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Abstract 

Immune cells play a very significant role in the body due to their capacity to preserve homeostasis. They function primarily 
in the quick elimination of potentially harmful substances from the system. There is a trend towards the increased utilization 
of the therapeutic potential of medicinal plants to treat a wide range of diseases through the regulation of immunomodulatory 
mechanisms. In this present work, our objective was to determine the extent to which Typhonium flagelliforme, also known 
as rodent tuber, has an immunomodulatory effect in vivo in BALB/c mice. Four treatment groups were used in this 
investigation on BALB/c mice, including the control group with each group receiving 0, 50, 100 and 500 mg/kg BW of the 
plant extract respectively. After fourteen days of treatment, the mice were sacrificed for further analysis. The spleen was 
isolated for flow cytometry study, and it was then stained with antibodies against CD4, CD8, CD4CD62L, and CD4CD25. 
The relative number of each immune cell subgroup to be monitored was calculated using the BD FACS Calibur flow 
cytometer. The liver was also subjected to histological examination using hematoxylin-eosin staining. Our findings indicated 
the increasing number of CD8+ T cells and CD4+CD62L+ naive T cells in the spleen. Similarly, the relative number of CD8+ 
T and CD4+ T cells in thymus were elevated. This findings suggest that the T. flagelliforme extract (TFE) exerted the 
immunomodulatory activity which promote some certain of immune cells. 
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1. Introduction 

The immune system has been the main hotspot in 
biological and medical research in recent years, 
particularly during the current pandemic outbreak. It is a 
highly critical and complex system responsible for 
distinguishing the body's cells and other harmless material 
from foreign and particularly dangerous material, 
protecting the body against infections and foreign 
substances (Childs et al., 2019; Huntington and Gray, 
2018). It is a delicate system composed of cells, chemicals, 
pathways, and tissues that interact to generate an immune 
response to prevent or eradicate infections as quickly as 
possible while leaving the body's cells unharmed (Horwitz 
et al., 2019; Nicholson, 2016).Because humans are always 
surrounded by hazardous pathogens, toxins, and even 
cancer cells, it constantly evolves while maintaining 
vigilance for any signs of invasion or an impending threat. 
This ability makes it the most crucial element of our 
species' survival throughout the evolutionary history 
(Childs et al., 2019; Hurst and Magiorkinis, 2019). 

The target of immune cells is to is to swiftly destroy 
and eradicate any potentially dangerous materials and cells 

while also being able to control themselves to operate 
within a reasonable operating window (Nicholson, 2016). 
This capability, however, might be extremely harmful if it 
either puts the immune system into a hyperdrive condition 
where it attacks healthy cells and tissues or seriously 
undermines its capacity and capability, that lowers the 
body's state of defense and makes the individual more 
prone to diseases (Kitcharoensakkul and Cooper, 2020; 
Lotfi et al., 2019). Therefore, the capacity of immune cells 
to continuously self-regulate and interact with one another, 
mostly through a variety of cytokines, is of utmost 
importance. However, some of the regulation mechanisms 
are still incompletely understood (Cicchese et al., 2018; 
Tourkochristou et al., 2021). The immune system often 
steers clear of these extremities of immune response 
spectrum through a control mechanism known as 
immunological homeostasis (Huntington and Gray, 2018). 
Various regulatory components normally carry out this 
mechanism, both in innate and adaptive immune systems, 
such as regulatory T cells (Tregs), regulatory B cells 
(Bregs), M2-like macrophages, mesenchymal stromal cells 
(MSCs), myeloid-derived suppressor cells (MDSCs), and 
complement regulatory proteins (CRPs) (Cao et al., 2019; 
Carvajal et al., 2019; Papp et al., 2017; Tao et al., 2019). It 
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involves maintaining a balanced response to protect 
against infection and disease while avoiding overreaction 
and autoimmune reactions. Disruptions in immune 
homeostasis can lead to autoimmune disorders and 
increased susceptibility to infection. 

