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Abstract 

The present study aimed to formulate Streptomyces with alginate as a plant growth promoter and determine its effect on the 
microbiome of maize rhizosphere. Five Streptomyces–alginate beads formulas were produced, namely ARJ14, ARJ16, 
ARJ28, ARJ32, and ARJ34 formulas using the extrusion technique. The formula morphology was analyzed using scanning 
electron microscope, and Streptomyces viability was tested using the total plate count method. Illumina sequencing was used 
to investigate rhizosphere microbiome composition. Alpha and Beta diversity analyses were used to determine the effects of 
the Streptomyces–alginate formulas on the maize rhizosphere microbiome. The ARJ28 formula had the lowest water content 
and the best Streptomyces viability after storage at room temperature for 10 weeks. The growth of maize treated with ARJ28 
formula was better and significantly different from that of the positive and negative controls 49 days after planting. 
Specifically, the stem diameter, fresh weight, and dry weight were 1.32 ± 0.02 cm, 71.67 ± 12.58 g, and 9.57 ± 1.07 g, 
respectively. The rhizosphere from maize treated with ARJ28 formula contained a higher proportion of Acidobacteria, 
Chloroflexi, Crenarchaeota, Myxococcota, Patescibacteria, and Verrumicrobiota, as well as Candidatus-Nitrosotalea, 
Sphingomonas, and Bradyrhizobium genera compared with those in the rhizosphere from ARJ34 formula–treated maize and 
the controls. Treatment with the ARJ28 formula also resulted in a higher proportion of Actinobacteria in rhizospheres 
compared with that in rhizospheres of ARJ34 formula–treated maize and negative control. Thus, the ARJ28 formula 
increased the growth of maize and affected the composition of the maize rhizosphere microbiome. 
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1. Introduction 

Maize is a cereal food crop that belongs to the Poaceae 
family. It contains various beneficial phytochemical 
compounds (Rouf Shah et al., 2016) and is a 
multifunctional commodity used as food, feed, fuel, and 
industrial raw materials (Panikkai et al., 2017). These 
important aspects cause higher demand for maize, and one 
of the tactics implemented to increase maize production is 
through fertilization. Farmers widely use chemical 
fertilizers for their low cost and accessibility. 
Unfortunately, when used for a long time and in high 
doses, chemical fertilizers destroy the soil's physical and 
chemical structure, rendering it less fertile (Magdalena and 
Sumarni 2013). Additionally, frequent use of chemical 
fertilizers increases the soil density and decreases soil 
porosity, resulting in soil resistance to plant root 
penetration (Massah and Azadegan 2016). 

The utilization of Plant–Growth Promoter 
Rhizobacteria (PGPR) allows for reduced chemical 
fertilizer usage. PGPR are microbes that either directly or 
indirectly stimulate plant growth, overcome environmental 
stress, and simultaneously exert a bioremediation function 
(Prasad et al., 2017). PGPR may comprise a single isolate 
strain or microbe consortium with many beneficial 

properties for plants (Jha and Saraf 2012; Alori et al., 
2017; Ahmad et al., 2016). Using PGPR as a biological 
fertilizer can also increase the activity and diversity of the 
rhizosphere microbiome, stimulate the secretion of 
chemical compounds that prevent the growth of pathogens 
and increase the soil organic content (Liu et al., 2021). 

Streptomyces bacteria have been well-studied as 
effective plant–growth promoters. Streptomyces bacteria 
stimulate plant growth directly by producing growth 
hormones (Hortsmann et al., 2020; Wahyudi et al., 2019; 
Niu et al., 2022), contributing to phosphate solubilization, 
and fixing free nitrogen (Kaur et al., 2013; Wahyudi et al., 
2019). However, Streptomyces bacteria usage in plants 
faces many obstacles. Several environmental factors, such 
as soil type, microbial interactions, and structures on the 
land, are limiting the use of biofertilizers (Singh 2018).The 
unprotected inoculated bacteria must compete with the 
often better-adapted native microflora and withstand 
predation by soil micro fauna, which may rapidly cause the 
PGPR population to decline (Bashan 2016). Various 
formulation techniques such as using liquid formulation 
(Jha and Saraf 2012), peat with formulated soil 
amendment (Fitriatin et al., 2021), charcoal (Mäder et al., 
2011), clay pellets (Schoebitz et al., 2014), and alginate 
(Bashan et al., 2012), have been applied to ensure that 
microbes can survive and colonize the rhizosphere.  
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Alginate is the material of choice to encapsulate 
microorganisms because it is biodegradable and protects 
bacteria from environmental stress. Additionally, bacterial 
encapsulation with alginate allows to maintain the optimal 
concentrations of bacteria for a longer period with the 
slow-release mechanism (Bashan et al., 2014). However, 
the application of Streptomyces–alginate formulas to maize 
culture and its effect on maize rhizosphere microbiome 
remain to be investigated. Therefore, the present study was 
conducted to determine the formula of Streptomyces that 
can stimulate the growth of maize plants and its effect on 
the maize rhizosphere microbiome. 

