Jordan Journal of Biological Sciences

An International Peer-Reviewed Scientific Journal

Financed by the Scientific Research and Innovation Support Fund

http://jjbs.hu.edu.jo/

Editor-in-Chief
Professor Atoum, Manar F.
Molecular Biology and Genetics,
The Hashemite University

Assistant Editor
Dr. Muhammad, Massadeh I.
Microbial Biotechnology,
The Hashemite University

Editorial Board (Arranged alphabetically)

Professor Amr, Zuhair S.
Animal Ecology and Biodiversity
Jordan University of Science and Technology

Professor Hunaiti, Abdulrahim A.
Biochemistry
The University of Jordan

Professor Khleifat, Khaled M.
Microbiology and Biotechnology
Mutah University

Professor Lahham, Jamil N.
Plant Taxonomy
Yarmouk University

Professor Malkawi, Hanan I.
Microbiology and Molecular Biology
Yarmouk University

Associate Editorial Board

Professor Al-Hindi, Adnan I.
Parasitology
The Islamic University of Gaza, Faculty of Health Sciences, Palestine

Dr. Gammoh, Noor
Tumor Virology
Cancer Research UK Edinburgh Centre, University of Edinburgh, U.K.

Professor Kasparek, Max
Natural Sciences
Editor-in-Chief, Journal Zoology in the Middle East, Germany

Professor Krystufek, Boris
Conservation Biology
Slovenian Museum of Natural History, Slovenia

Dr. Rabei, Sami H.
Plant Ecology and Taxonomy
Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt

Professor Simerly, Calvin R.
Reproductive Biology
Department of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, USA

Editorial Board Support Team

Language Editor
Dr. Shadi Neimneh

Publishing Layout
Eng. Mohannad Oqdeh

Submission Address
Professor Atoum, Manan F
The Hashemite University
P.O. Box 330127, Zarqa, 13115, Jordan
Phone: +962-5-3903333 ext. 4147
E-Mail: jjbs@hu.edu.jo
International Advisory Board (Arranged alphabetically)

Professor Ahmad M. Khalil  
Department of Biological Sciences, Faculty of Science, Yarmouk University, Jordan

Professor Anilava Kaviraj  
Department of Zoology, University of Kalyani, India

Professor Bipul Kumar Das  
Faculty of Fishery Sciences W. B. University of Animal & Fishery Sciences, India

Professor Elias Baydoun  
Department of Biology, American University of Beirut Lebanon

Professor Hala Gali-Muhtasib  
Department of Biology, American University of Beirut Lebanon

Professor Ibrahim M. AlRawashdeh  
Department of Biological Sciences, Faculty of Science, Al-Hussein Bin Talal University, Jordan

Professor João Ramalho-Santos  
Department of Life Sciences, University of Coimbra, Portugal

Professor Khaled M. Al-Qaoud  
Department of Biological sciences, Faculty of Science, Yarmouk University, Jordan

Professor Mahmoud A. Ghannoum  
Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, Case Western Reserve University and University Hospitals Case Medical Center, USA

Professor Mawieh Hamad  
Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, UAE

Professor Michael D Garrick  
Department of Biochemistry, State University of New York at Buffalo, USA

Professor Nabil. A. Bashir  
Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Jordan

Professor Nizar M. Abuharfeil  
University of Science and Technology, Jordan

Professor Samih M. Tamimi  
Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor Ulrich Joger  
State Museum of Natural History Braunschweig, Germany

Professor Aida I. El Makawy  
Division of Genetic Engineering and Biotechnology, National Research Center, Giza, Egypt

Professor Bechan Sharma  
Department of Biochemistry, Faculty of Science University of Allahabad, India

Professor Boguslaw Buszewski  
Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University Poland

Professor Gerald Schatten  
Pittsburgh Development Center, Division of Developmental and Regenerative Medicine, University of Pittsburgh, School of Medicine, USA

Professor Hala Khyami-Horani  
Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor James R. Bamburg  
Department of Biochemistry and Molecular Biology, Colorado State University, USA

Professor Jumah M. Shakhanbeh  
Department of Biological Sciences, Faculty of Science, Mutah University, Jordan

Dr. Lukmanul Hakim Faruck  
Department of Mathematics and Sciences College of Arts and Applied Sciences, Dhofar, Oman

Professor Md. Yeamin Hossain  
Department of Fisheries, Faculty of Fisheries, University of Rajshahi, Bangladesh

Professor Mazin B. Qumsiyeh  
Palestine Museum of Natural History and Palestine Institute for Biodiversity and Sustainability, Bethlehem University, Palestine

Professor Mohamad S. Hamada  
Genetics Department, Faculty of Agriculture, Damietta University, Egypt

Professor Nawroz Abdul-razzak Tahir  
Plant Molecular Biology and Phytochemistry, University of Sulaimani, College of Agricultural Sciences, Iraq

Professor Ratib M. Al-Ouran  
Department of Biological Sciences, Faculty of Science, Mutah University, Jordan

Professor Shtaywy S. Abdalla Abbadi  
Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor Zihad Bousslama  
Department of Biology, Faculty of Science Badji Mokhtar University, Algeria
Instructions to Authors

Scopes
Study areas include cell biology, genomics, microbiology, immunology, molecular biology, biochemistry, embryology, immunogenetics, cell and tissue culture, molecular ecology, genetic engineering and biological engineering, bioremediation and biodegradation, bioinformatics, biotechnology regulations, gene therapy, organismal biology, microbial and environmental biotechnology, marine sciences. The JJBS welcomes the submission of manuscripts that meet the general criteria of significance and academic excellence. All articles published in JJBS are peer-reviewed. Papers will be published approximately one to two months after acceptance.

Type of Papers
The journal publishes high-quality original scientific papers, short communications, correspondence and case studies. Review articles are usually by invitation only. However, Review articles of current interest and high standard will be considered.

Submission of Manuscript
Manuscript, or the essence of their content, must be previously unpublished and should not be under simultaneous consideration by another journal. The authors should also declare if any similar work has been submitted to or published by another journal. They should also declare that it has not been submitted/published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher. The authors should also declare that the paper is the original work of the author(s) and not copied (in whole or in part) from any other work. All papers will be automatically checked for duplicate publication and plagiarism. If detected, appropriate action will be taken in accordance with International Ethical Guideline. By virtue of the submitted manuscript, the corresponding author acknowledges that all the co-authors have seen and approved the final version of the manuscript. The corresponding author should provide all co-authors with information regarding the manuscript, and obtain their approval before submitting any revisions. Electronic submission of manuscripts is strongly recommended, provided that the text, tables and figures are included in a single Microsoft Word file. Submit manuscript as e-mail attachment to the Editorial Office at: JJBS@hu.edu.jo. After submission, a manuscript number will be communicated to the corresponding author within 48 hours.

Peer-review Process
It is requested to submit, with the manuscript, the names, addresses and e-mail addresses of at least 4 potential reviewers. It is the sole right of the editor to decide whether or not the suggested reviewers to be used. The reviewers’ comments will be sent to authors within 6-8 weeks after submission. Manuscripts and figures for review will not be returned to authors whether the editorial decision is to accept, revise, or reject. All Case Reports and Short Communication must include at least one table and/or one figure.

Preparation of Manuscript
The manuscript should be written in English with simple lay out. The text should be prepared in single column format. Bold face, italics, subscripts, superscripts etc. can be used. Pages should be numbered consecutively, beginning with the title page and continuing through the last page of typewritten material.

The text can be divided into numbered sections with brief headings. Starting from introduction with section 1. Subsections should be numbered (for example 2.1 then 2.1.1, 2.1.2, 2.2, etc.), up to three levels. Manuscripts in general should be organized in the following manner:

Title Page
The title page should contain a brief title, correct first name, middle initial and family name of each author and name and address of the department(s) and institution(s) from where the research was carried out for each author. The title should be without any abbreviations and it should enlighten the contents of the paper. All affiliations should be provided with a lower-case superscript number just after the author's name and in front of the appropriate address.

The name of the corresponding author should be indicated along with telephone and fax numbers (with country and area code) along with full postal address and e-mail address.
Abstract
The abstract should be concise and informative. It should not exceed 350 words in length for full manuscript and Review article and 150 words in case of Case Report and/or Short Communication. It should briefly describe the purpose of the work, techniques and methods used, major findings with important data and conclusions. No references should be cited in this part. Generally non-standard abbreviations should not be used, if necessary they should be clearly defined in the abstract, at first use.

Keywords
Immediately after the abstract, about 4-8 keywords should be given. Use of abbreviations should be avoided, only standard abbreviations, well known in the established area may be used, if appropriate. These keywords will be used for indexing.