The regulation of homeostasis by the immune system is 
not only dependent on internal factors including types of 
transcription factors like FOXO and Myb (Dias et al., 
2017; Zaiss and Coffer, 2018), but it is an intriguing 
mechanism which is also highly influenced by external 
factors such as diet (Tourkochristou et al., 2021). 
Numerous herbs and spices, especially their essential oils, 
have been researched for their potential as 
immunomodulators. They include quercetin, kaempferol, 
rutin, genistein, hesperidin, ascorbic acid, and menthol. 
They can suppress the synthesis of TNF-α, IL-1, IL-2, IL-
6, IL-8, and IL-1β while also stimulating the proliferation 
of human peripheral blood mononuclear cells (PBMC) and 
the expression of IFN-γ (Lee et al., 2021; Putra and Rifa'i, 
2019; Bian et al., 2019; Cheng et al., 2019; Xiao et al., 
2018; Orhan et al., 2016). Most of the well-studied 
immunomodulatory compounds came from well-known 
sources, such as herbs like Leptadenia pyrotechnica, 
Zingiber officinale, Curcuma longa, Mentha × piperita, 
and some fruits like Citrus limon and Muntingia calabura 
(Amorim et al., 2016; Dash et al., 2018; Karthikeyan et 
al., 2021; Miles and Calder, 2021; Orhan et al., 2016; 
Sujono et al., 2020; Yuandani et al., 2021; Mahassni and 
Alsahafi, 2022). These sources are highly abundant and 
commercially available all over the globe. Other less well-
known indigenous species are also expected to have a 
similar advantage as immunomodulators; T. flagelliforme, 
sometimes referred to as rodent tuber, is one of them. It is 
native to Indonesia and belongs to the Araceae family. It is 
known for its distinctive long, slender, and whip-like 
leaves and has been investigated for its potential anti-
cancer properties (Laurent et al., 2015). Various studies 
suggest that the T. flagelliforme extract could inhibit the 
proliferation of breast cancer cells, increase the expression 
of p21 and caspase-3 on MCF-7 cells, and stimulate 
apoptotic pathways on P388 and NCI-H23 cells (Crystalia 
and Hillary, 2022; Lai et al., 2008; Maher et al., 2021; 
Mohan et al., 2011). Although T. flagelliforme has a long 
history of use in traditional medicine, more research is 
needed to fully understand the mechanisms of action and 
potential therapeutic uses of the plant and its bioactive 
components. In this study, we examine the effect of rodent 
tuber extract in increasing the immune response as 
measured by the number of CD4+, CD8+, CD4+CD62L+, 
and CD4+CD25+ cells. 

2. Materials and Methods 

2.1. Experimental Animals Preparation 

The mice (Mus musculus) utilized in this study were 
BALB/c strain, 8 weeks old, and in good health (active 
movement, no hair loss, no structural anomalies). They 
were then given food and water, ad libitum, and 
acclimatized for 7 days. The use of experimental animals 
has received an ethical certificate No. 72-KEP-UB from 
the Brawijaya University Ethics Committee. This study 
included four treatments and three replications for a total 
of twelve mice.  

2.2. Water Fraction of Rodent Tuber Preparation and 
Injection on Mice 

The rodent tuber suspension was made by diluting 
rodent tuber extract powder with water. The rodent tuber 
powder was obtained by cutting the roots into little pieces, 
drying them in direct sunlight, and then grounded until 
they become powder. Meanwhile, the powdered roots are 
mixed with water according to the dose injected to produce 
herbal suspensions. The prepared suspension was 
administered orally to mice twice daily for 14 days, at 
doses of up to 50 mg/kg BW in treatment group I, 100 
mg/kg BW in treatment group II, and 500 mg/kg BW in 
treatment group III.  

2.3. Spleen Isolation Procedure 

The isolation procedure was carried out in accordance 
with our previous studies (Putra et al., 2021; Putra et al., 
2016). The spleen was separated from the dissected organs 
of the mice, washed in sterile PBS and filtered using a 
100μm BD nylon cell strainer. Then, it was homogenized 
by compressing it with the syringe's base in one direction 
from top to bottom, about 2-3 times, until the suspension 
could be filtered in a petri dish. The filtered suspension 
was placed in a sterile microtube with sterile PBS and then 
centrifuged for 5 minutes at 4oC at 1500 rpm. The 
supernatant was discarded, and the pellet was resuspended 
and homogenized with 100-1000μl PBS. The suspension 
was repeatedly centrifuged until it formed a white pellet. 

