot be regarded as candidate 
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therapeutic targets, while they may be proper targets for 
therapeutic agents in gastric carcinoma. The 
aforementioned claim means that activation of some other 
proliferative signaling pathways in A431 cell line might 
compensate for the inhibitory effect of MSCs on 
JAK2/STAT3 and PI3k/AKT/mTOR, leading to increased 
cell viability in A431 cell line. In addition, Fadhal (2023) 
reported that the functions of signaling proteins may differ 
based on the type of cancerous cell. 

It is worth to highlight that the simultaneous inhibitory 
effect of adMSC secretome on both signaling pathways is 
significant. Further, Yeh et al. (2013) asserted that the 
single inhibitory effect of MSCs on PI3k/AKT/mTOR 
pathway led to manifestation of metastatic and aggressive 
tendencies in tumor cells. However, its dual inhibitory 
effects on both JAK2/STAT5 and PI3k/AKT/mTOR 
signaling pathways play main role in reducing cancer cell 
number, growth of tumor and metastasis, as well as 
increasing survival in vivo. Finally, Janku et al. (2014) 
found that combinatorial targeting of two signaling 
pathways led to an enhanced therapeutic response. 

5. Conclusion 

This study reported the dual inhibitory effect of adMSC 
secretome on JAK2/STAT3 and PI3k/AKT/mTOR 
signaling pathways in epidermoid carcinoma and gastric 
adenocarcinoma cell lines, confirming the cell line-
dependent manner of MSCs with no cytotoxicity against 
A431 cell line, considering the cytotoxicity of MSCs 
against such cancerous cell lines. adMSC secretome 
showed cytotoxic effect against AGS cell line. 
Furthermore, the downregulation of all of the studied 
genes related to JAK2/STAT3 and PI3k/AKT/mTOR 
signaling pathways in both cell lines revealed that the role 
and significance of each signaling pathway may differ 
based on tumor type. The aforementioned data confirm the 
selective cytotoxicity of MSCs against different cancerous 
cell lines, indicating that determining the precise effects of 
MSCs on signaling pathways in each type of cancer is 
needed and can be considered as a guide for utilizing MSC 
and its secretome in further in vivo studies and clinical 
trials. 
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