Abbreviations
Non-standard abbreviations should be listed and full form of each abbreviation should be given in parentheses at first use in the text.

Introduction
Provide a factual background, clearly defined problem, proposed solution, a brief literature survey and the scope and justification of the work done.

Materials and Methods
Give adequate information to allow the experiment to be reproduced. Already published methods should be mentioned with references. Significant modifications of published methods and new methods should be described in detail. Capitalize trade names and include the manufacturer’s name and address. Subheading should be used.

Results
Results should be clearly described in a concise manner. Results for different parameters should be described under subheadings or in separate paragraph. Results should be explained, but largely without referring to the literature. Table or figure numbers should be mentioned in parentheses for better understanding.

Discussion
The discussion should not repeat the results, but provide detailed interpretation of data. This should interpret the significance of the findings of the work. Citations should be given in support of the findings. The results and discussion part can also be described as separate, if appropriate. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusions
This should briefly state the major findings of the study.

Acknowledgment
A brief acknowledgment section may be given after the conclusion section just before the references. The acknowledgment of people who provided assistance in manuscript preparation, funding for research, etc. should be listed in this section.

Tables and Figures
Tables and figures should be presented as per their appearance in the text. It is suggested that the discussion about the tables and figures should appear in the text before the appearance of the respective tables and figures. No tables or figures should be given without discussion or reference inside the text. Tables should be explanatory enough to be understandable without any text reference. Double spacing should be maintained throughout the table, including table headings and footnotes. Table headings should be placed above the table. Footnotes should be placed below the table with superscript lowercase letters. Each table should be on a separate page, numbered consecutively in Arabic numerals. Each figure should have a caption. The caption should be concise and typed separately, not on the figure area. Figures should be self-explanatory. Information presented in the figure should not be repeated in the table. All symbols and abbreviations used in the illustrations should be defined clearly. Figure legends should be given below the figures.
References

References should be listed alphabetically at the end of the manuscript. Every reference referred in the text must be also present in the reference list and vice versa. In the text, a reference identified by means of an author’s name should be followed by the year of publication in parentheses (e.g. (Brown, 2009)). For two authors, both authors’ names followed by the year of publication (e.g. (Nelson and Brown, 2007)). When there are more than two authors, only the first author's name followed by "et al." and the year of publication (e.g. (Abu-Elteen et al., 2010)). When two or more works of an author has been published during the same year, the reference should be identified by the letters "a", "b", "c", etc., placed after the year of publication. This should be followed both in the text and reference list. e.g., Hilly, (2002a, 2002b); Hilly, and Nelson, (2004). Articles in preparation or submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., Shtyawy, A., University of Jordan, personal communication). Journal titles should be abbreviated according to the system adopted in Biological Abstract and Index Medicus, if not included in Biological Abstract or Index Medicus journal title should be given in full. The author is responsible for the accuracy and completeness of the references and for their correct textual citation. Failure to do so may result in the paper being withdraw from the evaluation process. Example of correct reference form is given as follows:-

Reference to a journal publication:


Reference to a book:


Reference to a chapter in an edited book:


Conferences and Meetings:


Theses and Dissertations:


Nomenclature and Units

Internationally accepted rules and the international system of units (SI) should be used. If other units are mentioned, please give their equivalent in SI.

For biological nomenclature, the conventions of the *International Code of Botanical Nomenclature*, the *International Code of Nomenclature of Bacteria*, and the *International Code of Zoological Nomenclature* should be followed. Scientific names of all biological creatures (crops, plants, insects, birds, mammals, etc.) should be mentioned in parentheses at first use of their English term.

Chemical nomenclature, as laid down in the *International Union of Pure and Applied Chemistry* and the official recommendations of the *IUPAC-IUB Combined Commission on Biochemical Nomenclature* should be followed. All biocides and other organic compounds must be identified by their Geneva names when first used in the text. Active ingredients of all formulations should be likewise identified.
Math formulae
All equations referred to in the text should be numbered serially at the right-hand side in parentheses. Meaning of all symbols should be given immediately after the equation at first use. Instead of root signs fractional powers should be used. Subscripts and superscripts should be presented clearly. Variables should be presented in italics. Greek letters and non-Roman symbols should be described in the margin at their first use.
To avoid any misunderstanding zero (0) and the letter O, and one (1) and the letter l should be clearly differentiated. For simple fractions use of the solidus (/) instead of a horizontal line is recommended. Levels of statistical significance such as: \* $P < 0.05$, \** $P < 0.01$ and \*** $P < 0.001$ do not require any further explanation.

Copyright
Submission of a manuscript clearly indicates that: the study has not been published before or is not under consideration for publication elsewhere (except as an abstract or as part of a published lecture or academic thesis); its publication is permitted by all authors and after accepted for publication it will not be submitted for publication anywhere else, in English or in any other language, without the written approval of the copyright-holder. The journal may consider manuscripts that are translations of articles originally published in another language. In this case, the consent of the journal in which the article was originally published must be obtained and the fact that the article has already been published must be made clear on submission and stated in the abstract. It is compulsory for the authors to ensure that no material submitted as part of a manuscript infringes existing copyrights, or the rights of a third party.

Ethical Consent
All manuscripts reporting the results of experimental investigation involving human subjects should include a statement confirming that each subject or subject's guardian obtains an informed consent, after the approval of the experimental protocol by a local human ethics committee or IRB. When reporting experiments on animals, authors should indicate whether the institutional and national guide for the care and use of laboratory animals was followed.

Plagiarism
The JJBS hold no responsibility for plagiarism. If a published paper is found later to be extensively plagiarized and is found to be a duplicate or redundant publication, a note of retraction will be published, and copies of the correspondence will be sent to the authors’ head of institute.

Galley Proofs
The Editorial Office will send proofs of the manuscript to the corresponding author as an e-mail attachment for final proof reading and it will be the responsibility of the corresponding author to return the galley proof materials appropriately corrected within the stipulated time. Authors will be asked to check any typographical or minor clerical errors in the manuscript at this stage. No other major alteration in the manuscript is allowed. After publication authors can freely access the full text of the article as well as can download and print the PDF file.

Publication Charges
There are no page charges for publication in Jordan Journal of Biological Sciences, except for color illustrations,

Reprints
Ten (10) reprints are provided to corresponding author free of charge within two weeks after the printed journal date. For orders of more reprints, a reprint order form and prices will be sent with article proofs, which should be returned directly to the Editor for processing.

Disclaimer
Articles, communication, or editorials published by JJBS represent the sole opinions of the authors. The publisher shoulders no responsibility or liability what so ever for the use or misuse of the information published by JJBS.
Indexing
JJBS is indexed and abstracted by:

- DOAJ (Directory of Open Access Journals)
- Google Scholar
- Journal Seek
- HINARI
- Index Copernicus
- NDL Japanese Periodicals Index
- SCIRUS
- OA JSE
- ISC (Islamic World Science Citation Center)
- Directory of Research Journal Indexing (DRJI)
- Ulrich's
- CABI
- EBSCO
- CAS (Chemical Abstract Service)
- ETH-Citations
- Open J-Gat
- SCImago
- Clarivate Analytics (Zoological Abstract)
- Scopus
- AGORA (United Nation's FAO database)
- SHERPA/RoMEO (UK)
TRANSFER OF COPYRIGHT AGREEMENT

Journal publishers and authors share a common interest in the protection of copyright: authors principally because they want their creative works to be protected from plagiarism and other unlawful uses, publishers because they need to protect their work and investment in the production, marketing and distribution of the published version of the article. In order to do so effectively, publishers request a formal written transfer of copyright from the author(s) for each article published. Publishers and authors are also concerned that the integrity of the official record of publication of an article (once refereed and published) be maintained, and in order to protect that reference value and validation process, we ask that authors recognize that distribution (including through the Internet/WWW or other on-line means) of the authoritative version of the article as published is best administered by the Publisher.

To avoid any delay in the publication of your article, please read the terms of this agreement, sign in the space provided and return the complete form to us at the address below as quickly as possible.

Article entitled:-----------------------------------------------------------------------------------------------------------------------------

Corresponding author:------------------------------------------------------------------------------------------------------------------------

To be published in the journal: Jordan Journal of Biological Sciences (JJBS)

I hereby assign to the Hashemite University the copyright in the manuscript identified above and any supplemental tables, illustrations or other information submitted therewith (the "article") in all forms and media (whether now known or hereafter developed), throughout the world, in all languages, for the full term of copyright and all extensions and renewals thereof, effective when and if the article is accepted for publication. This transfer includes the right to adapt the presentation of the article for use in conjunction with computer systems and programs, including reproduction or publication in machine-readable form and incorporation in electronic retrieval systems.