2.4. Cells Quantitative Analysis using Flow cytometry 

The pellet was resuspended in 1 ml of sterile PBS. A 
100μl homogenate was transferred to a fresh microtube. It 
was centrifuged again for three minutes at 2500 rpm and 
4°C, and the supernatant was discarded. Anti-CD4+, anti-
CD8+, anti-CD62L+ and anti-CD25+ antimouse antibodies 
were then applied to the pellets. The flow cytometer 
cuvette was loaded with the sample and 400 μl of sterile 
PBS was added. The cuvette was connected to the BD 
FACS Calibur flow cytometer nozzle. The BD Cell Quest 
Pro software was used for the analysis, set in acquiring 
mode (Putra et al., 2020; Putra et al., 2015). 

2.5. Liver Slide Preparations and Histopathological 
Observations  

The histopathological examination was conducted 
according to the previous study with few minor 
adjustments (Putra and Rifa'i, 2020; Putra et al., 2017). 
The liver was isolated from dissected mice and then 
cleansed of any remaining blood with PBS before being 
placed in a 4% PFA fixative solution in PBS at room 
temperature for 1–7 days. The paraffin technique was used 
to prepare the liver slides. To remove the paraffin, the 
preparations were deparaffinized with xylol twice for 4 
minutes each and then soaked with graded alcohol (100%, 
95%, 90%, 80%, 70%, 60%, 50%, and 30%) for 3 minutes 
each. After washing with distilled water for 5 minutes, the 
slides were stained with hematoxylin for 1 minute, rinsed 
for 5 minutes with distilled water, and submerged in 
graded ethanol (30%, 60%, 70%) each for 5 minutes. After 
10 minutes of eosin, it was rehydrated in graded ethanol 
(70%, 60%, 30%) for 5 minutes each, cleaned with xylol 
for 3×5 minutes, and mounted with entellanTM. An 
Olympus BX51 microscope coupled with an Olympus 
DP20 digital camera was used to make the observations. 
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2.6. Observation Parameter 

This study investigated both qualitative and 
quantitative factors. In control and treated animals, 
changes in the number of CD4+, CD8+, CD4+CD62L+, and 
CD4+CD25+ cells were evaluated quantitatively using flow 
cytometry (Figure 1). The impact of injecting rodent tuber 
extract on the histological microstructure of the liver with 
hematoxylin-eosin staining was the qualitative parameter 
evaluated using a light microscope. The existence or 
absence of damage to the liver as an antitoxic organ was 
the focus of the observations. The presence of bleeding, 
congestion, and necrosis of the hepatocytes following the 
treatments was used to determine the degree of liver 
injury. 

2.7. Data Analysis 

This study employed a completely randomized design 
(CRD) and the 95% confidence interval ANOVA test. The 
data was collected in changes in the number of CD4+, 
CD8+, CD4+CD62L+, and CD4+CD25+ cells, which were 
statistically assessed using normality and variance 
homogeneity tests. A two-way ANOVA with α=0.05 
significance level was used to evaluate normally 
distributed data with homogenous variance. If p<0.05 
indicates a substantial difference between the tested 
treatments and vice versa. The Tukey HSD test was then 
used as a post-hoc test. All of the statistical analysis was 
carried out by SPSS 16.0 for Windows. 

3. Results and Discussion 

3.1. The Analysis of the Relative Number of CD4+ and 
CD8+ Cells in Thymus 

 The flow cytometry results of the relative amount of 
CD4+ cells on the thymus are shown in figure 2. The 
TFE100 group exhibited a significant increase in the 
relative number of CD4+ T cells at 29.10%. It was 
significantly higher than the TFE50 group at 10.64%. 
Meanwhile, the flow cytometry results on the relative 
amount of CD8+ cells on the thymus are shown in figure 2. 
The TFE500 group had a cell count of 3.72%, while the 
TFE50 group had about 2.79%. Both are statistically 
insignificant compared to the normal group at 2.05%. 
However, the TFE100 group's results show a different 
trajectory by significantly increasing the CD8+ cell number 
to 14.14%. 

 
Figure 1. Major immune cell subsets assessed following TFE 
treatment.

 

 
Figure 2. Immunomodulatory assessment of the effect of TFE on 
CD8 and CD4 T cells in thymus. (A). Flow cytometry graph of 
CD8+/CD4+; (B). Bar graph of CD8+; and (C). Bar graph of CD4+. 
The different alphabets indicate statistical significance compared 
to the other groups with p-values < 0.05.  