2. Materials and Methods 

2.1. Culture and Cultivation 

Streptomyces bacteria isolated from maize plantation 
soil samples in East Nusa Tenggara, Indonesia, for 
previous research were used (Wahyudi et al., 2019). Five 
isolates (ARJ14, ARJ16, ARJ28, ARJ32, and ARJ34) 
identified as Streptomyces in a previous study using the 
GenBank database (Table 1) (Deviani, C., IPB University, 
unpublished observations) were rejuvenated on molasses–
yeast extract solid medium (composition: 10 g molasses, 3 
g yeast extract, 1 L sterile distilled water, 2% agar) and 
incubated for 7–14 days. For cultivation, three solid 
culture plugs were taken, put into molasses–yeast extract 
liquid medium and stored at ±27°C for 10 days in a shaker 
(Sari et al., 2021). 

Table 1. Identification of the five isolates used in the present study using the GenBank database 

No. Isolate Homology Query Cover 
(%) E-value Identity (%) Accession Number 

1. ARJ14 Streptomyces asenjonii strain KNN 35 79% 0.0 87.31% NR152642.1 

2. ARJ16 Streptomyces cellulosae strain MF11 100% 0.0 99.84% MT2114275.1 

3. ARJ28 Streptomyces cellulosae strain F7-7(2) 100% 0.0 100.00% KR023970.1 

4. ARJ32 Streptomyces tritolerans strain YFP6 100% 0,0 100.00% MG334130.1 

5. ARJ34 Streptomyces olivaceus strain NRRl-B-3009 100% 0,0 100.00% MT543222.1 

2.2. Alginate Bead Production 

A 2% alginate solution was prepared by dissolving 2 g 
of powdered sodium alginate (Himedia Laboratories, 
Mumbai, India) into 100 mL of sterile distilled water. The 
solution was stirred until homogeneous and sterilized 
using an autoclave for 15 min at 121°C with a pressure of 
1 atm. Alginate bead formulation followed that of 
Shrivastava et al. (2008) with modifications. Briefly, 20 
mL of Streptomyces inoculant suspension dissolved in 60 
mL of 2% sodium alginate (1:3 v÷v). Then, 1.5% (w/v) 
skim milk was added and the mixture was vortexed. Then, 
the mixture was pulled up into a 1-mL syringe and 
extruded through a 26G'' needle into stirred 500 mL of 0.1 
M calcium chloride at 40 rpm for 30 min. The beads were 
filtered and washed using sterile distilled water three 
times. Then, they were dried in a Petri dish using filter 
paper and placed inside a laminar air flow for 48 h at 
±38°C. The filter paper was replaced twice. After that, the 
formula was stored in a sealed Petri dish, and silica gel 
was added to it (Bashan et al., 2002). The morphological 
observations of the formula were conducted in the Central 
Forensic Laboratory of Indonesian National Police (Pusat 
Laboratorium Forensik/Puslabfor Polri, Sentul, Indonesia) 
using a Carl Zeiss EVO MA10 Scanning Electron 
Microscope (SEM, Carl Zeiss AG, Jena, Germany) with 
250×, 1000×, 2000×, and 3000× magnifications. The water 
content of each formula was calculated using the 
Association of Official Analytical Collaboration (AOAC) 
equation (1) (Caputi, 1995) as follows: 

   (1) 

where: W1 = weight of the sample before drying (g) 

W2 = weight of the sample after drying (g) 

2.3. Analysis of Streptomyces Viability in the Formula 

Viability analysis was performed as described by Kim 
et al. (2016) with modifications. One gram of alginate 
bead formula was subjected to serial dilution. The first 
dilution consisted in transferring 1 g of the Streptomyces–
alginate beads formula into a 40 mL conical tube 
containing 10 mL phosphate salt/PBS buffer solution and 
vortexing for 2 h to dissolve the alginate. The mixture was 
then shaken for 24 hat room temperature. After that, a 
series of seven consecutive dilutions was conducted, each 
consisting of adding 1 mL of the mixture with 9 mL of 
0,85% sodium chloride solution. The colony number was 
determined using the total plate count method on the 
molasses-yeast extract solid medium after 24 h incubation. 

