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Abstract  

This work was conducted to evaluate the phenotypic and phylogenetic diversity of 48 rhizobial strains. All 
rhizobial strains exhibited a broad tolerance to salinity and pH. In general, they grew well at 28°C and 37°C but poorly at 
4°C and 45°C. The rhizobial strains showed an array of antibiotic sensitivity patterns. The numerical (UPGMA) analysis of 
phenotypic traits and the phylogenetic tree of concatenated housekeeping genes produced highly similar results. 
Phylogenetic analysis of recA and glnII showed that all the isolates were affiliated to the genus Sinorhizobium, but belong to 
two distinct groups: Group I, originating in Ghardaïa, was close to the species S. meliloti and S. kummerowiae. Group II, 
originating in Ouargla and El Oued, clustered separately from sequences of known Sinorhizobium species, which suggests 
they could be a new lineage. The classifications resulting from the nodC gene reflect host specificity, while phylogeny based 
on chromosomal genes is independent of the host plant. Based on the studies documented in the literature, the genetically 
characterized rhizobial strains can be used as an effective inoculant for the improvement of forage yields in Saharan regions.  
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1. Introduction 

Alfalfa (Medicago sativa) is one of the oldest forage 
crops and contributes immensely to world food production 
(Massimi et al., 2017). It is vital due to its high protein 
content, high biomass yield, excellent nutritive value and 
high digestibility. It is widely planted throughout the 
world, especially in the arid and semi-arid areas (Zhang 
and Wang, 2015). This forage crop provides fixed nitrogen 
to agricultural ecosystems and reduces dependence on 
synthetic N fertilizers (Mouradi, 2016; Ahmad et al., 
2016). However, in adverse conditions such as high 
salinity and drouth, the survival of rhizobia is greatly 
affected (Domínguez-Ferreras et al., 2006) and therefore, 
nodulation and effectiveness in alfalfa can be significantly 
reduced (Brígido et al., 2013; del Pozo et al., 2017; Azib 
et al., 2020). 

Very little is known about the diversity of rhizobial 
strains nodulating Saharan varieties of alfalfa, despite the 
alfalfa-sinorhizobia symbiosis being one of the best 
studied plant-microorganism interactions. So far, only two 
closely related species are known to be able to nodulate 
alfalfa: Sinorhizobium meliloti and S. medicae (Tabares-da 
Rosa et al., 2019).  

The development of polyphasic taxonomy (phenotypic, 
genotypic and phylogenetic characteristics) and the use of 

16S rRNA as a taxonomic marker has led to many changes 
in the taxonomy of rhizobia (Zakhia and de Lajudie, 
2006). A highly conserved gene like 16S rRNA is not 
suitable for the discrimination of closely related 
Sinorhizobium (or Ensifer) species (Martens et al., 2007). 
To overcome these limitations, the multilocus sequence 
analysis (MLSA) of several protein encoding 
housekeeping genes (atpD, recA and glnII, etc.) has been 
suggested as alternative phylogenetic markers 
(Stackebrandt et al., 2002).  

The aim of this study was to investigate phenotypic and 
genotypic diversity of 48 strains nodulating alfalfa in 14 
Algerian Saharan sites affected by salt and drought. 
Firstly, phenotypic characterization for tolerance to 
salinity, temperature, pH and antibiotics was assessed; 
secondly, housekeeping genes recA and glnII, and 
symbiotic gene nodC were used to establish phylogeny of 
these strains. 

2. Materials and methods 

2.1. Nodule collection and isolation of rhizobia 

During the period from February to March of 2014, 
root nodules of alfalfa plants were collected from 14 sites 
(Table 1) and rapidly dried and kept in tubes containing 
desiccant according to the method described by 
Somasegaran and Hoben (1985). 
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Desiccated nodules were rehydrated before 
sterilization. Nodules were placed in small beakers with 
clean cool water and left in the refrigerator to soak 
overnight. Then, they were surface sterilized with 95% 
ethanol for 10 seconds, and transferred to 3% (v/v) 
solution of sodium hypo-chlorate for 3-4 minutes. The 
surface sterilized nodules were then rinsed in five changes 
of sterile distilled water to completely rinse the sterilizing 
chemicals (Somasegaran and Hoben, 1985).  

The rhizobia were isolated following the standard 
method on yeast extract mannitol medium (YEM) 
(Vincent, 1970). Each nodule was crushed in a drop of 
sterile distilled water and suspension was streaked onto 
YEM Agar. Bacterial colonies appeared after incubation at 
28°C for 3-5 days. A single representative colony, for each 
sample, was restreaked on freshly prepared YEM plates in 
order to obtain pure cultures. 