The increased relative number of naïve CD4+and 
CD8+cells could be attributed to the content of various 
fatty acids, including oleic acid, palmitic acid, butyric acid, 
linoleic acid, 9-hexadecanoic acid, cis-13-octadecenoic 
acid, and stigmasterol (Lai et al., 2010; Mohan et al., 
2011; Sianipar et al., 2016; Sianipar et al., 2019). 
Accordingly, a study has shown that T. flagelliforme 
contains two rare fatty acids namely benzenetridecanoic 
acid and benzenetridecanoic acid methyl ester (Chen et al., 
1997). This suggest T. flagelliforme might exert the 
immunomodulatory activity by interfering the number of 
naïve CD4+ and CD8+ cells through its active metabolites. 
However, up-to-date, the molecular pathway by which 
those fatty acids affect the number of naive CD4+ and 
CD8+ T cells in the thymus is not fully understood 
(Hidalgo et al., 2021).The thymocytes migrate from bone 
marrow to the thymus to undergo the maturational stages. 
They undergo several stages until the culminating stages 
become single positive for either CD4 or CD8 (Mothe-
Satney et al., 2016).  

During those processes, we suggest that one of the 
possible ways oleic acid, linoleic acid, and other 
unsaturated fatty acids may increase the number of naive 
CD4+ and CD8+ T cells in the thymus is by increasing their 
survival rate during the thymic selection process. 
However, its exact mechanism is still highly unclear. One 
of our suspected pathways involved is the peroxisome 
proliferator-activated receptor (PPAR) pathway because it 
is activated by fatty acids including oleic acid and linoleic 
acid, and regulates the T cells' survival during its 
developmental process in the thymus (Le Menn and Neels, 
2018; Mothe-Satney et al., 2016). Those studies, however, 
suggested opposite results. The activation of PPARβ 
decreases the proliferation rate of CD4−CD8− double-
negative stage 4 thymocytes caused by increasing fatty 
acid oxidation. Other in vitro studies suggest that those 
unsaturated fatty acids could interfere with T cells' signal 
transduction before any antigen stimulation, resulting in 
reduced proliferation capabilities of naïve T cells. In high 
doses, oleic acid could induce apoptosis by activating the 
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caspase-3 pathway (Radzikowska et al., 2019; Reilly et al., 
2021). 

3.2. The Analysis of the Relative Number of CD4+ and 
CD8+ Cells on Spleen  

We examined the body's immunological response to 
rodent tuber extract administration and investigated the 
association between multi-dose dosages and changes in the 
relative numbers of CD4+ and CD8+ T cells in the mice. 
As the proportions of CD4+ and CD8+ T cell counts in the 
spleen were calculated using flow cytometry, there was a 
substantial shift in the relative number of CD4+ and CD8+ 
cells in all dosage treatments compared to the control. The 
results in figure 3 depict the proportion of the relative 
amount of CD4+ T cells in each treatment dosage. The 
relative number of CD4+ T cells in the control group was 
18.63%.The relative number of CD4+ T cells in TFE50was 
increased by 1.33% to 19.96%, although the increase was 
statistically insignificant. Meanwhile, the relative number 
of CD4+ T cells reduced significantly to 12.3% at TFE100 
and 11.065% at TFE500. On the other hand, the same flow 
cytometry results showed an increase in the number of 
CD8+ T cells, with 11.79%, 9.25%, and 10.7% for TFE50, 
100, and 500 groups, respectively, compared to the control 
group with 7.37%. 

With increasing treatment doses, fewer CD4+ T cells 
were present; however, more CD8+T cells were prevalent. 
The first one could appear counterintuitive because it can 
result in immunodeficiency. We have not been able to 
come up with a reasonable explanation for whether T. 
flagelliforme extract's bioactive compounds would have 
this impact because of limited studies on the medicinal 
plants, and given that it is frequently brought on by liver-
related dysregulation of lipid metabolism (Tran and Sitia, 
2016). However, a study found that linoleic and oleic acids 
could cause murine CD4+ T cells to undergo apoptosis, 
slow down their proliferation rate, and block the T cells' 
activation and differentiation. Particularly oleic acid 
inhibits the expression of IL-2 and IFN-γ (Hidalgo et al. 
2021). The increased number of apoptotic cells may be 
brought on by PPARα activation, which causes an increase 
in carnitine palmitoyltransferase (CPT) on the 
mitochondrial membrane and impairs the function of the 
electron transport chain. One of the critical properties of 
CD4+ T cells is that they have more mitochondria than 
CD8+ T cells, which makes them more susceptible to 
oxidative stress brought on by the production of ROS, 
which increases the rate of apoptosis(Brown et al., 2018; 
Reilly et al., 2021). On the other hand, phytol also 
decreases the number of CD4+ T cells, particularly Th1 
cells, through NOX2-induced ROS generation (Blum et 
al., 2018).  