Authors retain or are hereby granted (without the need to obtain further permission) rights to use the article for traditional scholarship communications, for teaching, and for distribution within their institution.

☐ I am the sole author of the manuscript

☐ I am signing on behalf of all co-authors of the manuscript

☐ The article is a ‘work made for hire’ and I am signing as an authorized representative of the employing company/institution

Please mark one or more of the above boxes (as appropriate) and then sign and date the document in black ink.

Signed:___________________________________________ Name printed: _____________________________________________________

Title and Company (if employer representative) : ___________________________________________________________________________

Date: _________________________________

Data Protection: By submitting this form you are consenting that the personal information provided herein may be used by the Hashemite University and its affiliated institutions worldwide to contact you concerning the publishing of your article.

Please return the completed and signed original of this form by mail or fax, or a scanned copy of the signed original by e-mail, retaining a copy for your files, to:

Hashemite University
Jordan Journal of Biological Sciences
Zarqa 13115 Jordan
Fax: +962 5 3903338
Email: jjbs@hu.edu.jo
EDITORIAL PREFACE

Jordan Journal of Biological Sciences (JJBS) is a refereed, quarterly international journal financed by the Scientific Research and Innovation Support Fund, Ministry of Higher Education and Scientific Research in cooperation with the Hashemite University, Jordan. JJBS celebrated its 12th commencement this past January, 2020. JJBS was founded in 2008 to create a peer-reviewed journal that publishes high-quality research articles, reviews and short communications on novel and innovative aspects of a wide variety of biological sciences such as cell biology, developmental biology, structural biology, microbiology, entomology, molecular biology, biochemistry, medical biotechnology, biodiversity, ecology, marine biology, plant and animal biology, plant and animal physiology, genomics and bioinformatics.

We have watched the growth and success of JJBS over the years. JJBS has published 11 volumes, 45 issues and 479 articles. JJBS has been indexed by SCOPUS, CABI’s Full-Text Repository, EBSCO, Clarivate Analytics- Zoological Record and recently has been included in the UGC India approved journals. JJBS Cite Score has improved from 0.18 in 2015 to 0.7 in 2019 (Last updated on 1 March, 2021) and with Scimago Institution Ranking (SJR) 0.18 (Q3) in 2019.

A group of highly valuable scholars have agreed to serve on the editorial board and this places JJBS in a position of most authoritative on biological sciences. I am honored to have six eminent associate editors from various countries. I am also delighted with our group of international advisory board members coming from 15 countries worldwide for their continuous support of JJBS. With our editorial board's cumulative experience in various fields of biological sciences, this journal brings a substantial representation of biological sciences in different disciplines. Without the service and dedication of our editorial; associate editorial and international advisory board members, JJBS would have never existed.

In the coming year, we hope that JJBS will be indexed in Clarivate Analytics and MEDLINE (the U.S. National Library of Medicine database) and others. As you read throughout this volume of JJBS, I would like to remind you that the success of our journal depends on the number of quality articles submitted for review. Accordingly, I would like to request your participation and colleagues by submitting quality manuscripts for review. One of the great benefits we can provide to our prospective authors, regardless of acceptance of their manuscripts or not, is the feedback of our review process. JJBS provides authors with high quality, helpful reviews to improve their manuscripts.

Finally, JJBS would not have succeeded without the collaboration of authors and referees. Their work is greatly appreciated. Furthermore, my thanks are also extended to The Hashemite University and the Scientific Research and Innovation Support Fund, Ministry of Higher Education and Scientific Research for their continuous financial and administrative support to JJBS.

Professor Atoum, Manar F.
March, 2021
CONTENTS

Original Articles

881 - 887
Antioxidant and antibacterial activities of *Coix lacryma-jobi* seed and root oil potential for meningitis treatment
Diky Setya Diningrat, Novita Sari Harahap, Marsal Risfandi, Zulfahri, Ayu Nirmala Sari, Kusdiyanti

Further studies on evaluation of the toxicity potential of *Terminalia catappa* Lin.
Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats
Chika B. Ikele, Elijah Okwuonu and Anya N. Ijem

889 - 897
Antioxidant and antibacterial activities of *Coix lacryma-jobi* seed and root oil potential for meningitis treatment
Diky Setya Dinkgat, Novita Sari Harahap, Marsal Risfandi, Zulfahri, Ayu Nirmala Sari, Kusdiyanti

Further studies on evaluation of the toxicity potential of *Terminalia catappa* Lin.
Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats
Chika B. Ikele, Elijah Okwuonu and Anya N. Ijem

899 - 903
Green Synthesis of Silver Nanoparticles using Neem and Collagen of Fish Scales as a Reducing and Stabilizer Agents
Mustafa Mudhafar, Ismail Zainol, H.A. Alsailawi and C. N. Aiza Jaafar

905 - 910
Antioxidant effect of Beta-D-glucan-polysaccharide fractionate of *Auricularia polytricha* on Hyperglycaemia-Induced Kidney Dysfunction in Experimental Diabetic Nephropathy
Agbor CA and Anyanwu G E

Effect of Stress on Ontogeny of Humoral Immunity in Catla

919 - 923
Further studies on evaluation of the toxicity potential of *Terminalia catappa* Lin.
Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats
Chika B. Ikele, Elijah Okwuonu and Anya N. Ijem

891 - 905
Further studies on evaluation of the toxicity potential of *Terminalia catappa* Lin.
Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats
Chika B. Ikele, Elijah Okwuonu and Anya N. Ijem

925 - 931
The Role of Calcium Ions to Improve Activity of Chitinase Isolated from *Vibrio* sp.
Noor Harini, Ya Xi Han, and Johan Sukwendaadi

933 - 937
Callus-mediated Somatic Embryogenesis and Plant Regeneration in *Vanda tricolor* Lindl. var. Pallida
Popy Hartatie Hardjo, Wina Dian Savitri, Ida Bagus Made Artadana, Sulistyo Emantoko Dwi Putra, Elizabeth Pio Parac and Asad Jan

939 - 944
Growth and Productivity of Four Cassava Cultivars on Several Levels of Mixed Fertilizers
Sri Wahyuingsih, Febria Cahya Indriani, Joko Restuono1, Kartika Noerwiyati, Abdullah Taufiq, Yuliantoro Baliadi, Rohmad Budiono, Nguyen Van Minh and Peeyush Soni

945 - 951
Utilization of “Uwi” Plant (*Dioscorea* sp.) as a Renewable Bioenergy Resource
Wuryantoro Wuryantor, Praptiningsih Gamawati, Adinurani, Raina Mustika Wardhani, Satrisno Satrisno, Bohari Mohammad Yamin and Syukri Muhammad Nur

953 - 958
Metabolite Profiling of Black Rice (*Oryza sativa* L.) Following Xanthomonas oryzae pv. *Oryzae* Infection
Emu Nur Hidayah, Febri Adi Susanto, Tri Joko, Yeki Asih Purwestri, Tri Rini Nuringtyas, Manar Fayiz Moursa Atoum, and Asad Jan

959 - 964
Evaluation of Efficiency of *Echinodorus palaeolius* (J.F. Macbr.) Involved in the Clarias gariepinus (Burchell, 1822) Culture for Water Quality Recovery and Fish Growth Support
Hany Handajani, Ganjar Adhywirawan, Soni Andriawan, Dony Prasetyo and Boy Ronald Mavuso

965 - 968
Effect of Bioagent-added Organo-mineral Nitrogen Fertilizer on Total Nitrogen, pH, and Chrome Content in Lowland Paddy
Rija Sudirja, Indra Oktavianus Lubis, Nadia Nuraniya Kamaluddin, Santi Rosniawaty

968 - 974
The Effect of Bathing Length Time to Axillary Temperature and Dry Heat Loss on Newborns; A Comparative Analysis
Hotma Sauhar Hutagao

975 - 981
Identification of Consumers’ Motives in Buying Organic Luwak Coffee in terms of Agri-Tourism
Yosini Deliana, Lucyna Trimo, Sri Fatimah, Mai Fernando N and Mohamad Djali
Combination of Hyaluronic Acid with Advance-Platelet Rich Fibrin to Reduce Chronic Inflammation: a study in IL-6 and Granulation Index

Ronald W. Kartika, Idrus Alwi, Mirta Hediyati Reksodiputro, Em Yunir, Sarwono Waspadji, Suzzana Immanuel, Todung Silalahi, Saleha Sungkar, Jusuf Rachmat, Saptawati Bardosono, Franciscus D. Suyana