2.4. Application of the Streptomyces–Alginate beads 
formula 

Streptomyces–alginate formula applied at a greenhouse 
scale. Approximately 1 g of formula was added to each 
maize seed as a seed coating. The BISI-2 variety of maize 
was used. Maize seeds were successively soaked in sterile 
distilled water for 6 h, dried, transferred into a 0.5% 
lecithin solution, and mixed with the alginate bead 
formula. The maize seeds were planted in polybags 
containing latosol soil, which had been cleaned and sifted 
to a depth of ±5 cm. Each polybag contained 5 kg of soil, 
which had been mixed with basic N, P, K fertilizer at a 
dose of 250 kg urea/ha, 100 kg SP36/ha, and 100 kg 
KCl/ha. The polybags were 15 × 30 cm in size, and each 
polybag contained three maize seeds. Fourteen days after 
planting (14 DAP), the maize with the best growth was 
maintained, whereas the other two were eliminated. 

This study used a one-factor randomized block design 
(RBD), namely, five Streptomyces–alginate formulas 
(ARJ14, ARJ16, ARJ28, ARJ32, and ARJ34 formulas) 
with two controls. For negative control, maize was 
exposed to no biological fertilizer, and maize treated with 
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a commercial biological fertilizer was used as a positive 
control. The commercial biological fertilizer consisted of a 
consortium of bacteria Pseudomonas sp., Azospirillum sp., 
Bacillus sp., and Streptomyces sp. Five replications of each 
treatment and control were performed. Maize growth data 
were collected up to 49 days after planting (49 DAP). 
Growth data included the number of leaves, plant height, 
and stem diameter. Additionally, measurements of fresh 
and dry weight were also taken after the plants were 
harvested. 

2.5. Maize Rhizosphere Sampling and DNA Extraction 

The rhizosphere microbiome community was analyzed 
for the maize plants treated with the Streptomyces–alginate 
formula with highest and lowest growth, positive control, 
and negative control. Rhizosphere soil samples were taken 
following the method described by Lakshmanan et al. 
(2017) with modifications. Maize plants from each 
treatment polybag were removed and shaken so that a thin 
layer of soil remained on the root surface. The roots of the 
maize plant were cut into 5-cm-long pieces using sterile 
scissors and transferred into a 50-mL conical tube 
containing 25 mL PBS. The root pieces subjected to the 
same treatment were combined and centrifuged (15 min, 
6000 × g, 4°C) using a VWR 600R Centrifuge (VWR 
International, LLC., Pennsylvania, USA). The supernatant 
was discarded, and 5 g of the pellet were subjected to 
microbiome DNA extraction using a ZymoBIOMICSTM 
DNA Mini Kit (Zymo Research Corp., Irvine, USA) 
according to the manufacturer's instructions. DNA quality 
was checked using a NanoDrop 2000 (Thermo Scientific, 
Wilmington, DE, USA). 

2.6. Illumina Sequencing and Analysis 

The isolated metagenomic DNA was submitted to 
Beijing Novogene Technology Company, Ltd. for 16S 
rRNA gene sequencing. The sample concentration was 
first checked using 1%–agarose gel electrophoresis, and 
samples were dissolved to a final concentration of 1 ng/µL 
using sterile distilled water. DNA was amplified by 
polymerase chain reaction (PCR) using the primers 341F 
(5'-CCTAYGGRBGCASCAG-3') and 806R (5'-
GGACTACNNGGGTATCTAAT-3') with specific 
adapters targeting the V3–V4 region of the 16S rRNA 
gene. PCR reactions were performed using Phusion High-
Fidelity PCR Master Mix (New England Biolabs, 
Masshachusetts, USA). The gene library was sequenced 
using Illumina Novaseq 6500 PE250 to produce two-way 
reads (paired-ends) of 250-bp sequences. The two-way 
reading data were combined using FLASH software 
(version 1.2.7, http://ccb.jhu.edu/software/FLASH) to 
produce raw tags, which were then selected using QIIME 
(version 1.7.0, http://qiime.org /index. html). The tags 
were compared with the SILVA138 database 
(https://www.arb-silva.de/) using the UCHIME algorithm 
(http://www.drive5.com/usearch/manual/uchime_algo.htm
l). Sequences were analyzed using Uparse software 
(version 7.0.1090, http://drive5.com/uparse/). 
Representative operational taxonomic unit (OTU) 
sequence phylogenetic relationships and taxonomic 
distribution were analyzed using MUSCLE (version 
3.8.31, http://www.drive5.com/muscle/). Alpha diversity 
was calculated using QIIME and displayed with the R 
program. Principal component analysis (PCA) was 

conducted using the FactoMineR and ggplot2 packages in 
the R program (version 2.15.3). Unweighted Pair-Group 
Method with Arithmetic Means (UPGMA) clustering and 
beta diversity analysis was performed using QIIME 
software. 