Table 1. Site description, and strain names, location, type of climate, soil type, salinity of irrigation water and year of sampling.  

Site Station Strains Geographical 
position 

Soil texture Salinity of 
irrigation water 
(g/l)* 

Period of  

sampling 

O
ua

rg
la

 

Hassi Ben 
Abdallah 

O114, O144, O152, 
O172 

Lat. 32°00’77’’N 

Long. 5°46’27’’E 

 

Sandy 

 

 

 

2 to 42 to 4 

2 to 4 

 

2 to 4 

February 2014 

 

Oum Erraneb O211, O213, 

O223 

Lat. 32°05’03’’N 

Long. 5°34’46’’E 

February 2014 

 

ITAS O313, O321, O344 Lat. 31°94’11’’N 

Long. 5°29’54’’E 

March 2014 

Chott Ain 
Beida 

O413, O422, O434, 
O442, O452, O461 

Lat. 31°97’76’’N 
Long.5°38’96’’E 

March 2014 

G
ha

rd
aï

a 

Daya Ben 
Dahoua 

G131, G132, G122, 
G124 

Lat. 32°53’53’’N 

Long. 4°40’35’’E 

 

 

Sandy 

 

 

 

1 to 41 to 1.5 

1 to 1.5 

1 to 1.5 

1 to 1.5 

March 2014 

 

Mansoura G211, G241, G242 Lat. 31°98’25’’N 

Long. 3°57’52’’E 

March 2014 

 

Oued Laroui G312, G315, G321 Lat. 32°57’01’’N 

Long. 3°62’86’’E 

March 2014 

 

Sebseb G42, G422, G424, 

G431, G432 

Lat.32°17’01’’N 

Long. 3°57’52’’E 

March 2014 

 

Guerrara G514, G522 Lat.32°67’89’’N 

Long. 4°73’77’’E 

March 2014 

 

E
l O

ue
d 

Tenedla E114, E131, E141 Lat.33°67’58’’N 

Long.6°03’72’’E 

 

Sandy 

 

 

 

2 to 62.5 to 6 

2 to 6 

2 to 4 

 

2 to 4 

April 2014 

El-Meghaier E213, E222, E251 Lat.33°56’25’’N 

Long. 5°92’71’’E 

April 2014 

Djamaa E353 Lat.33°52’30’’N 

Long.6°02’32’’E 

April 2014 

Guemmar E414, E421, E432, 
E441, E452 

Lat.33°51’07’’N 

Long.6°78’26’’E 

April 2014 

Reguiba E52, E532, E543 Lat.33°56’25’’N 
Long. 6°71’74’’E 

April 2014 

*: values taken from OSS (2003).

2.2. Nodulation tests 

All the cultures obtained were tested for nodulation in 
the host plant Medicago sativa (Alfalfa). Isolates were 
used to inoculate surface sterilized alfalfa seeds growing in 
tubes containing Jensen’s N-free agar medium (Jensen and 
Hauggaard-Nielsen, 2003) and evaluated after six weeks 
according to presence or absence of nodules (Gibson, 
1980). The experiment was conducted in a plant growth 
chamber with 16/8 h day/night and 22°C. 

Two day old seedlings were transferred into test tubes 
(15 cm  2 cm) with one seedling per tube, containing 10 
ml of agar slant medium and inoculated with 1 ml of 
standardized bacterial suspension (OD600nm of 0.9).  

2.3. Phenotypic characterization  

Isolates that induced nodulation in alfalfa were used in 
this study. Two closely related Sinorhizobium meliloti 
strains, Sm1021 and Sm2011 received from Dr. Helene 
Berges, Plant Genomic Center (CNRGV, INRA-France), 
were used as reference strains.  

The tolerance of isolates to NaCl was tested by using 
YEM supplemented with 1.7, 40, 80, 160, 320, 640 and 
1280 mM NaCl. The tolerance to pH was assessed by 
adjusting the pH to 4.0, 5.0, 6.0, 6.8, 8.0 and 9.0 through 
the addition of acid or base to the YEM (Vincent, 1970). 
Isolates were examined for tolerance to temperature by 
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incubating at 4, 28, 37 and 45°C as described by Niste et 
al. (2015).  

The resistance to ten antibiotics (µg/disc): fusidic acid: 
10 µg (FA), amikacin: 30 µg (AK), amoxicillin: 25 µg 
(AMX), chloramphenicol: 30 µg (C), colistin: 10 µg (CS), 
erythromycin: 15 µg (E), kanamycin: 30 µg (K), penicillin: 
6 µg (P), spiramycin: 100 µg (SP) and vancomycin: 30 µg 
(VA), was tested on YEM plates by adding antibiotic discs 
on the surface of the agar.  