Value Chain Model for Straw Mushroom (Volvariella volvacea) Agribusiness Performance in Karawang, Indonesia

Suhaeni, Winda Rianti and Yuyun Umaidah

Integrative survey for ant diversity: exhaustive deployment of several ant collection methods in Biological Education and Research Forest of Universitas Andalas, Indonesia

Henny Herwina, Rijal Satria, Yahirwandi, Yositaka Sakamaki, Mairawita, Dijona Patri, Ahmad Efendi, Yusuke Kusuhata, Muhammad N. Janra

Combined Test of Jatropha Biodiesel Based on Altitude Towards Arbuscular Mycorrhizal Fungi (AMF) Combination with Cultivars and Cytokinins

R. Budiasih, Kovertina Rakhmi Indriana, Reni Nurhayatini, Roni Assafaat Hadi, Noertjahyani, Karyana K.S.

Effect of Mangosteen Peel Extract (Garcinia mangostana l.) with Supplemental Zinc and Copper on Performance and Egg Quality of Sentul Laying Chicken

Tuti Widjastuti, Lovita Adriani, Indrawati Yuda Asmara, Iwan Setiawan, Abun, Leni Nurlaeni

Improving Blood Protein and Albumin Level Using Dried Probiotic Yogurt in Broiler Chicken

Lovita Adriani, Andi Mushawwir, Chitra Kumalasari, Leni Nurlaeni Ronny Lesmana, Urip Rosani

Physiological Analysis of Orchid Chlorophyll against Odontoglossum ringspot virus Infection

Mahfut, Irni Yuni Minarni, Sri Wahyuningih, Tundjung Tripeni Handayani

Morphological Identification of Mycorrhizal Fungi Isolated from Native Orchid in Indonesia

Mahfut

Transcriptional Impact of E-cadherin Loss on Embryonic Stem Cells

Hani Alotaibi

Mathematical evaluation of chromosomal anomalies induced by xylol in Vicia faba L. regarding application time and concentration

Ali Özdemir and Canan Özdemir
Antioxidant and antibacterial activities of *Coix lacryma-jobi* seed and root oil potential for meningitis treatment

Diky Setya Dinningrat ¹,* , Novita Sari Harahap ², Marsal Risandi ³, Zulfahri ⁴, Ayu Nirmala Sari ⁵, Kusdianti ⁶

¹ Department Biology, Faculty Mathematics and Natural Sciences Universitas Negeri Medan, Indonesia; ², ³, ⁴ Sport Sciences, Faculty Sport Sciences, Universitas Negeri Medan, Indonesia; ⁵ Department Biology, Faculty Science and Technology UIN Ar Ransyir, Banda Aceh, Indonesia; ⁶ Department Biology, Faculty Education of Mathematics and Natural Sciences Universitas Pendidikan Indonesia, Bandung, Indonesia.

Received: April 19, 2020; Revised: Nov 21, 2020; Accepted: Dec 5, 2020

Abstract

Bacterial meningitis is a dreaded infectious disease in the human pulmonary system caused by bacterial invasion and promoting inflammation. Hanjeli (*Coix lacryma-jobi*) seed and root oil have antioxidant, anti-inflammatory, and antibacterial properties that can be used in the treatment of bacterial meningitis. The study aims to investigate the potential of oil from *C. lacryma-jobi* seed and root part for bacterial meningitis treatment. The phytochemical screening was performed using standard protocols. Antibacterial activity and minimum inhibitory concentration (MIC) were conducted by the disc diffusion and two-fold dilution method. The preliminary phytochemical screening of *C. lacryma-jobi* shows that essential oil of root and seed part contains steroids, carotenoids, tannins, alkaloid salts, reducing compounds, flavonoid, anthracenoid, coumarin derivatives, cardenoid, anthocyanins, and saponins. The determination of total phenolic, tannin contents, and antioxidant in essential oil from the root was significantly higher (p <0.05) than the seed part. The *C. lacryma-jobi* oil from both parts expressed the highest antimicrobial activity against *Streptococcus pneumoniae* and *Klebsiella pneumoniae*. Additionally, the lowest minimum inhibitory concentration (12.5–50 mg/mL) was observed against selected bacteria of meningitis. It is concluded that oil from *C. lacryma-jobi* root and seed parts contains compounds that might be used in the bacterial meningitis treatment.

Keywords: *Coix lacryma-jobi*; antioxidant; antibacterial; essential oil; bacterial meningitis; phytochemical; DPPH; minimum inhibitory concentration

1. Introduction

Hanjeli (*Coix lacryma-jobi*) is one of the Poaceae family (Chhabra and Gupta, 2015; Patel et al., 2017). Hanjeli may be indigenous and unfamiliar cereal grains grown in Sumatra, Indonesia. Hanjeli is reported to have higher carbohydrates, protein, fat and dietary fiber than rice and corn (Chhabra and Gupta, 2015; Rajesh, 2016). Additionally, other phytochemical components are also reported in Hanjeli, such as calcium, phosphorus, iron, niacin, thiamine, and riboflavin (Rajesh, 2016; Qu et al., 2014).

In addition, *Coix lacryma-jobi* is used as nourishing food in traditional Chinese medicine and has proven to reduce the risk of cancer (Kuo et al., 2002; Wang et al., 2016). In recent years, an adlay seed oil emulsion has been approved as an antineoplastic therapy by the Chinese Ministry of Public Health, in particular for lung cancer (Wang et al., 2016; Zhang et al., 2014).

The preliminary phytochemical screening of the Hanjeli essential oil indicated the presence of alkaloids, carbohydrates, saponins, glycosides, flavonoids, phenols, tannins, and steroids, whereas the seed and root essential oil contained glycosides, flavonoids, phenols, and steroids, which revealed higher antimicrobial activity (Al-Shuneigat et al., 2015; Dinningrat et al., 2020; Zhang et al., 2014). However, the lowest minimum inhibitory concentration was observed against *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Streptococcus pneumoniae*, and *Streptococcus faecalis*, which were selected as bacteria of meningitis.

Bacterial meningitis is a severe infectious disease of the membranes lining the brain resulting in high mortality and morbidity throughout the world (El Bashir et al., 2003). An annual Islamic pilgrimage to Mecca, known as the Hajj and Umra, attracts more than a million pilgrims from many countries worldwide, including Indonesia, which is the biggest Moslem country, and this has been associated with the outbreak of bacterial meningitis disease (Al-Gosha’ah et al., 2014; De Gans et al., 2002; Yezli et al., 2016). The first reported international outbreak of bacterial meningitis following the Hajj occurred in 1987 (van de Beek et al., 2012; Yezli et al., 2016). This epidemic emphasized the potentially high risk of transmission during the pilgrimage and in their home countries (Al-Gosha’ah et al., 2014; van de Beek et al., 2012; van de Beek et al., 2016), such as Indonesia.

In the last decades, the epidemiology and treatment strategies for community-acquired bacterial meningitis
have significantly changed (van de Beek et al., 2012; van de Beek et al., 2016). Firstly, the introduction of conjugate vaccines has substantially reduced the burden of bacterial meningitis (De Gans et al., 2002; van de Beek et al., 2016). As a result, community-acquired bacterial meningitis has become a disease that currently affects more adults than infants, with its specific complications and treatment options (van de Beek et al., 2012; Al-Lahham et al., 2018). The second important development is the increasing rate of reduced susceptibility to common antimicrobial agents among strains of Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus). There is a large difference in the resistance rates, and the empiric antibiotic treatment needs to be adjusted according to regional epidemiology (Al-Lahham et al., 2018; De Gans et al., 2002). Finally, several adjunctive treatments have been tested in randomized controlled trials, often with conflicting results (van de Beek et al., 2016).

Therefore, this study aimed to determine phytochemical compounds contained in the essential oil extracted from the root and seed of C. lacryma-jobi, related to its antioxidant and antibacterial. This study also aimed to determine the antibacterial activity of essential oil from the seed and root of Coix against bacterial meningitis. This study suggests the potential of C. lacryma-jobi essential oil for bacterial meningitis treatment, which would be beneficial because meningitis affects many Hajj pilgrims from Indonesia.

2. Materials and Methods

2.1. Collection, identification, and processing of plant samples

The seeds and roots of C. lacryma-jobi were collected from Pamah Village Area, Semelir District, Langkat District North Sumatra 20773, Indonesia and submitted in the Herbarium Bandungense, Bandung Institute of Technology in Indonesia, Bandung (3749/II.CO2.2/PL/2019). Firstly, the seeds and roots were naturally dried for seven days to remove the water contents. After it was kept in an air-tight container with necessary markings for identification, it was stored in a cool, dark, and dry place for further investigation (Diningrat et al., 2020).