2.7. Statistical Analysis 

The maize growth parameters were analyzed using a 
one-way analysis of the variance (ANOVA). If there was a 
significant effect of the treatment, Duncan's test (DMRT) 
with α = 0.05 was used. Analyses were performed using 
IBM SPSS Statistics for Windows version 24.0 (IBM, 
Armonk, New York, United States). 

3. Results 

3.1. Streptomyces–Alginate Beads Formulation 

Five isolates of Streptomyces (ARJ14, ARJ16, ARJ28, 
ARJ32, and ARJ34) were successfully formulated using an 
alginate carrier (Figure 1). Each formula had a water 
content of 27.3% (ARJ14 formula), 26.4% (ARJ16), 
25.6% (ARJ28 formula), 26.5% (ARJ32 formula), and 
26.2% (ARJ34 formula). Streptomyces–alginate bead 
formulas were 500–1000 m in diameter and slightly round 
or oval and had a glossy smooth surface and yellow–
brown color. 

 
Figure 1. Morphology of Streptomyces–alginate bead formula 
composed of Streptomyces ARJ14 (a), ARJ16 (b), ARJ28 (c), 
ARJ32(d), and ARJ34 (e). Image of formula attached on the 
maize seed surface (f). 

Streptomyces cells were immobilized by the alginate 
bead matrix. SEM observations confirmed the 
Streptomyces colonies on the surface of the alginate beads 
(Figure 2). 

 
Figure 2. Morphology of the Streptomyces–alginate formula 
analyzed by scanning electron microscopy using (a) 80×, (b) 
250×, (c) 2000×, and (d) 3000× magnifications. Arrow 1 indicates 
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the formula surface, arrow 2 shows Streptomyces colonies, and 
arrow 3 indicates Streptomyces mycelium. 

3.2. Streptomyces Viability in the Formula 

The viability of the Streptomyces in the Streptomyces–
alginate bead formula was determined using the total plate 
count method over ten weeks of storage at ±27°C.  
Streptomyces ARJ28 showed the best viability. 
Streptomyces ARJ28 viability in the formula was up to 5.1 
x 107 cfu/g in the 10th week, whereas the lowest viability 
(6.2 x 105 cfu/g) was recorded for Streptomyces ARJ16. 
The concentration of cells attached to the maize seedlings 
was 1.4 x 107 to 2.0 x 107 cfu/g. 

 
Figure 3. Viability of Streptomyces in Streptomyces–alginate 
bead formula quantified using the total plate count method on 
molasses–yeast extract medium (24 h, ±27°C). 

3.3. Effects of Streptomyces–Alginate Bead Formula on 
Maize 

Table 2 shows that the growth of maize inoculated with 
the Streptomyces–alginate bead formula was better than 

that of the negative control based on the five growth 
parameters analyzed. At 49 days after planting, maize 
plants treated with the ARJ28 formula had an average 
plant height of 117.73 cm, which was significantly greater 
than that of the negative control (92.03 cm) but not 
significantly different from that of the positive control and 
maize subjected to other treatments. Maize plants treated 
with the ARJ14 formula had the highest average number 
of leaves (10.67 leaves). This was not significantly 
different from the number of leaves in the positive control 
and maize treated with other formulas, whereas the 
negative control had significantly fewer leaves (7.67 
leaves). The average stem diameter was greater in all 
maize treated with the Streptomyces–alginate formulas 
compared with that of the positive and negative controls. 
The stalk average diameter of maize plants treated with the 
ARJ28 formula was the greatest (1.32 cm) and 
significantly different from that of the negative and 
positive controls (0.91 and 0.99 cm, respectively). 
However, there was no significant difference among 
treatments. The maize plants treated with the ARJ28 
formula had the highest average fresh weight (71.7 g), 
which was significantly different from that of the negative 
control (20.00 g), positive control (43.33 g), and ARJ34 
formula-treated maize plants (51.67 g). Maize plants 
treated with the ARJ28 formula had the highest average 
dry weight (9.57 g), which was significantly different from 
that of the negative control (2.53 g), positive control (4.9 
g), and the ARJ34 formula-treated plants (6.7 g). 