The growth was recorded after 72 h of incubation at 
28°C in liquid YEM by measuring the OD at 600 nm (Wei 
et al., 2004) and on solid YEM by counting the colonies 
appearing on the plates. Tests tubes containing 10 ml of 
liquid YEM were inoculated with 0.1 ml of a fresh culture 
of each isolate and incubated under shaking (200 rpm). On 
solid YEM, supplemented with 1.5% agar, inoculation is 
carried out by streaking on Petri plates (Vincent, 1970; 
Somasegaran and Hoben, 1985). 

2.4. DNA extraction and PCR amplification and 
purification 

Total genomic DNA of the isolates was extracted using 
DNeasy® Blood and Tissue Kit columns in accordance 
with the manufacturer's protocol (QIAGEN Ltd.) from 
cells grown for 3 days in yeast extract mannitol broth 
(YMB) at 28°C under shaking (200 rpm). After extraction, 
the DNA was quantified to determine its approximate 
quantity and relevance for further analysis using agarose 
gel electrophoresis.  

Housekeeping genes glnII and recA, and symbiotic 
gene nodC were amplified by PCR using the following 
primers: GSII-1F (5’-AACGCAGATCAAGGAATTCG-
3’) and GSII-4R (5’-GCGACGATCTGGTAGGGGT-3’) 
(Turner and Young, 2000); recA_41F (5’-
TTCGGCAAGGGMTCGRTSATG-3’) and recA_640R 
(5’-ACATSACRCCGATCTTCATGC-3’) (Vinuesa et al., 
2005); nodC_for540 (5’-
TGATYGAYATGGARTAYTGGCT-3’) and 
nodC_rev1160 (5’-CGYGACARCCARTCGCTRTTG-3’) 
(Sarita et al., 2005). The quantity of DNA was determined 
by using a NanoDrop spectrophotometer (NanoDrop 
ND1000). The PCR reaction was carried out in a 25 µl 
volume containing 2.5 µl 10×Standard Reaction Buffer 
with MgCl2 (Biotools), 2 µl DNA, 1 µl Taq DNA 
polymerase (Biotools), 0.5 µl dNTP, 1 µl of each primer 
and 17 µl of distilled water. 

The thermal program for PCR reactions of glnII and 
recA was carried out at 95oC for 90s; 35 cycling times at 
95oC for 45s, 55oC for 45s and 72oC for 2min and a final 
cycle was 72oC for 7min. For nodC, it was at 95oC for 
3min; 35 cycling times at 94oC for 1min, 55oC for 1min 
and 72oC for 2min and a final cycle was 72oC for 7min. 
Unincorporated primers and dNTPs were removed from 
PCR mixes with PCR Clean-up (Macherey-Nagel). PCR 
products were verified by electrophoresis in 1% agarose 
gel submerged in TBE buffer (Del Papa et al., 1999) and 
visualized with a Gel Doc EZ system (Bio-Rad). 

Sequencing reactions were outsourced to Stabvida 
(Lisbon, Portugal). 

2.5. Phylogenetic analysis 

The quality of the sequences was checked and edited 
manually using BioEdit 7.2.5 (Hall, 1999) and 
automatically using DNA Baser Assembler v4.36.0 (2013) 
(Heracle BioSoft, http://www.DnaBaser.com).  

Initially, a blast search (Altschul et al., 1990) 
conducted using the National Center of Biotechnological 
Information (NCBI) website was carried out for 
preliminary identification and recA, glnII and nodC gene 
sequences of the reference species related to our strains 
were downloaded. The phylogenetic analyses were 
performed using MEGA 6.06 software (Tamura et al., 
2013). A neighbor-joining tree was constructed using the 
Kimura two-parameter model of evolution (Kimura, 1980) 
and support of internal branches was assessed using 1000 
bootstrap replications. 

2.6. Statistical analysis 

The phenotypic characters results were analyzed by 
utilizing XLSTAT software (version 2016.02.28451). 
Bacterial growth in liquid medium was subjected to 
analyses of variance (ANOVA) and treatment means 
compared using Tukey’s HSD (honest significant 
different) test. Numerical analysis of phenotypic traits was 
evaluated by UPGMA algorithm to infer a dendrogram on 
the basis of growth (+) or no growth (-) for each of the 
isolate in solid medium.  