The number of CD8+ T cells has been seen to rise with 
increasing treatment doses, in contrast to its counterpart. 
The concern is that not each of the major bioactive 
components in T. flagelliforme extract has been properly 
examined for its impact on the number of CD8+ T cells in 
the spleen. A study suggests that T. flagelliforme extract 
could increase the number of CD8+ T cells in 
immunocompromised mice after cyclophosphamide 
induction (Nurrochmad et al., 2015). According to one 
study on autoimmune uveitis, phytol may enhance the 
CD8+ T effector/memory cells, a particular subset of CD8+ 
T cells, in the spleen (Daudin et al. 2011). However, 

according to another study, neither palmitic acid, linoleic 
acid, nor oleic acid have any real impact on the population 
of cells (Medrano et al., 2022). Other research suggests 
that palmitic acid may reduce CD8+ T cell numbers by 
interfering with mitochondrial function (Manzo et al., 
2020). 

 
Figure 3. Immunomodulatory assessment of the effect of TFE on 
CD8 and CD4 T cells in spleen. (A). Flow cytometry graph of 
CD8+/CD4+; (B). Bar graph of CD8+; and (C). Bar graph of CD4+. 
The different alphabets indicate statistical significance compared 
to the other groups with p-values < 0.05.  

The CD4+/CD8+ ratio, on the other hand, revealed that 
the ratios for the control, TFE50, 100, and 500 groups, 
respectively, were 2.520, 1.693, 1.330, and 1.034. The 
CD4/CD8 ratio refers to the relative number of CD4+ T 
cells and CD8+ T cells, including their respective subsets 
in the immune system (Golubovskaya and Wu, 2016). It is 
a crucial factor in determining whether the immune 
function has been altered. It also serves as a marker for 
chronic inflammation, particularly that brought on by 
HIV(Aiello et al., 2019; McBride and Striker, 2017). It is 
still unclear what the precise CD4+/CD8+ ratio normal 
range should be. However, several research showed the 
acceptable normal ratio, higher than 1.0(McBride and 
Striker, 2017; Tang et al., 2015). The control group in this 
study exhibited the highest ratio, yet as the treatment dose 
increased, the ratio plummeted to virtually 1.0, which did 
not progress as we expected. 

3.3. The Flow Cytometry Analysis of the Relative 
Number of CD4+CD62L+ Cells  

The flow cytometry results of CD4+CD62L+ T cells 
revealed a substantial reduction in the relative number of 
CD4+CD62L+ T cells in TFE50 and TFE100 compared to 
the control (Figure 4). The relative number of 
CD4+CD62L+ T cells in the TFE50 group was down to 
3.55%, the TFE100 group was down to 5.78% after the 
oral treatment, while the control group was maintained at 
7.67%. 

Our chosen markers are meant to identify the naive T 
helper cell population, which frequently expresses both 
markers but more significantly, CD62L, a cell adhesion 
marker that aids the naive cells in homing to secondary 
lymphoid organs (Putra et al., 2023; Rahayu et al., 2022; 
Watson et al., 2019; Sckisel et al., 2017; Yang et al., 
2011).  
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Previously, we made the assertion that the influence of 
the extract's predominant bioactive constituents, 
unsaturated fatty acids, on the population of naive T helper 
cells is yet unclear. However, the second conceivable 
reason for this phenomenon may be related to unsaturated 
fatty acids' capacity to affect CD62L expression. 
According to a study, unsaturated fatty acids may inhibit 
its expression on murine naive T helper cells (Anderson 
and Fritsche, 2004) making it undetectable by the 
designated antibody. While we are still looking for an 
explanation for this occurrence, it is hypothesized that it is 
related to the Akt pathway's activation by linoleic and 
oleic acids, which suppress CD62L expression (Crompton 
et al., 2015; Marcial-Medina et al., 2019; Serna-Marquez 
et al., 2017). It might have an impact on how naive T 
helper cells are conveyed. However, the same publication 
makes the case that adding polyunsaturated fatty acids may 
assist naive T helper cells survive in the short term in the 
absence of immunological activation (Anderson and 
Fritsche, 2004). Conversely, it has been demonstrated that 
saturated fatty acids, such as palmitic acid, can encourage 
the development of effector T cells into a proinflammatory 
subset by upregulating the expression of SLAMF3 and 
IFN-γ, but this impact was seen when mice were fed a 
high-fat diet (Zhou et al., 2019). Another hypothesis is that 
the phytol in the extract decreased the proportion of T cells 
expressing CD4+CD62L+ because it stimulated the 
activation of PPARα, a crucial regulator of IL-4 release 
and a catalyst for the differentiation of naive T helper cells 
into type 2 T helper cells (Th2) (Choi and Bothwell, 2012; 
Gloerich et al., 2005; Lai et al., 2008). 