2.2. Oil extraction

Oil extraction of C. lacryma-jobi was performed by steam distillation. The essential oil from (seeds and root part of C. lacryma-jobis) was obtained by steam distillation using a Clevenger apparatus. Batches of 100 g of homogenized plant materials were mixed with 3 L of distilled water in a 5 L round-bottomed flask and heated using a heating mantle. The vapor of the essential oil was condensed and collected. Fractions of essential oil were collected every hour within 4 hours. The extracts were evaporated at room temperature to concentrate the samples, which were then stored in the refrigerator prior to the analysis (Al-Shuneigat et al., 2015; Benkeblia, 2004; Diningrat et al., 2020; Tepe et al., 2005).

2.3. Preliminary antioxidant screening

Comprehensive antioxidant screening of the essential oils was performed as preliminary phytochemical screening by following the procedures as described in the previous study (Aiyegoro and Okoh, 2010; Diningrat et al., 2020; Gowri and Vasanth, 2010; Igbinosa et al., 2009; Valgas et al., 2007).

2.3.1. Determination of total phenolic content

The reaction mixture consisted of 1 mL of essential oil, 1 mL of FCR (Folin Ciocalteu Reagent) 2N, and 3 mL of a 20% sodium carbonate solution. This mixture was placed at room temperature for 40 mins, and the absorbance was then measured (spectrophotometer Agilent 8453) at 760 nm. Distilled water was used as a blank in this measurement. A standard curve was plotted using tannic acid (1-5 µg/mL). Tests were performed in triplicate. The total phenolic content of the extract was calculated using the formula:

\[ T_{PT} = \frac{C_{Tube} \times D}{C_i} \]

Where \( T_{PT} \) is the total phenolic content of the extract expressed as tannic acid equivalent (mg TAE)/g, \( C_{Tube} \) is the concentration (mg/mL) in the test tube, \( D \) is the dilution factor, and \( C_i \) is the concentration in mg/mL in the stock solution (Igbinosa et al., 2009; Tan and Lim, 2015).

2.3.2. Determination of tannin content

Polyvinyl polypyrrolidone (PVPP) can precipitate tannins by the formation of a complex; 100 mg of PVPP can complex 2 mg of total phenolics. 1 mL of essential oil (0.50 mg/mL) was added to the quantity of PVPP to complex the total phenolics present in the essential oil (and determined as described above). The mixture was vortexed, stored at 4°C for 15 min, and then centrifuged at 3000 g for 10 min. The supernatant contains phenolic compounds other than tannins (which have been precipitated by PVPP). A test tube was performed for total phenolics. After 40 minutes, it was centrifuged, and the absorbance of the supernatant was measured at 760 nm. The total phenolic content of the supernatant was calculated by the above formula. Tannin content was determined as the difference between the first value of total phenolics (containing tannins) and the second value of total phenolics (in the absence of tannins) (Valgas et al., 2007; Tan and Lim, 2015).

2.3.3. Determination of flavonoid content

100 µL of essential oil (10 mg/mL) in methanol was mixed with 100 µL of 20% antioxidant activity and adjusted to 5 mL with methanol. After 40 minutes, the absorbance was recorded at 415 nm (with a spectrophotometer Agilent 8453). Blank consisted of 100 µL of extract, a drop of acetic acid and adjusted to 5 mL with methanol. The absorbance of Quercetin (0.10 mg/mL), used as a reference compound, was measured under the same conditions. The tests were performed in triplicate. The flavonoids content expressed as quercetin equivalent (QE) was calculated using the following formula:

\[ \frac{A \cdot m_0}{A_0 \cdot m} \]

© 2021 Jordan Journal of Biological Sciences. All rights reserved - Volume 14, Number 5
The flavonol content was determined using Quercetin as a reference compound. The dosage was based on the formation of a complex with maximum absorption at 440 nm. 1 mL of essential oil was mixed with 1 mL of aluminum trichloride (20 mg/mL) and 3 mL of sodium acetate (50 mg/mL). The absorption was measured after 2 h 30 min. The absorbance of Quercetin (0.025 mg/mL in methanol) was measured under the same condition. The tests were performed in triplicate. The content of flavonols in the essential oil (expressed as quercetin equivalent, QE) was calculated using the same formula with the determination of flavonoids (above) (Aiyegoro and Okoh, 2010; Tan and Lim, 2015).

2.4. Antimicrobial activity

The antimicrobial screening was performed by the disc diffusion method against selected bacterial meningitis (Table 1) collected as pure cultures from the Department of Microbiology, Adam Malik Hospital, Medan, Indonesia. Standard disc of Ciprofloxacin (5 μg/disc) and blank discs (impregnated with solvents followed by evaporation) were used as the positive and negative control, respectively. The antimicrobial activity of the test agents was determined by measuring the diameter of the zone of inhibition expressed in mm (Al-Shuneigat et al., 2015; Diningrat et al., 2020; Restuati and Diningrat, 2018). Table 1. Phytochemical composition of C. lacryma-jobi root and seed oil

<table>
<thead>
<tr>
<th>Chemical groups</th>
<th>Essential oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloid bases</td>
<td>-</td>
</tr>
<tr>
<td>Coumarins</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloid salts</td>
<td>+</td>
</tr>
<tr>
<td>Reducing compounds</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Anthracenoid</td>
<td>+</td>
</tr>
<tr>
<td>Coumarin derivatives</td>
<td>+</td>
</tr>
<tr>
<td>Cardenoid</td>
<td>+</td>
</tr>
<tr>
<td>Anthocyanins</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
</tbody>
</table>

+: indicates the presence of phytochemical compounds; -: indicates the absence of a phytochemical compound

3.2. Antioxidant activity and phenolic content

DPPH scavenging activities of all the extracts depends on the concentration (Table 2). However, the highest DPPH scavenging activity was shown by the essential oil extract from seeds (9.58 ± 0.12 μg/mL, IC₅₀). Both essential oils showed a weak activity compared to those of Quercetin (4.60 ± 0.08 μg/mL, IC₅₀), which was a reference antioxidant. The total phenolic, tannin, flavonoid, and flavonol contents of the two essential oils were determined in this study (Table 2). The concentration of phenolic compounds, tannins, and flavonoids was higher in the essential oil from seeds than that of the roots. For the flavonol content, essential oil from the roots (0.28
isolates
Bacterial meningitis bacteria are capable of inhibiting all types of Gram-positive and Gram-negative (E. coli, P. aeruginosa, K. pneumoniae, S. pneumoniae, S. faecalis) meningitis bacteria at the concentration of 12.5–50 mg/mL (Table 4). In contrast, E. coli, P. aeruginosa, K. pneumoniae, S. pneumoniae, S. faecalis were inhibited at the concentration of 25–50 mg/mL in the essential oil from C. lacryma-jobi seed (Table 5).

3.4. Determination of MIC

The inhibition of microorganism's growth at the lowest concentration of plant extract is known as MIC. In the MIC test, the essential oil of C. lacryma-jobi root was capable of inhibiting all types of Gram-positive and Gram-negative (E. coli, P. aeruginosa, K. pneumoniae, S. pneumoniae, S. faecalis) meningitis bacteria at the concentration of 12.5–50 mg/mL (Table 4). In contrast, E. coli, P. aeruginosa, K. pneumoniae, S. pneumoniae, S. faecalis were inhibited at the concentration of 25–50 mg/mL in the essential oil from C. lacryma-jobi seed (Table 5).

### Table 2. Phenolic content and scavenging activity by the DPPH test of C. lacryma-jobi root and seed oil

<table>
<thead>
<tr>
<th></th>
<th>Total phenolic mg TAE/g</th>
<th>Tannins mg TAE/g</th>
<th>Flavonoids mg QE/g</th>
<th>Flavonols mg QE/g</th>
<th>Antioxidant activity against DPPH IC50 (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root essential oil</td>
<td>236.00 ±0.63a</td>
<td>124.80 ±0.75a</td>
<td>18.98 ±0.16a</td>
<td>0.28 ±0.01a</td>
<td>33.81±0.57a</td>
</tr>
<tr>
<td>Seed essential oil</td>
<td>357.90 ±0.80</td>
<td>193.74 ±0.90</td>
<td>21.47 ±0.10</td>
<td>0.24 ±0.01</td>
<td>9.58±0.12</td>
</tr>
</tbody>
</table>

TAE, Tannic Acid Equivalent; QE, Quercetin Equivalent; values are mean ±SEM (n = 3); a, p<0.05 against seed; b, p<0.05 against quercetin

3.5. Determination of antibacterial activity

The essential oil from the root of C. lacryma-jobi showed a wide range of antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, and Streptococcus faecalis at a concentration of 800 μg/mL, whereas the range of inhibition zone was within 20–30 mm (Table 3).