3. Results 

3.1. Morphologic characterization and authentication  

After 3 days of incubation at 28°C, all isolates formed 
visible colonies on YEM Agar medium. Colonies were 
whitish and translucent, varying in diameter from 1 to 3 
mm, circular, convex, with a regular outline and a smooth 
surface. Furthermore, the isolates formed nodules on the 
roots of alfalfa plants six weeks after inoculation. 

3.2. Phenotypic characterization 

The results show that all strains exhibited a broad 
spectrum of tolerance to salinity. All strains were able to 
grow in the presence of 1.7 mM to 640 mM NaCl (Table 
2). In contrast, no strain grew at 1280 mM NaCl. It is 
worth mentioning that tolerance to a given concentration 
of NaCl does not necessarily mean good growth of the 
strains. Analysis of variance shows significant differences 
between the salt concentrations of 80, 160, 320 and 640 
mM with the average growth of the strains decreased with 
increasing salt concentrations (Figure 1a).  

At low salinities (1.7 and 40 mM), strains G132 and 
G424, from Ghardaïa, had the best growth. At 80 and 160 
mM, strains O152, O211 and E141 from Ouargla and El 
Oued were the most resistant. At the highest 
concentrations, the E543 and E452 strains from the El 
Oued region performed the best (Table 3). 
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Table 2. Results of strains tolerance to some environmental stress factors and antibiotics. 

 Temperature (C°) pH NaCl (mM) Antibiotic 

Strains 4 

28
 a

n
d

 3
7 

 45
 

4 5 

6 
to

 9
 

1.
7 

to
 6

40
 

12
80

 

 
F

A
 

 
A

K
 

 
A

M
X

 

 C
  

C
S

 

 E
  K
  P
  

S
P

 

 
V

A
 

 

O114 - + - - + + + - - + - - + - - - - + 

O144 - + + - - + + - - + - - + - - - - - 

O152 - + + + + + + - - - - - + - - - + - 

O172 - + - - + + + - - + - + + - + - + + 

O211 - + - - + + + - - + - + + - + - + + 

O213 - + - - + + + - - + - + + - + - + + 

O223 - + - - + + + - + + - + + - - - + - 

O313 - + - - + + + - - - - - + - - - + + 

O321 - + - - + + + - - - - - + - + - + + 

O344 - + - - + + + - - - - - + - + - + + 

O413 - + - + + + + - - + - - + - + - - + 

O422 - + - + + + + - - - - - - - - - - - 

O442 - + - + + + + - - - - - + - - - - + 

O452 - + - + + + + - - - - + + - + - + + 

O461 - + - - + + + - - - - - + - + - + - 

E114 - + - - + + + - - + - - + - + - + + 

E131 - + - - - + + - + + - + + - + - - + 

E141 - + - - - + + - + + - - + - + - + + 

E213 - + - - + + + - + - - - + - + - + + 

E222 - + - - + + + - - + - - + - - - + + 

E251 - + + - + + + - - - - - + - - - - - 

E353 - + - - + + + - - + - + + - - - - + 

E421 - + - - - + + - - + - - + - + - - + 

E432 - + - - - + + - + + - - + - + - + + 

E441 - + - - + + + - + + - - - - + - - + 

E452 - + - - + + + - - - - - - - - - - - 

E521 - + + - + + + - - + - - + - + - + + 

E532 - + + - + + + - - - - - + - + - + + 

E543 - + - - + + + - + + - - + + + - + + 

G131 - + - - + + + - + - + + - + - + - + 

G132 - + - - + + + - - - + + + + - + + - 

G241 - + - + + + + - + - + - - - + + + - 

G242 - + + - + + + - + - + + - + + + + + 

G122 - + - - + + + - + - + - - - - + + + 

G124 - + + + + + + - + - + - - - - + + + 

G211 - + - - + + + - - - + + - + - + - + 

G312 - + + - + + + - - - + + - + - + + - 

G315 - + - - + + + - + - + - - + - + + + 

G321 - + - + + + + - + - + + - + - + + + 

G421 - + + - - + + - + - + + - + - + + + 

G422 - + + - + + + - + - + + - + - + + + 

G424 - + - + + + + - - - + - - - - + + + 

G431 - + - + + + + - + - + - - + - + + + 

G432 - + + + + + + - + - + - - + - + + + 

G514 - + + + + + + - + - + + + + + + + + 

G522 - + + - - + + - - - + + + + - + + + 

Sm1021 + + + - - + + - + - + - + + + + - + 

Sm2011 + + + - - + + - - - + + + + - + - + 

The resistant strains for the different factors were coded as “+” and the sensitive strains as “-”. 
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Growth of rhizobial strains differed with differences in 
pH values. They tolerated alkaline and neutral pH better 
than acidic pH (Figure 1c). The strains were affected by 
excessively acidic pHs and registered growth rates of 
32.43% and 81.63% at pH 4 and 5, respectively. At 
slightly acidic, neutral and alkaline pH, all rhizobial strains 

grew well. The ANOVA test showed significant 
differences between the growths of strains at different pH 
(Figure 1d). Eleven strains (O152, O413, O422, O452, 
G241, G124, G321, G424, G431, G4311 and G514), from 
Ouargla and Ghardaïa, were resistant to pH 4.