Table 2. Effects of the Streptomyces–alginate bead formula on maize growth 

Formula Plant Height (cm)* Number of Leaves* Stem Diameter 
(cm)* 

Upper Plant Body 
Fresh Weight (g)* 

Upper Plant Body 
Dry Weight (g)* 

Negative control 92,03a ± 5,64 7,67a ± 0,57 0,91a ± 0,14 20,00a ± 5,00 2,53a ± 0,45 

Positive control 113,47b ± 8,20 10,00b ± 0,00 0,99a ± 0,07 43,33b ± 7,63 4,90ab ± 0,50 

ARJ 14 115,37b ± 3,74 10,67b ± 1,15 1,22b ± 0,08 65,00cd ± 5,00 7,53cd ± 2,47 

ARJ 16 113,20b ± 4,35 10,33b ± 0,57 1,18b ± 0,12 68,33cd ± 18,92 8,13cd ± 0,96 

ARJ 28 117,73b ± 5,90 10,33b ± 0,57 1,32b ± 0,02 71,67d ± 12,58 9,57d ± 1,07 

ARJ 32 115,33b ± 2,80 10,00b ± 0,00 1,20b ± 0,04 63,33cd ± 2,88 8,73cd ± 0,55 

ARJ 34 113,97b ± 3,91 9,67b ± 0,57 1,19b ± 0,06 51,67bc ± 10,40 6,37bc ± 2,17 

Note: *Values are presented as means ± standard errors. 
a,b,c,d Different superscript letters indicate significant differences among treatments (column) with P<0.05.

3.4. Maize Rhizosphere Microbiome Analysis 

3.4.1. Alpha Diversity 

Streptomyces ARJ28 and ARJ34 formulas induced the 
highest and lowest growth of maize plants, respectively. 
Therefore, rhizosphere samples of plants treated with 
ARJ28 and ARJ34 formulas were analyzed and compared 
with the samples of the positive and negative controls. 
Table 3 shows the results of the alpha diversity analysis of 
four rhizosphere samples performed using Uparse and 
MUSCLE software. The Shannon index was the highest 
for rhizospheres of the positive control. It was lower for 
rhizospheres of maize treated with the ARJ28 formula, 
even lower for rhizospheres of ARJ34 formula-treated 

maize, and reached the lowest value for the negative 
control. Thus, the rhizosphere community relative 
abundance was increased by the inoculation of the ARJ28 
and ARJ34 formulas and conventional biofertilizer. 
Additionally, the range of the rank abundance distribution 
curve on the horizontal axis was greater for the positive 
control sample (Figure 4). The Chao1 estimator was the 
highest for the rhizosphere samples of the positive control 
and decreased progressively for the samples of maize 
treated with the ARJ28 formula and the negative control, 
to reach the lowest value for the rhizospheres of ARJ34 
formula-treated maize. These results indicated that the 
richness of the microbiome community in the rhizospheres 
of ARJ34 formula-treated maize was lower than that in 
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rhizospheres of ARJ28 formula-treated maize and both 
control samples. Thus, there are likely changes in the 
proportion of the microbiome community. 
Table 3. Alpha diversity analysis of the rhizosphere samples 

Sample Shannon Chao1 Coverage 

ARJ28 7,196 2,019 0,998 

ARJ34 6,847 1,741 0,999 

Positive Control 7,402 2,204 0,998 

Negative Control 6,721 2,045 0,998 

 

 

Figure 4. The rank abundance distribution curve of the 
microbiome community from the rhizosphere samples of maize 
treated with ARJ28 or ARJ34 formula and of the negative and 
positive controls. 

3.4.2. Beta Diversity of the Bacterial Community in the 
Maize Rhizospheres 

The principal coordinate analysis (PCoA) performed 
using QIIME software showed a clear separation of the 
rhizosphere microbiomes of maize treated with the ARJ28 
and ARJ34 formulas from those of the positive and 
negative controls (Figure 5). The rhizosphere microbiomes 
of the positive and negative controls were clustered, 
indicating that both microbiomes were quite similar. 
Additionally, the rhizosphere microbiome of maize treated 
with formula ARJ28 and that of maize exposed to formula 
ARJ34 were located in different quadrants and separated 
by a considerable distance, indicating that there were 
differences between both microbiomes (Figures 5).

 

 
Figure 5. PCoA of the rhizosphere microbiomes of maize treated 
with ARJ28 or ARJ34 formula, negative control (Neg. C), and 
positive control (Pos. C). The rhizosphere microbiomes from the 
positive and negative controls differed from those of maize treated 
with ARJ28 and ARJ34 formulas. 

3.4.3. Taxonomic Distribution of Bacterial Communities 
between Rhizosphere Samples 

The distribution of bacterial community in the maize 
rhizospheres was determined using the SILVA138 
database. The OTU analysis performed using the QIIIME 
software (version 1.7.0) successfully identified 18 phyla 
from the Bacteria domain and one phylum from the 
Archaebacteria domain. There were 10 phyla with more 
than 1% relative abundance: Proteobacteria, 
Acidobacteria, Actinobacteria, Chloroflexi, Bacteroidota, 
Firmicutes, Crenarchaeota, Myxococcota, Patescibacteria, 
and Verrucomicrobiota (Figure 6). Clusterization of the 
maize rhizosphere microbiome communities using 
UPGMA revealed two clusters, namely the treatment 
cluster (treated with ARJ28 and ARJ34 formulas) and the 
control cluster (positive and negative controls).
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Figure 6. Clusters of bacterial communities in the rhizospheres of maize plants treated with ARJ28 and ARJ34 formulas and that of the 
positive (Pos. C) and negative (Neg. C) controls. 