However, when essential oil from the seeds of C. lacryma-jobi was subjected to antibacterial screening at 800 μg/disc, it showed antibacterial activity against E. coli, P. aeruginosa, K. pneumoniae, S. pneumoniae, and S. faecalis with the zone of inhibition ranging from 20 to 32 mm, whereas the remaining tested microorganisms were found to be resistant at the same concentration (Table 3).

### Table 3. Antibacterial activity by disc diffusion assay (mm)

<table>
<thead>
<tr>
<th>Bacterial meningitis isolates</th>
<th>Zone of inhibition in diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root Essential Oil</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Streptococcus faecalis</td>
</tr>
</tbody>
</table>

### Table 4. MIC of C. lacryma-jobi root essential oil against selected bacteria of meningitis.

<table>
<thead>
<tr>
<th>Bacterial meningitis isolates</th>
<th>MIC of root essential oil (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-negative bacteria</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Streptococcus faecalis</td>
</tr>
</tbody>
</table>

Values are represented as the number of colonies.

### Table 5. MIC of C. lacryma-jobi seed essential oil against selected bacteria of meningitis.

<table>
<thead>
<tr>
<th>Bacterial meningitis isolates</th>
<th>MIC of seed essential oil (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-negative bacteria</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>Streptococcus pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Streptococcus faecalis</td>
</tr>
</tbody>
</table>

Values are represented as the number of colonies.

4. Discussion

Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus faecalis, and Escherichia coli are the leading causes of bacterial meningitis infections worldwide (Al-Gosha’ah et al, 2014; Paireau et al., 2016; van de Beek et al., 2016; Yezli et al., 2016). Bacterial meningitis causes inflammation of the meninges, which leads to a sudden onset of fever, headache, stiff neck, nausea, vomiting, and altered mental status, and can rapidly result in death (Paireau et al., 2016; van de Beek et al., 2016). The relative contribution of these pathogens to the incidence of bacterial meningitis varies over time, by location, and by characteristics such as the age of patients. Although vaccination programs have been implemented in many countries, including Indonesia, and have had a considerable impact on the disease, more than 1.2 million cases of bacterial meningitis are estimated to occur each year (El Bashir et al., 2003; Paireau et al., 2016; van de Beek et al., 2016; Yezli et al., 2016).
Phytochemical analysis of the Coix lacryma-jobi oil from root and seed part revealed the presence of steroids, carotenoids, tannins, alkaloid salts, reducing compounds, flavonoid, anthracenoid, coumarin derivatives, cardenoid, anthocyanins, saponins (Table 1). These phytochemical compounds are known to be biologically active, which enhances the antimicrobial activities of plants. In addition, alkaloids are also known to have antimicrobial, anti-inflammatory, anti-asthmatic, and anti-anaphylactic properties (Diningrat et al., 2018; Diningrat et al., 2020; Diningrat and Marwani, 2018).

The presence of flavonoids in C. lacryma-jobi oil is essential because they have been reported to exhibit antimicrobial, anti-inflammatory, anti-angiogenetic, analgesic, anti-allergic, cytostatic, antioxidant, antitrypanosomal, and antileishmanial properties (Diningrat et al., 2020; Sari et al., 2018). Saponins and tannins were also reported in this study. Saponins were responsible for numerous pharmacological properties and were known to induce inhibitory effects on inflammation (Benkeblia, 2004; Tepe et al., 2005). Moreover, tannins exerted antimicrobial activities by iron deprivation, hydrogen bonding, or specific interactions with vital proteins, such as enzymes in microbial cells (Devi et al., 2015; Wang et al., 2016).

Steroidal compounds were also present in Coix lacryma-jobi oil, and they have drawn much interest due to their relationship with compounds such as sex hormones (Qu et al., 2014). Anthracenoid has a role as a free radical binding agent (Rajesh, 2016). Coumarin derivatives (4-hydroxycoumarin compounds) are oral anticoagulants (OA) that prevent vitamin K from acting as a cofactor in the hepatic synthesis (Chhabra and Gupta, 2015). Cardenoid, carotenoid, and anthocyanin might be responsible for antioxidants and anti-cancer (Rajesh, 2016; Qu et al., 2014). Coix lacryma-jobi oil was very potential as an agent that can be used for the treatment of bacterial meningitis based on its phytochemical compounds.

According to the observed antioxidant potential of Coix lacryma-jobi oil from roots and seeds and the potent DPPH radical, OH radical, O2 radical, NO scavenging activities, the results demonstrated that the oil possessed high phenol contents, antioxidant and nitric oxide scavenging abilities. In other words, the plants contained certain compounds that were potential antioxidants (Table 2). It is assumed that this oil is able to prevent lipid peroxidation, and it is further suggested that the extract was a potential therapeutic agent for the control of oxidative and non-oxidative damage caused by reactive oxygen and nitrogen species (Devi et al., 2015; Kuo et al., 2002; Wang et al., 2016). Since reactive oxygen species are thought to be associated with the pathogenesis of bacterial infections and inflammatory diseases (Rajesh, 2016), the observed inhibitory potential might partially explain the beneficial effects of Coix lacryma-jobi oil in treating bacterial meningitis disease.

Plant oil has been long used in pharmaceuticals, alternative medicine, and natural therapies (Benkeblia, 2004; Tepe et al., 2005). Coix lacryma-jobi oil is a potential source of novel antimicrobial compounds, especially against bacterial pathogens (Diningrat et al., 2020). In vitro studies in this study showed that the oil inhibited some bacterial meningitis growth, but their effectiveness was classified strong (Table 3). Several compounds, such as steroids, carotenoids, tannins, alkaloid salts, reducing compounds, flavonoid, anthracenoid, coumarin derivatives, cardenoid, anthocyanins, and saponins (Table 1) were identified in the composition of the obtained Coix lacryma-jobi oil. Many components of Coix lacryma-jobi oil were characterized by Diningrat et al. (2020) using GC-MS, and all of these compounds had antibacterial effects.

The results indicated that Coix lacryma-jobi oil with concentrations of 6.25 and 12.5 mg/ml prevented the growth of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, and Streptococcus faecalis. Furthermore, a study by Diningrat et al. (2020) investigated Coix lacryma-jobi oil and reported a significant effect on the standard E. coli, S. aureus, and B. subtilis. In this study, the antimicrobial effect of N. Sativa oil extract was investigated in the laboratory against bacteria causing bacterial meningitis. The results showed that the antimicrobial effect of Coix lacryma-jobi oil from roots and seeds was comparable with antibiotics, such as Ciprofloxacin.

The activity of Coix lacryma-jobi oil from roots and seeds against both Gram-positive and Gram-negative selected bacteria of meningitis is an indication of the broad spectrum of activity, so it can be used as sources of antibiotic substances for drug development in the control of these bacterial meningitis infections (van de Beek et al., 2016; Al-Lahham et al., 2018; Diningrat et al., 2020). The essential oil of C. lacryma-jobi roots and seeds showed a wide range of antimicrobial activity against Gram-positive and Gram-negative bacterial meningitis. Finally, our results showed that Coix lacryma-jobi oil-induced antimicrobial activity against a broad range of bacteria in bacterial meningitis. From this study, it can be concluded that the Coix lacryma-jobi oil from roots and seeds possesses antibacterial activity for bacterial meningitis treatment. Furthermore, our results support the use of the plants in traditional medicine and suggest that Coix lacryma-jobi oil possesses compounds with good antibacterial properties. Thus, it can be used as an antibacterial supplement in developing countries towards the development of a new therapeutic agent. However, additional in vivo studies and clinical trials would be needed to justify and further evaluate its potentials as an antibacterial agent for topical or oral applications.

5. Conclusions

Based on the observation of the antioxidant and antibacterial potential of the investigated oil from Coix lacryma-jobi roots and seeds, it can be concluded that this oil is able to prevent bacterial meningitis and becomes a potential therapeutic agent for bacterial meningitis treatment. The results also suggest that oil extracted from Coix lacryma-jobi roots and seeds can be used in bacterial meningitis treatment as a natural antioxidant and antibacterial. The antioxidants and antibacterial present in the Coix lacryma-jobi oil may function by combining with the pharmaceutical components. However, it is important to further investigate the in vivo potentials of the Coix lacryma-jobi oil and also isolate the active components, which can ultimately lead to their application in the pharmaceutical formulations industry as antioxidant and antibacterial agents for bacterial meningitis treatment.
6. Conflict of interest statement

All authors stated that they have no conflict of interest in the results of this study.