Table 3. Selection of strains tolerant to different NaCl concentrations. 

  NaCl Concentrations  

Strains 

1.7 mM 40 Mm 80 mM 160 mM 320 mM 640 Mm 1280 mM 

G132a G132 a O152 a E141 a G241 a E543 a - 

O211ab G424ab O211 a O223 ab E521 a E452 a - 

O114 abc E222 abc O172 ab O172 abc E141 a O461 ab - 

O452 abc G122 abc O223 ab O321 abcd E114 ab O442 abc - 

G321 abcd O152 abcd E222 ab E114 abcd G124 ab E251 abcd - 

O144 abcde O172 abcde E521 ab O313 abcd O313 ab E213 abcde - 

O313 abcde E131 abcde E131 ab G422 abcde O211 abc O144 abcdef - 

For each parameter, the means in the same column followed by the same letter are not significantly different, as determined by Tukey’s 
HSD test at P = 0.05. 

At 28 and 37°C, all strains showed good growth, 
produced visible colonies on solid medium (Figure 1e) and 
high optical densities (OD) (Figures 1f). At 4°C, only the 
two reference strains, Sm2011 and Sm1021, were able to 
grow. Increasing the temperature to 45°C significantly 
reduced growth and only 15 isolates (O144, O152, E251, 
E521, E532, G242, G321, G421, G422, G431, G432, 
G514, G522, Sm2011 and Sm1021) were thermotolerant 
(Table 2). 

The strains showed different resistance profiles to 
antibiotics. They exhibited strong resistance to spiramycin 
100 µg (SP), vancomycin 30 µg (VA) and colistin 10 µg 
(CS), while their resistance was low, but comparable, for 
the other antibiotics (Figure 1b). Strains from Ghardaïa 
and reference strains are, generally, more tolerant to 
antibiotics (61.17% and 65% respectively) than those from 
Ouargla and El Oued that show low levels of resistance 
(around 35% and 43.5%), apart from a few that are 
resistant to a single antibiotic. 

 

 

 

 
Figure 1. Growth of strains under: salinity (a), antibiotics (b), different pH (c, d) and temperatures (e, f) (done at the Saharan Bioresources 
Laboratory of the University of Ouargla, in 2017).
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3.3. Numerical analysis of phenotypic traits 

The 27 phenotypic characters of the strains were used 
to construct a dendrogram using the UPMGA method 
(Figure 2). At about 60% dissimilarity, rhizobial strains 
have been classified into three phenotypic groups. Group 3 
has 29 strains, all from the Ouargla and El Oued regions. 
Group 1 consists of 17 stains exclusively from the 
Ghardaïa region. The two reference strains Sm1021 and 
Sm2011 were in a separate group (group 2), closer to 
group 1 than to group 3. 

 
Figure 2. Dendrogram showing the phenotypic diversity of 48 
strains constructed using the UPGMA method, based on a binary 
matrix of 27 physiological characters.

 

3.4. Phylogenetic analysis 

Forty-eight strains were chosen for the phylogenetic 
examination of housekeeping genes (recA and glnII) and 
the symbiotic gene nodC. Phylogenetic trees were 
constructed for each gene utilizing the Neighbor-joining 
method and Kimura’s two-parameter model. Bootstrap 
analysis was based on 1000 replications. 

3.4.1. Housekeeping gene phylogenies 

Strains were more closely related to S. meliloti and S. 
kummerowiae (De Lajudie et al., 1994; Wei et al., 2002) 
than to other species according to the housekeeping gene 
phylogenies (Table 4). Sequence analysis of recA and glnII 
respectively revealed 98–100% and 97–99% similarities 
with type strains S. meliloti USDA 1002T, 98-99% and 97-
100% with type strains S. kummerowiae CCBAU 71714T 
and 91% and 91-93% with type strains S. medicae A321T 

(Rome et al., 1996). 