The rhizosphere analysis of maize plants treated with 
ARJ28 and ARJ34 formulas and that of the positive and 
negative controls were different regarding the relative 
abundance of 10 taxa at the phylum level (Figure 7). The 
Proteobacteria phylum was the most abundant phylum in 
rhizospheres of maize treated with ARJ28 (61.51%) and 
ARJ34 (62.51%) formulas and in those of the positive 
(64.05%) and negative (70.36%) controls. The 
Acidobacteriota phylum relative abundance was the 
highest in the rhizospheres of maize treated with ARJ28 
formula (11.91%), whereas it was 8.40%, 11.02%, and 
9.31% in rhizospheres of ARJ34 formula-treated maize, 
the positive control, and the negative control, respectively. 
The Firmicutes phylum was the most abundant in the 
rhizospheres of maize treated with ARJ34 formula 

(8.07%), whereas its relative abundance was 0.60%, 
1.23%, and 1.66% in rhizospheres of ARJ28 formula-
treated maize, the positive control, and the negative 
control, respectively. The phylum Actinobacteriota relative 
abundance was the highest in the rhizospheres of the 
positive control (5.48%) and was 4.76% in rhizospheres of 
maize treated with ARJ28 formula, 4.19% in rhizosphere 
of the negative control, and 3.45% in rhizospheres of 
maize treated with ARJ34 formula. The rhizosphere of 
maize treated with the ARJ28 formula exhibited the 
highest relative abundance of Chloroflexi, Crenarchaeota, 
Myxococcota, Patescibacteria, and Verrumicrobiota, 
which were 3.96%, 2.49%, 2.21%, 1.51%, and 1.27%, 
respectively.

 

 
Figure 7. Distribution of the most abundant phyla in the rhizosphere of maize plants treated with ARJ28 and ARJ34 formulas, the negative 
control (Neg.C), and the positive control (Pos.C). 

There were differences in the relative abundance of 
genera among rhizospheres of maize treated with ARJ28 
and ARJ34 formulas, the positive control, and the negative 
control (Figure 8). Burkholderia-Caballeronia-
Paraburkholderia was the most abundant genus in 
rhizospheres of maize treated with the ARJ28 and ARJ34 
formulas, positive control, and negative control, with a 
relative abundance of 19.71%, 18.75%, 18.32%, and 
26.83%, respectively. The Bacillus genus relative 
abundance was the lowest in rhizospheres of maize treated 
with the ARJ28 formula (0.43%), whereas it was 7.81%, 

0.77%, and 1.08% in the rhizospheres of maize treated 
with the ARJ34 formula, positive control, and negative 
control, respectively. The genus Dyella relative abundance 
was the highest in rhizosphere samples of the negative 
control (5.85%) and the lowest in the positive control 
rhizospheres (2.71%). The relative abundances of the 
genera Massilia and Ralstonia were the highest in 
rhizospheres of maize treated with the ARJ34 formula 
(4.32% and 3.57%, respectively) and the lowest in 
rhizospheres from the positive controls (2.04%). The 
relative abundances of the genera CandidatusNitrosotalea, 
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Sphingomonas, and Bradyrhizobium were the highest in 
rhizospheres of maize treated with the ARJ28 formula 
(3.26%, 2.68%, and 2.33%, respectively). The relative 
abundances of the genera Phenylobacter and Asticcacaulis 
were the highest in the rhizospheres of the positive control 
(3.05% and 2.78%, respectively). The relative abundance 

of other bacterial genera was 60.9% in the positive control 
rhizospheres and 57.72%, 50.15%, and 50.32% in 
rhizospheres from maize treated with the ARJ28 and 
ARJ34 formulas and negative control rhizospheres, 
respectively.

 

 
Figure 8. Distribution of bacteria genera in rhizospheres from maize plants treated with ARJ28 and ARJ34 formulas, the negative control, 
and positive control.