 
Figure 4. Immunomodulatory assessment of the effect of TFE on 
CD4CD62L naïve T cell and CD4CD25 regulatory T cell in 
spleen. (A). Flow cytometry graph of CD4+CD62L+; (B). Flow 
cytometry graph of CD4+CD25+; (C). Bar graph of CD4+CD62L+; 
and (D). Bar graph of CD4+CD25+. The different alphabets 
indicate statistical significance compared to the other groups with 
p-values < 0.05. 

In contrast, providing the rodent tuber extract at a 
dosage of 500 mg/kg BW resulted in a substantial rise in 
the relative number of CD4+CD62L+ cells to 8.985% as 

opposed to a decrease when compared to the control. 
Unfortunately, given the kind and quantity of bioactive 
chemicals in the extract, we are unable to come up with a 
solid explanation for this behavior. It is suggested that the 
treatments reduced the number of T cells expressing 
CD4+CD62L+ because the naïve T cells were promoted 
into effector cells, such as CD4+ T cells expressing CD8+, 
CD69+, CD25+, and CD44+. A reduction in the number of 
CD4+CD62L+ T cells reflects the activity of naïve cells, 
which transform into a subset of CD4+ T cells, such as 
regulatory T cells, as a result of antigen exposure.  

3.4. The Analysis of the Relative and Absolute Number 
of CD4+CD25+ Cells 

The spleen flow cytometry results in figure 4 showed 
the relative number of CD4+CD25+ T cells among the total 
lymphocyte cells. It was demonstrated that mice treated 
with TFE100significantly increased CD4+CD25+ cells' 
numberto 5.81% compared to the control group with 
5.42%, while the TFE500 group's cell number exhibited a 
significant drop to 4.32%. The most significant reduction 
in CD4+CD25+ cell number was observed inthe TFE50 
group, which dropped as low as 3.53% (Figure 4). 

One of the possible explanations for the low number of 
CD4+CD25+ T cells, better known as regulatory T cells 
(Tregs), was that the mice models were unexposed to any 
form of infections or antigens. Because of the nature of the 
study, which did not expose any antigen to the mouse 
model; we assumed that the Tregs population measured is 
categorized under naturally occurring Treg cells. 
Normally, the population number of naturally occuring 
Treg cells in the spleen for both human and murine is 
around 5-10% (Ali and Rosenblum, 2017; Lourenço and 
La Cava, 2011), which is importantly critical for 
modulating peripheral tolerance and preventing 
autoimmune disease (Rocamora-Reverte et al. 2021). This 
number, however, indicates that the population of 
CD4+CD25+ T cells in this study is in the lower band of 
the normal range. Nonetheless, autoimmune research 
suggests that the normal percentage range of circulating 
CD4+CD25+ T cells is from 0.6% to 7.9% (Nurrochmad et 
al., 2015), making the results completely in the acceptable 
range. 

A study suggests that supplementing polyunsaturated 
fatty acid could increase the number of Tregs because 
PPARγ has a higher affinity for it (Kurniawan et al., 
2020). Also, short-chain fatty acids such as butyric acid 
could induce the expression of FOXP3 by increasing the 
acetylation of histone H3 in the promoter region and 
promoting Treg formation (Kempkes et al., 2019). Oleic 
acid and 9-hexadecenoic acidare suggested to increase 
Tregs population number through promoting the 
expression of FOXP3 (Passos et al., 2016; Pompura et al., 
2021). We found that almost no study depicted a decreased 
number of Tregs caused by bioactive compounds in T. 
flagelliforme extract, shown at TFE50 and TFE500 
administration. However, it is important to note that the 
research on their effect on Tregs is still in the early stages, 
and more studies are needed to fully understand the 
mechanisms underlying this effect and determine whether 
similar effects can be observed in humans. 