 
 
 
 
 
 
 
 
 
 

Table 4. Sequence similarities for recA, glnII and nodC genes relatedness among the 48 strains and related type strains. 
 Gene marker and sequence similarity with type strains % 
 glnII recA glnII+recA nodC 

Type strain Similarit
y % 

Stains 
number
s 

Similarity 
% 

Isolate 
numbers 

Similarity 
% 

Isolate 
numbers 

Similarity 
% 

Isolate 
Numbers 

S. meliloti USDA 
1002T 
 

99% 14 100% 05 99% 14  99% 18 
98% 10 99% 06 98% 27  97% 08 
97% 24 98% 37 97% 07  96% 18 
   89% 04 

S. kummerowiae 
CCBAU 71714T 

100% 04 99% 04 99% 13 96%  02 

99% 10 98% 44 98% 35 95%  13 

98% 33 94%  29 

97% 01 90%  04 

S. medicae A321T 
 
S. medicae USDA 
1037  

91% 01 91% 48 92% 47   
92% 46 91% 01   
93% 01   
  100% 02 
  99% 13 
  96% 29 
  90% 04 

glnII gene phylogeny 

The phlogenetic tree corresponding to glnII (Figure 3) 
showed that the strains clustered into two groups with high 
bootstrap support (99 for group I and 72 for group II). 

Group I consisted of 14 strains, originating exclusively 
from Ghardaïa, closely related to reference strains S. 
kummerowiae CCBAU 71714T and S. meliloti USDA 
1002T. There were 13 strains (G421, G422, G242, G424, 
G 431, G432, G514, G211, G242, G315, G321, G122 
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and G124) clustered with S. kummerowiae CCBAU 
71714T at sequence similarities of 99.82 to 100% and one 
strain (G312) clustered only with S. meliloti USDA 1002T 
at sequence similarity of 99.52%. Group II contained 34 
strains, coming from the El Oued and Ouargla (except 
G131, G132 and G522), which were separated from the 

reference strains. Similarities between the strains in this 
group and type strains S. kummerowiae CCBAU 71714T 
and S. meliloti USDA 1002T were 97.69 to 98.58% and 
97.46 to 98.19%, respectively. 

 

 

 
Figure 3. Neighbor-joining phylogenetic tree constructed from glnII gene (555 bp) showing the relationship 
among strains nodulating alfalfa and related species of the Sinorhizobium–Ensifer group. Bootstrap values (1000 
replicates; only values over 50 % are given) are indicated above the branches. Bradyrhizobium japonicum 
USDA6T was used as an outgroup. Type strains are indicated with a superscriptT.

recA gene phylogeny 

The strains clustered into 2 groups with very high 
bootstrap values (97 for group I and 93 for group II) 
(Figure 4). There were 14 strains from Ghardaïa in group I, 
and they were closely related to type strains S. meliloti 
USDA 1002T and S. kummerowiae CCBAU 71714T. There 
were 10 strains (G122, G124, G211, G241, G242, G312, 
G315, G32, G421 and G422) clustered with S. meliloti 
USDA 1002T at sequence similarities of 100% and 4 

strains clustered with the reference strain S. kummerowiae 
CCBAU 71714T at sequence similarity of 99.24%. Thirty- 
four strains in group II from the El Oued and Ouargla 
regions (except G131, G132 and G522) are not grouped 
with any of the known reference strains and form an 
individualized clade on the tree. The similarities between 
these strains and S. meliloti USDA 1002T and S. 
kummerowiae CCBAU 71714T were 98.22 to 98.67%.
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Figure 4. Neighbor-joining tree constructed from recA gene (430 bp) showing phylogenetic relationships of strains nodulating alfalfa and 
related species of the Sinorhizobium–Ensifer group. Only values over 50 % are indicated above the branches. 

Concatenated housekeeping gene phylogeny 

In order to refine the phylogeny of the studied strains, a 
phylogenetic tree was constructed from concatenated glnII 
and recA gene sequences (Figure 5). The grouping results 
were similar to those of the individual gene trees. The 48 
strains clustered into 2 different groups. Fourteen strains 
belong to group I with a bootstrap value of 98. Seven 
strains (G122, G124, G211, G242, G315, G321 and G312) 
were grouped with the S. meliloti USDA 1002T at 
sequence similarity of 99.48 to 99.69% and seven others 
(G431, G432, G514, G424, G241, G421 and G422) were 
linked with S. kummerowiae CCBAU 71714T at similarity 

rates of 99.38 to 99.69%. It should be noted that all the 
strains composing group I came from the region of 
Ghardaïa. Group II, composed of 34 strains coming 
exclusively from the El Oued and Ouargla regions (except 
G131, G132 and G522), formed a clearly separated group 
from the reference strains with 97 bootstrap support and 
suggested that these novel strains may represent a distinct 
lineage from defined species. Similarities between the 
group 2 strains and the closest reference strains are 97.73–
98.25% with S. meliloti USDA 1002T and 98.04–98.56% 
with S. kummerowiae CCBAU 71714T, respectively. 
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Figure 5. Neighbor-joining tree constructed from concatenated housekeeping genes glnII and recA (985 bp) showing phylogenetic 
relationships of strains nodulating alfalfa and related species of the Sinorhizobium–Ensifer group. Bootstrap values (1000 replicates; only 
values over 50 % are given) are indicated above the branches.