Acknowledgments

The authors thank the Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, LPPM Universitas Negeri Medan (KDBK-BOPTN Grant), DRPM Kemenristekdikti Republic of Indonesia (Grant No. 36/UN33.8/PL.DRPM/2019).

References


Further studies on evaluation of the toxicity potential of *Terminalia catappa* Lin. Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats

Chika B. Ikele*, Elijah Okwuonu and Anya N. Ijem

Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria

Received: March 21, 2020; Revised: Dec 12, 2020; Accepted: Dec 21, 2020

Abstract

There is a global utilization of *Terminalia catappa* as a medicinal plant. In this study, the effect of aqueous leaf extract of *Terminalia catappa* (ALETA) on the haematological profile, liver function enzymes, and histology of some organs in albino rats was examined. Seventy-two healthy albino rats were randomly distributed into four groups (A-D) in 6 rats per triplicate. The normal control received 1ml/kg of deionized water while groups B-D received 150, 300, and 450 mg/kg ALETA, respectively for 21 days. Minor cytoplasm vacuolation, focal necrosis, and dilated sinusoids were observed in the liver tissue. The kidney showed minor degenerative changes characterized by few shrunk glomeruli while no tissue damage was observed in the heart tissue and minor passive congestion was observed in the pyloric stomach. The packed cell volume (PCV), red blood cell (RBC), haemoglobin (HB), neutrophils (N), eosinophils (E), monocytes (M), lymphocytes (L), and mean cell haemoglobin (MCH) responded significantly (p<0.05) to treatment dosage. Meanwhile, the increased aspartate aminotransfarase (AST), alanine aminotransfarase (ALT), acid phosphatase (ACP) and alkaline phosphatase (ALP) were an indication of compromised liver function by the ALETA. There is a need for safety assessment, regulation, and intake of *Terminalia catappa* as a medicinal herb.

Keyword: *Terminalia catappa*, histopathology, haematology, liver enzymes, *Rattus norvegicus*

1. Introduction

Globally, fruit nutriments have beneficial health therapeutic and economic benefits (Venkatalakshmi and Brindha 2016). Indian almond seed, *Terminalia catappa* Linn (family Combretaceae) is a plant species with good records of medicinal importance associated with its chemical constituents. In Nigeria, the most popularly used plant parts are commonly referred to as ‘fruit’ by some local folks. The seeds and leaf of the plant mostly contribute to a high percentage of waste in the environment without being utilized more effectively for the benefit of society. Indian almond is popularly used as a herbal treatment for management of diabetes mellitus (Divya et al, 2018, Biswas et al, 2011, Koffi et al, 2011, Nagappa et al, 2003,),. It is also used as analgesic (Mohale et al, 2008), for the alleviation of inflammation (Lin et al, 1997), etc. Most often, the fruit parts (kernel endocarp and fleshy mesocarp) of *T. catappa* are consumed roasted, raw, and sundried. Other plant parts such as the roots, barks, and leaf are used in the treatment of different ailments such as malaria (Mudi and Muhammed, 2009), respiratory disorders (asthma) (Raj et al, 2013), hypertension (Odugbemi, 2008), and as an antiretroviral (Alka et al, 2016). They possess therapeutic components that increase the potential use similar to conventional drugs. Several studies have reported that *T. catappacan* exert a multitude of effects such as anticancer (Shanehbandi et al, 2019; Lee et al, 2019) antitumor (Yang et al, 2010, Chu et al, 2007), antioxidant (Kumar et al, 2018, Krishnaveni et al, 2014), antimicrobial (Kumar et al, 2018), antidiabetic (Koffi et al, 2011, Ahmed et al, 2005, Lin et al, 1997), aphrodisiac (Ratnasooriya and Dharmasiri, 2000), antinociceptive (Ratnasooriya et al, 2002), and hepatoprotective (Kinoshita et al, 2007).

Globally, there is an increase in the intake of medicinal plants (mostly self-prescribed by consumers) without complying with World Health Organization (WHO) recommendations and guidelines. It is worthy of note that increased utilization of medicinal plants necessitated the WHO to provide the recommended intake per time to avoid negative/or side effects (WHO, 2004, WHO, 1998). Most plant materials can be taken indiscriminately or wrongly prescribed as prophylaxis against diseases. The safety regulation of global phytopharmaceutical products is paramount, essential, and implemented to avoid toxicity or adverse effects on the human body. In Nigeria, most herbal drugs are produced and consumed indiscriminately by local folks irrespective of strict regulations. However, despite the extensive use of herbs, there is a need to add to knowledge scientific proof validating their safety, efficacy, and usage. Histopathological assessment is a marker considered as a useful indicator for assessing the abnormal health effects of environmental materials on the living system (Årsad et al., 2014). Possibilities of organ toxicity

* Corresponding author e-mail: chika.ikele@unn.edu.ng.
(nephrotoxicity, hepatotoxic, etc.) cannot be overruled on the unpredictable intake of plant products. Blood regulation at a normal range elicits homeostatic mechanism, and changes in the blood parameters. Liver enzymes are an indicator of the deleterious effect of chemical products. Moreover, the therapeutic uses of aqueous leaf extract of T. catappa (ALETA) have been scientifically supported by effects in malaria (Mudi and Muhammed, 2009), respiratory disorders (asthma) (Raj et al, 2013), and hypertension (Odugbemi, 2008). However, there is a need to promote more information on the histological, hematological, and liver enzyme alterations mediated by this plant extract. In this study, albino rats, Rattus norvegicus have been used to obtain such information.

2. Materials and Methods

2.1. Experimental Animal

Seventy-two healthy male albino Wistar rats weighing between 150-200g were used for the study. The animals were procured from the animal rearing facility of the Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, and housed in well-ventilated cages. Animals were acclimatized for two weeks and fed with standard pellets (Top Feeds, Plc Nigeria) with access to water ad libitum and maintained at different standard laboratory conditions, temperature (25±2°C), humidity (50±5%), and 12 hours light and dark cycle. This study was carried out following ethical guidelines for animal welfare by the Faculty of Biological Sciences, University of Nigeria, Nsukka.

2.2. Plant material and preparation

Whole plant leaf (4kg) of Terminalia catappa were obtained from the Botanical garden of Plants Science and Biotechnology, University of Nigeria. The leaf was authenticated by a plant taxonomist in the Herbarium of Plant Science and Biotechnology Department (Voucher Number: UNH/027-University of Nigeria Herbarium/027). The leaf was separated from the stem and washed thoroughly with distilled water to remove debris. The dried pulverized leaf (1,486 g) was concentrated in 3.5 litres of deionized water for 18 hours. The mixture was filtered using a muslin cloth and further filtered with Whatmann No 1 filter paper. The mixture was evaporated to dryness using a rotary evaporator (LEICA RM 2125 RTS rotary microtome). 204.18g of the extract was obtained after evaporation with a percentage yield of 13.74% (McCloud, 2010). The extract was stored in a refrigerator for later use.

2.3. Experimental Design

The experimental animals were randomly distributed into four groups of six rats per triplicate. Group 1 served as control and was orally administered normal deionized water at a dose of 1ml/kg body weight. Group 2, 3, and 4 were administered with aqueous leaf extract of Terminalia catappa (ALETA) at 150, 300, and 450mg/kg, respectively by oral gavage for 3 weeks. The dosages administered were obtained after zero mortality record of the acute toxicity test following the protocol of Lorke (1983). Meanwhile, the animals were immobilized using chloroform to obtain 3 tissues (liver, heart, and kidney) from 3 rats per group for histological examinations at the end of the experiment which lasted for three weeks.

2.4. Phytochemical Screening of the Plant Material

The analysis of the extract (flavonoids, tannins, saponins, alkaloids, steroids) was done following the standard methods of Trease and Evans, (2002).

2.5. Histological Examination

The histological analyses of the tissues (liver, kidney, and heart) were done according to the method of Aklandeswarrietel, 2010.