We predominantly suggest that the subset of T cells we 
studied is Tregs, or naturally occurring Tregs, to be exact, 
because we assumed that it also expressed FOXP3+. 
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However, it is worth noting that the CD4+CD25+ T cells 
could behave as effector cells in addition to being 
regulatory cells because they lackFOXP3 protein 
(CD4+CD25+FOXP3-), which is a determinant of their 
activity as regulators. They were conventional cells 
activated to become effector cells after exposure to 
allergens (Wing et al., 2002).Further research is needed to 
precisely determine the exact function of CD4+CD25+ T 
cells in this study because CD4+ T cells expressing CD25 
surface marker can serve as either conventional cells 
triggered by allergens or regulatory T cells. As a result, the 
involvement of CD4+CD25+ cells must be explored in 
future research focused on FOXP3. Because this study did 
not utilize an anti-Foxp3 antibody, the role of CD4+ 
CD25+ T cells in the results cannot be simply justified. 

3.5. Liver Toxicity Analysis After Rodent Tuber Extract 
Administration 

The cytotoxic impact of the rodent tuber extract on 
liver histopathology with hematoxylin-eosin staining 
revealed that the control group has hexagonal hepatocytes 
with a single nucleus, but some have two nuclei 
(binucleate) in its center. A cell's nucleus undergoing 
karyorrhexis may be noticed in the liver of TFE50 
treatment mice (Figure 5). Administration of TFE100 and 
TFE500 might induce liver injury by necrosis (marked by 
an arrow) during the karyorrhexis stage, where nuclear 
cells in hepatocytes are fragmented or undergo cell lysis. 
Necrosis is a manifestation of liver damage caused by 
toxic compounds, includinghigh-level of saponins, or 
induced by certain diseases caused by viruses and bacteria. 
This term could be further categorized as drug-induced 
liver injury (DILI), a common side effect of all drug 
supplementations, including herbal, particularly as an 
effect of inhibiting critical enzymes, such as cytochromes 
and alanine aminotransferase (Mega et al., 2021; Navarro 
et al., 2017). The results found no statistically significant 
difference between the treatment groups, implying that all 
doses did not exert any harmful effect on hepatocytes nor 
trigger necrosis.  

Although we cannot find plenty of research mentioned 
about the side effect of T. flagelliforme extract 
administration, we found research that has contradicting 
results, stating that it could have toxic effects on 
hepatocytes, defined by increased levels of Serum 
Glutamate Oxaloacetate Transferase (SGOT) and Serum 
Glutamate Pyruvate Transferase (SGPT) in the blood 
caused by damaged cells (Isturiningrum, 2010; Linasari, 
2010). These effects are predicted to be an effect of high-
concentration exposure to saponins because they could 
disrupt the integrity of the liver cell membrane. Saponins 
have been shown to have detergent-like properties, which 
can disrupt the lipid bilayer of the cell membrane. This 
phenomenon can cause leakage of intracellular contents 
and ultimately lead to cell death (Sudji et al., 2015). The 
detergent-like properties of saponins are thought to be due 
to their structural features, specifically the presence of a 
hydrophobic triterpene or steroidal sapogenin and a 
hydrophilic carbohydrate moiety (Mugford and Osbourn, 
2012; Xu and Yu, 2021). The hydrophobic region of the 
saponin molecule can interact with the lipid bilayer of the 
cell membrane, disrupting its integrity and leading to cell 
death. In addition, saponins may also contribute to liver 
cell death by altering the absorption and metabolism of 
other substances. Saponins have been shown to interfere 
with the absorption of nutrients, particularly fat-soluble 

vitamins, which can lead to deficiencies that may 
contribute to liver injury and cell death (Pathaw et al., 
2022; Samtiya et al., 2020). They may also alter the 
metabolism of certain drugs, potentially leading to liver 
injury and cell death. However, because we cannot identify 
any significant hepatocyte damage, it is safe to assume that 
the saponin content in the tested extract was well below 
the critical limit because a low concentration of saponins 
could have a hepatoprotective effect (Juszczak et al., 2021; 
Qu et al., 2012). Other than that, we cannot find any data 
on any toxic effect on hepatocytes caused by oleic acid, 
palmitic acid, butyric acid, linoleic acid, 9-hexadecanoic 
acid, cis-13-octadecenoic acid, and stigmasterol at possible 
concentration contained in the T. flagelliforme extract. 