3.4.2. nodC gene phylogeny 

The nodC phylogenetic tree showed three well-
supported distinct groups, at bootstrap value of 100 for 
groups I and II, and 99 for group III, as presented in Figure 
6. The group I and II strains from different areas were 
clustered with type strains S. meliloti USDA 1002T at 
similarity of 97.05 to 99.66% and S. medicae A321T at 

similarity of 99.65 to 100%, respectively. The strains 
G424, G431, G432 and G514 composing group III 
displayed high sequence identities with S. meliloti LAIII42 
(99.66% similarity) and came from the region of Ghardaïa. 
Thus, the strains used in this study belong to two types of 
symbiovars: meliloti (groups I and II) and medicaginis 
(group III) described by Villegas et al. (2006).

 

Figure 6. Neighbor-joining tree constructed from nodC genes showing phylogenetic relationships of strains nodulating alfalfa and related 
species of the Sinorhizobium–Ensifer group. Bootstrap values (1000 replicates; only values over 50 % are given) are indicated above the 
branches.
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4. Discussion  

In this study, we analyzed for the first time a collection 
of 48 strains obtained from Medicago sativa root nodules 
collected from three different regions in the North eastern 
Algerian Sahara. This study included both phenotypic and 
phylogenetic analyses and was the first time such an 
investigation was conducted on rhizobial isolates from this 
region. 

The phenotypic characterization showed that 
morphological and growth characteristics of the strains 
were in agreement with those already described in the 
literature (Vincent, 1970; Latrache et al., 2017). The 
results of the plant nodulation tests showed that all strains 
could produce nodules.  

Salinity is an important stress factor for rhizobia, as it 
inhibits their growth and development (Graham, 1998; 
Farissi et al., 2014). In the present study, all strains were 
able to tolerate salt concentrations from 1.7 mM to 640 
mM (Table 2). In contrast, no strains were able to grow at 
1280 mM. Our results are in agreement with those of 
Mohammad et al. (1991), Embalomatis et al. (1994) and 
Jebara et al. (2000) who indicated that strains of S. meliloti 
were tolerant of NaCl concentrations between 300–700 
mM in American, Greek and Tunisian soils respectively. 
Likewise, a tolerance of up to 800 mM of NaCl was 
observed in rhizobia collected in the Sebkha of 
Misserghine (north-western Algeria) (Merabet et al., 
2006). Elboutahiri et al. (2010) were able to isolate strains 
of S. meliloti capable of growing at 1711 mM NaCl. These 
were sampled in areas heavily affected by salinity in 
southern Morocco.  

At 80 and 160 mM, the most resistant strains were 
O152, O211 and E141 and at the highest concentrations, 
strains E543 and E452 performed best. Adaptation to 
salinity in a few Rhizobium species is the result of 
intracellular accumulation of low molecular weight 
organic solutes called osmolytes, as described by Boscari 
et al. (2002) 

At pH of 4.0 and 5.0, strains were sensitive thus 
confirming the results of Elboutahiri et al. (2010) and 
Thami-Alami et al. (2010) that strains tolerated acidic pH 
of 5.5 to 6.0 where most isolates grow (Latrache et al., 
2017). Our results are also in agreement with those of 
Abolhasani et al. (2010), Thami-Alami et al. (2010) and 
Hameed et al. (2014) who indicate that the strains of S. 
meliloti nodulating alfalfa were all resistant to the alkaline 
pH 8.0 and 9.0. At pH 6.8, all strains showed maximum 
growth, which is in agreement with Rodrigues et al. (2006) 
and Shetta et al. (2011) who stated that the optimum pH 
for rhizobia multiplication is between 6.5 and 7.0.  

At temperatures 28°C and 37°C, we recorded 100% 
growth. Our results agree with those of Zahran (1999) and 
Dekak (2018) who found that rhizobia are mesophilic 
bacteria and optimum growth of most strains is between 
28°C and 31°C. At 4°C and 45°C, the strains that were 
able to grow only produced a few small colonies on solid 
medium and low OD’s in liquid medium. High and low 
temperatures have been reported to be among the main 
factors limiting growth and nitrogen fixation by rhizobia 
(Niste et al., 2015).  