4. Discussion 

Here, we successfully formulated five Streptomyces 
isolates using sodium alginate as a carrier. Sodium alginate 
is a polysaccharide that can be obtained from algae and 
bacteria. It is environment-friendly, relatively inexpensive 
to produce, naturally biodegradable, and non-toxic 
(Puscaselu et al., 2020). Streptomyces was encapsulated 
with alginate using the extrusion method, which consisted 
in dripping an alginate solution that had been mixed with a 
Streptomyces liquid culture into a calcium chloride 
solution to generate a reaction between alginate and 
divalent cations (Malusá et al., 2012). Sodium alginate–
divalent cations bonds form a structure that encapsulates 
bacterial cells and releases these cells slowly over a certain 
period (Bashan, 2016). Thus, the bacteria are not directly 
exposed to environmental stress and other microbial 
contamination (Schoebitz et al., 2013). The diameter of the 
formula was 400–700 µm, which is categorized as 
microbeads. Microbeads are large enough to encapsulate 
some bacteria but too small to attach to seedlings (Bashan 
et al., 2014). The Streptomyces–alginate bead formulas 
had low water content, the lowest one (25,6%) being in the 
ARJ28 formula. Therefore, the ARJ28 formula might be 
better preserved after 10 weeks of storage than the other 
formulas. Low water content can indeed support microbial 
survivability in dry formulas for longer storage (Lobo et 
al., 2019). 

The growth of maize treated with the Streptomyces–
alginate beads formulas was increased at 49 days after 
planting. Specifically, the plant height, number of leaves, 
stem diameter, fresh weight, and dry weight were 
increased by ARJ28 formula treatment compared with 
those of the negative control. The ARJ28 formula may 
stimulate the growth of maize plants by excreting plant 
growth-promoting substances and stimulating the 
absorption of nutrients important for maize growth. Based 

on a previous study, Streptomyces ARJ28 can produce 
indole-3-acetic acid (IAA), grow on a nitrogen-free 
medium, and significantly increase the growth of maize in 
the Ragdoll test (Wahyudi et al., 2019). Streptomyces 
bacteria are known to produce growth-promoting 
substances such as IAA (Goudjal et al., 2013), cytokinins, 
and gibberellins (Olanrewaju and Babalola 2019), dissolve 
phosphate (Alori et al., 2017), and fixe nitrogen (Dahal et 
al., 2017). Previous research also found that Streptomyces 
bacteria stimulate maize plant growth as assessed by the 
plant height, root length, aerial body wet and dry weight, 
and root fresh weight (Dicko et al., 2018). 

The better growth of maize plants treated with the 
ARJ28 formula might directly result from Streptomyces 
ARJ28. Additionally, the rhizosphere microbiome that is 
affected by the formula might play a role. Although the 
ARJ28 formula did not induce the highest microbiome 
abundance and diversity, the growth of maize treated with 
the ARJ28 formula was better than that of maize subjected 
to other treatments or of the positive and negative controls. 
The ARJ28 formula might attract beneficial microbes in 
the rhizosphere, resulting in these microbes becoming 
dominant and in a lower abundance of other microbes. 
Indeed, PGPR inoculation affects the chemical diversity of 
root exudates and induces the release of specific 
compounds involved in the recruitment of beneficial 
microbes (Kong and Liu, 2022). PGPR inoculation also 
modifies the functional diversity of the rhizosphere, 
thereby disrupting plant–soil feedback and modifying the 
structure of the rhizosphere microbiome (Alzate Zuluaga 
et al., 2021). In addition, the by-products of PGPR 
metabolism can be utilized by other rhizosphere microbes 
as nutrients or energy sources (Kong and Liu, 2022). 

The beta diversity analysis showed that Streptomyces–
alginate bead formulas affected the maize rhizosphere 
microbiome relative abundance. UPGMA cluster analysis 
confirmed that the rhizosphere microbiomes of maize 
treated with the ARJ28 and ARJ34 formulas differ from 
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those of the positive and negative controls. Particularly, 
there were differences in the composition and proportion 
of nine bacteria phyla (Proteobacteria, Acidobacteria, 
Actinobacteria, Chloroflexi, Bacteroidota, Firmicutes, 
Myxococcota, Patescibacteria, and Verrucomicrobiota) 
and one phylum of Archaebacteria (Crenarchaeota). These 
results are similar to those of previous studies by Wang et 
al. (2021) and Akinola et al. (2021) on maize plant 
rhizospheres. Differences in the composition and relative 
abundance of the rhizosphere microbiome community can 
be influenced by abiotic and biotic factors (Andreote et al., 
2014). Microbial inoculation of the soil can affect the 
activity of native microflora by attaching to the plant roots 
and competing for space and nutrients released through 
root exudation. Once the inoculated microbes had enough 
nutrients and space, they can affect the host plant 
(Mohanram and Kumar, 2019). 