 
Figure 5. Representative microphotograph of liver section from 
experimental mice model (HE staining, M = 400×). 

Although the common perception towards medicinal 
plants have far less concerning side effects than its 
commercial counterparts, it is not fully risk-free either. 
One of the most utilized herbals, turmeric, is thought to be 
the main cause of acute liver injury, particularly when 
combined with black pepper, because piperine in the black 
pepper increases the curcumin absorption up to 20 fold, 
causing hepatotoxicity effect (Halegoua-DeMarzio et 
al.,2022; Sohal et al., 2021). 

T. flagelliforme extract, in addition to the immune cells 
mentioned previously, may influence other types of 
immune cells, according to various studies. In 
immunocompromised mice, the extract could increase the 
levels of various cytokines such as TNF-α and IL-1α, as 
well as the number and activity of macrophages, 
particularly their phagocytic index and capacity. However, 
in higher doses, the effect could also be reversed 
(Nurrochmad et al., 2015; Sagala and Murwanti, 2020). It 
also upregulates the heat shock protein-70 (Hsp-70) in the 
tumor associated macrophages, which then change their 
polarization towards pro-inflammatory M1-like 
macrophages, promoting cancer cell apoptosis via an 
extrinsic apoptotic pathway (Ibrahim et al., 2022; Lai et 
al., 2008). T. flagelliforme extract has been studied for its 
apoptosis activity or anti-proliferative effects on numerous 
of cancer cells (Table 1). For example, in the WEHI-3 
leukemia model case, the extract administration also 
impacted the number of peripheral immature granulocytes 
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and monocytes by lowering their numbers (Mohan et al., 
2010). 

Overall, the data point to immune-modulating 
properties of T. flagelliforme extract, which may be helpful 
in the treatment of a range of immune-related conditions. 
To cover its effects on a wider spectrum of immune cells 
and completely comprehend the processes underlying 
these effects, further research is required due to its limited 
availability. 
Table 1. Several distinct biological activities attributed to T. 
flagelliforme have been observed 

No. Experimental 
target 

Biological activity Reference 

1 CSCC cells  ↑ antiproliferation 
activity 

Priosoeryanto 
et al., 2020 

Rabbit 
endothelial cells 

↑ antiangiogenesis 
activity 

2 DMBA-Induced 
Rats Breast 
Tumor 

↑ Cancer chemo- 
prepentive effect 

Maysarah et 
al., 2020 

↓ tumor incidence, 
tumor size, and tumor 
weight 

3 RBL-2H3 cells ↑ anti-allergic activity Korinek et al., 
2017 

4 HeLa and T47D 
cells 

↓ telomerase 
expression 

Purwaningsih 
et al., 2016 

5 WiDr cells ↑ apoptosis activity Setiawati et al., 
2016 ↓ COX-2 expression 

6 CEMss cells ↑ cytotoxicity Mohan et al., 
2011 ↑ cellular DNA breaks 

↑ apoptosis activity 
7 WEHI-3 cells ↓ proliferation activity Mohan et al., 

2010 BALB/c 
leukemia mice 
model 

↓ immature 
granulocytes and 
monocytes 

8 CEMss cells ↑ apoptosis via  Mohanet al., 
2010 ↑ activation of 

caspase-9, PARP 
cleavage and 
cytochrome c release 

9 NCI-H23 cells ↓ cancer cell growth  
↑ induces apoptosis 

Lai et al., 2008 

4. Conclusion 

Based on our findings, there was an increase in the 
number of CD8+ T cells as well as CD4+CD62L+ naïve T 
cells in the spleen. Additionally, there was an increase in 
the relative number of CD8+ T cells and CD4+ T cells in 
the thymus. Based on these observations, it seems likely 
that TFE are responsible for the immunomodulatory 
function that helps particular immune cells thrive. 
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