We found that the strains show different antibiotic 
resistance profiles. The sensitivity to antibiotics, which is 
higher in some strains, can be attributed to the less 

abundant microbial biomass in the rhizosphere (Grego et 
al. 1995). The more pronounced resistance in Ghardaïa 
strains can be explained by the use of large amounts of 
intensive livestock manure in this region as noted by 
Guessoum et al. (2014), where antibiotics are commonly 
added to animal feed to treat diseases and promote growth 
(McManus, 1997). 

Many studies have described S. meliloti and S. medicae 
as the only rhizobia capable of nodulating alfalfa. 
Phylogenetic analysis of recA and glnII showed that 
instead it is S. meliloti and S. kummerowiae, which are the 
microsymbionts of M. sativa in the Saharan regions of 
Algeria. The strains were more closely related to S. 
meliloti and S. kummerowiae than to other species. 
Sequence analysis of recA and glnII revealed high 
similarities with type strains S. meliloti USDA1002T and S. 
kummerowiae CCBAU71714T. Our results converge with 
those of Wei et al. (2002) and Toularoud et al. (2016) who 
mentioned that alfalfa could be efficiently nodulated by S. 
kummerowiae in Chinese and Turkish soils. The presence 
of S. kummerowiae in the study areas was reported 
recently by Arbi et al. (2015) and Chaïch et al. (2017) as 
dominant microsymbiont, with S. meliloti, of the 
spontaneous legumes Medicago littoralis, Melilotus 
indicus and Genista saharae. 

The concatenated housekeeping gene phylogeny 
showed that the strains were grouped into 2 different 
groups. Group I comprises strains from Ghardaïa, strongly 
related to type strains S. kummerowiae CCBAU 71714T 
and S. meliloti USDA 1002T. The thirty four strains 
composing group II were separated from the reference 
strains, and this suggested that these novel strains may 
represent a distinct lineage from defined species. As 
suggested by Toularoud et al. (2016), housekeeping gene 
phylogenetic analyses may help to further resolve the 
taxonomic relationship between S. kummerowiae and S. 
meliloti, which may belong to a single species. The 
grouping results were, generally, similar to those of the 
individual gene (Figures 3 and 4). 

The results obtained were very similar to those of the 
concatenated housekeeping gene phylogenetic tree (Figure 
5). The strains originating from the region of Ghardaïa are 
phylogenetically and phenotypically linked to the species 
S. kummerowiae and S. meliloti and separated from those 
of the regions of Ouargla and El Oued. These results 
revealed geographic variation in the rhizobial population 
composition as shown in many works (Fierer and Jackson, 
2006; Talebi et al., 2008). 

Neighbor-joining phylogenetic tree of nodC gene 
sequences revealed three distinct well-supported 
clusters (Figure 6). Twenty-four strains were in group I 
that consisted of strains related to S. meliloti USDA 1002T. 
Group II consisted of thirteen strains related to the type 
strain S. medicae A321T. Four separate strains forming 
group III showed 100% similarity to S. meliloti LAIII42. 
To label resulting groups, we used the system of 
symbiovars proposed by Rogel et al. (2011) and De Meyer 
et al. (2011). So, the Sinorhizobium isolates used in this 
study belonged to two symbiovar types, meliloti (group I 
and II) and medicaginis (group III) as described by 
Villegas et al. (2006). These results are explained by the 
fact that the tested strains and S. meliloti and S. medicae 
have the same host plant. 
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Several studies have shown that the evolutionary 
history of chromosomal genes may be different from that 
of symbiotic genes. Our results are in agreement with 
those of Laguerre et al. (2001) who indicated that the 
classification resulting from the analysis of the symbiotic 
nodC gene reflects host specificity, while the phylogeny 
based on chromosomal genes is independent of the host 
plant. Symbiovars can be shared by different species due 
to lateral transfer of symbiotic genes (Rogel et al., 2011). 

5. Conclusion 

This study showed that the bacteria isolated from the 
root nodules of Medicago sativa, cultivated in the 
Algerian Sahara, are genetically and phenotypically 
diverse. Phenotypic analysis showed that many strains 
have interesting characteristics. This may allow them to be 
used as an effective inoculum for Saharan soils, which are 
subjected too many edaphoclimatic stress conditions. 
Phylogenetic analysis showed that our strains are strongly 
related to S. meliloti and S. kummerowiae, which are the 
effective symbiotic partners of alfalfa in the study area. 
There was a similarity between the genotypic and 
phenotypic profiles suggesting the existence of a 
relationship between the groups of strains and their 
geographic distribution.  
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