The relative abundance of Actinobacteria in the 
rhizosphere samples of maize plants treated with the 
ARJ28 formula was higher than that in the rhizospheres of 
maize plants treated with the ARJ34 formula and the 
negative control, but lower than that in the rhizospheres of 
the positive control. Nevertheless, the inoculation of the 
ARJ28 formula also increased the relative abundance of 
Acidobacteria, Chloroflexi, Crenarchaeota, Bacteroidota, 
Myxococcota, Patescibacteriota, and Verrucomicrobiota. 
Inoculation of biological fertilizers can enrich, attract, and 
stimulate the growth of beneficial microbes in plant roots, 
thereby increasing the availability of nutrients and 
resistance to pathogenic infections (Dennis et al., 2010). 
Certain members of Acidobacteria, Chloroflexi, 
Crenarchaeota, Bacteroidota, Myxococcota, 
Patescibacteriota, and Verrucomicrobiota are known to 
promote plant growth through direct or indirect 
mechanisms. Acidobacteria interact with plants through 
mechanisms related to auxin production and exhibit 
growth-promoting effects (Kielak et al., 2016). For 
example, the growth of tomato and black bean plants 
increases with the number of Acidobacteria members in 
the rhizosphere (Kalam et al., 2017). Chloroflexi is a 
phylum found in a considerable proportion in agricultural 
soils (Trivedi et al., 2016). It also inhabits other 
ecosystems and has ecological importance in the habitats 
of mesophilic, thermophilic, aerobic, anaerobic 
chemoorganoheterotrophic, and photolithoautotrophic 
bacteria (Rincón-Molina et al., 2022). The Bacteroidetes 
phylum is also commonly found on agricultural land, and 
some members of this phylum produce IAA, dissolve 
tricalcium phosphate, and break down chitin (Flores-
Núñez et al., 2018). The Myxococcota phylum is widely 
distributed in soil, freshwater, and saltwater and produces 
a variety of secondary metabolites such as antimicrobial 
compounds that indirectly act as bioprotectants (Korkar et 
al., 2022). Crenarchaeota is a phylum from the 
Archaebacteria domain known to play an essential role in 
the oxidation of ammonia as an initial step in the 
nitrification process (Zhou et al., 2015). 

At the genus level, the rhizospheres of maize plants 
treated with the ARJ28 formula contained the highest 
levels of CandidatusNitrosotalea, Sphingomonas, and 
Bradyrhizobium, which play a role in stimulating plant 
growth. Candidatus Nitrosotalea is a member of the 
Archaebacteria domain that can oxidize ammonia, which is 
essential for the rate of steps in the nitrification process 

(Maver et al., 2021). Sphingomonas is a well-known group 
of soil bioremediation bacteria and plant-growth promoters 
in stressed environments (Asaf et al., 2020). 
Bradyrhizobium, which lives freely in the soil and 
rhizospheres, is involved in carbon metabolism and the 
degradation of aromatic compounds (Schneijderberg et al., 
2018) and fixes nitrogen (Wongdee et al., 2018). 

In the present study, the rhizospheres of formula-
treated maize plants did not contain a dominant proportion 
of the Streptomyces genus. Even though Streptomyces 
inoculation positively correlated with better maize growth, 
it was difficult to ensure that the inocula had succeeded in 
dominating the rhizosphere since the sampling for 
rhizosphere microbiome analysis was performed in the late 
vegetative phase. It is important to note that the plant 
microbiome composition is dynamic and can change 
throughout the plant life cycle (Edwards et al., 2018). 
Some microbes may be dominant in the early vegetative 
phase and be less present in the late developmental stages. 
The microbial communities can be highly dynamic in the 
early vegetative phase but start to converge during 
vegetative growth and become more stable during the 
reproductive phase (Ferrarezi et al., 2022). In the present 
study, Streptomyces inoculation may promote plant growth 
during the vegetative stage and may be found in different 
proportions in each phase. During the vegetative stages, 
Streptomyces may convert plant exudates or 
macromolecules/supramolecules present in the rhizosphere 
into a form that can be used by other plant growth-
promoting microbes (Sousa and Olivares, 2016). This 
process may attract other beneficial indigenous microbes. 
Due to the slow release mediated by alginate 
encapsulation, the abundance of Streptomyces was 
maintained in the rhizospheres, although not to levels 
sufficient to dominate the rhizospheres until the end of the 
vegetative stage.  

5. Conclusion 

In the present study, the Streptomyces–alginate bead 
ARJ28 formula promoted maize plant growth better than 
the other treatments and controls. The application of the 
Streptomycesformula increased the relative abundance of 
Acidobacteria, Chloroflexi, Crenarchaeota, Bacteroidota, 
Myxococcota, Patescibacteriota, and Verrucomicrobiota as 
well as the genera Candidatus Nitrosotalea, 
Sphingomonas, and Bradyrhizobium in rhizospheres. 
These taxa are known for their plant growth-promoting 
activity and are thought to play a role in the growth of 
maize plants. Therefore, the ARJ28 formula might be used 
as biological fertilizer.  
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