2.6. Haematological Parameters

The blood haematocrit was determined by stuffing capillary tube with blood and centrifuged in a microhematocrit (Hawksley England) at 14,000 Xg rpm for 5 minutes, and the percentage of the erythrocyte layers was evaluated and read using a heamatocrit reader (Wintrobe, 1967). The erythrocytes and leucocyte count were determined manually utilizing hemocytometer under X40 magnification. The concentration of haemoglobin in the blood was estimated using spectrophotometry combined with cyanmethaemoglobin method using Drabkins reagents (Wintrobe, 1967). The erythrocytes, packed cell volume, and haemoglobin were used in estimating the erythrocytes derivatives such as mean cell volume (MCV in fentolitres), mean cell haemoglobin (MCH in picogram) and mean cell haemoglobin concentration (MCHC in grams decilitre). Blood smears were obtained and stained with a may-Grunwald-Giemsa solution for accurate determination of differential leucocyte subpopulations.

2.7. Biochemical Parameters

Plasma levels of aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) were assayed following the protocol of Reitman and Frankel, (1957). Acid and alkaline phosphatase enzymatic activity was determined following the protocol of Babson and Read (1959) and Bergmeyer, (1974), respectively.

2.8. Data analysis

The haematology and liver enzyme data were analyzed for significant differences (p<0.05) using analysis of variance (ANOVA). Also, differences between means were partitioned using the Duncan Multiple Range test (DNMRT). All analyses were done using Statistical Package for Social Sciences windows version 20.0 (IBM Corporation, Armonk, USA).

3. Phytochemicals

The phytochemical components of the aqueous leaf extract of Terminalia catappa were shown in Table 1. Meanwhile, the presence of alkaloids, terpenoids, saponins, tannins, and flavonoids was observed. The concentrations of the chemical constituents were similar.
Table 1. Phytochemical constituents of aqueous leaf extract of Terminalia catappa

<table>
<thead>
<tr>
<th>Phytochemical constituents</th>
<th>Bioavailability</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>+</td>
<td>0.32±0.00</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>0.48±0.01</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>0.37±0.00</td>
</tr>
<tr>
<td>Steroids</td>
<td>-</td>
<td>0.03±0.00</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>1.68±0.14</td>
</tr>
</tbody>
</table>

-, absent +, present ++ moderately present

3.1. Histological Changes in some tissues of Albino Rats Exposed to Aqueous Leaf Extracts of Terminalia catappa

The histological patterns of the normal liver revealed clearly defined parenchyma cells, central veins, sinusoids, and kupfer cells. Cytoplasmic vacuolations and kupfer cell hyperplasia were observed in the liver of albino rats exposed to 150mg/kg ALETA. The enlarged sinusoid was filled with mixed infilterate. The clogged sinusoid observed in the liver of albino rats exposed to 300mg/kg impeded the functions of the kupfer cells and allowed spent erythrocyte to build up in the blood instead of being removed, (Plate 1A). Further observations such as the influx of mononuclear cells in the dilated sinusoid were obvious, while the kupfer cells lined at the basement of the sinusoid phagocytized and removed spent erythrocytes and other particulate debris from circulating in the blood vessel of the liver tissue (Plate 1D). More so, cytoplasmic vacuolation associated with cells adaptively altered to resist further degeneration was observed. This also reflected a cellular adaptation beneficial to the host.

The histological patterns of the kidney shown in (Plate 2A) revealed normal renal corpuscles with intact glomeruli and epithelial cells linked to the tubules and connected with a tight junction that prevents waste products and other potentially harmful substances from passing between the cells and reaching the bloodstream. Some of the glomeruli structure appeared shrunk and vacuolated with discrete clear or translucent spaces observed in the kidney of albino rat administered 150mg/kg (Plate 2B) and 300mg/kg ALETA (Plate 2C), respectively. Renal corpuscles were also intact in the group treated with 450mg/kg ALETA (Plate 2D).

The histological patterns of the normal heart of albino rats showed prominent branching in the cardiac muscle fibre (Plate 3A). Myocardial fibre variations and blood vessels were observed in the heart of the albino rats exposed to 150mg/kg of ALETA (Plate 3B), while at 300mg/kg (Plate 3C) and 450mg/kg ALETA (Plate 3D), heart architecture showed normal branching of anastomosing intercalated disc with each other in a network pattern.

The stomach histological section of the normal control revealed intact muscularis mucosa and lamina propria of the stomach architecture (Plate 4A). Hemorrhage was observed in the fundic region of the stomach. Meanwhile, hemorrhage was observed in the blood vessels of the stomach following 150mg/kg ALETA administration (Plate 4B). More so, at 300mg/kg and 450mg/kg ALETA (Plate 4C, and D), vascular congestion and degeneration of the inner circular layer such as degenerated muscularis mucosa were similarly observed, respectively.

Plate 1: Photomicrograph of liver (A). normal parenchymal cells (PC) (red arrow), intact sinusoids (black arrow) and central vein infiltrated with mononuclear cells (MC) (white arrow). Plate B. 150mg/kg of ALETA showing central vein (CV, black arrow), hepatocyte cytoplasmic vacuolation (HCV, white arrow). Plate C: 300mg/kg of ALETA showing mixed infiltrate (MI) in the sinusoid (black arrow). Plate D: 450mg/kg of ALETA showing enlarged sinusoids with few mononuclear cells (black arrow). H&E. mag. 400X.
Plate 2: Photomicrograph of kidney of albino rats. A: Normal group showing normal renal corpuscles with intact glomerulus (GL) and tubules (T) lined with epithelial cells connected to each other in the kidney cortex. B: 150mg/kg of ALETA showing shrinkage of the glomeruli (SG black arrow). C: 300mg/kg ALETA showing kidney vacuolation (V black arrow) was observed. D: 450mg/kg ALETA, with intact renal corpuscles (RC). H&E. mag. 100X.

Plate 3: Photomicrograph of heart of albino rats showed A: intact region of myocardial fibre (IMR (yellow arrow) with no variations in fibre sizes. B: 150mg/kg of ALETA showing no myocardial fibre variation and intact blood vessels (BV black arrow). Plate C. 300mg/kg of ALETA showing normal heart architecture, intact valve (red star), and septum (red arrow). Plate D. 450mg/kg of ALETA showing prominent cardiac region of the heart with intact intercalated disc (ID). H&E. mag. 100X.
Plate 4. Photomicrograph of stomach of albino rats. 

A. Normal group with intact stomach architecture characterized by muscularis mucosa (MM black arrow) and lamina propria (LP) (white arrow). 

B. 150mg/kg of ALETA with revealed hemorrhage (black arrow) mainly in blood vessels which occurred on the mucosal region of the stomach. 

C. 300mg/kg of ALETA with degenerated muscularis mucosa (DMM black arrow), minor hemorrhage (white arrow), blood vessel congestion and degeneration of the inner circular layer. 

D. 450 mg/kg of ALETA with revealed thickness of the muscularis mucosa, minor vascular congestion (black arrow) H&E. mag. 100X.

3.2 Effects of Terminaliacatappa on Haematological Parameters of animals

The haematological parameters PCV, RBC, HB, and WBC were affected by T. catappa treatment. The response of these parameters was mainly dose-dependent. The duration of treatment significantly affected RBC (F = 8.149, p < 0.0001). PCV was not different between the groups except on week 2 where PCV was significantly higher in 450mg/kg extract group compared to others. Hb concentration was similarly different between the groups. Those treated with 450mg/kg extract had the highest Hb level. WBC was not different between the groups and did not change significantly for the duration of treatment with T. catappa (Table 1). White blood cell differential to T. catappa responses are summarized in Table 2. No consistent response of neutrophil, eosinophil, and monocytes to the extract treatment was observed, irrespective of the concentrations used. Lymphocytes, however, appeared to increase in concentration with increasing doses of extract. The concentration of lymphocyte at 450mg/kg and 300mg/kg was significantly higher compared to control on weeks 2 and 3. The red blood cell derivatives, MCV, MCH, and MCHC responded minimally to T. catappa treatment. Overall, only MCV (F = 3.857, p =0.018) and MCH (F = 5.869, p = 0.003) were significantly affected by the duration of treatment, while only MCH (F = 3.232, p = 0.035) was affected significantly by the extract. A significant increase in MCH relative to control, was observed on week 2 at 450mg/kg extract (Table 3).
### Table 2. Haematological changes in animals treated with *Terminalia catappa*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conc. (mg/kg)</th>
<th>Duration (week)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCV(%) Control</td>
<td>24.67±1.15</td>
<td></td>
<td>26.67±1.33</td>
<td>19.00±2.03</td>
<td>27.66±2.52</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>24.33±5.51</td>
<td></td>
<td>22.00±2.65</td>
<td>21.66±3.51</td>
<td>23.00±3.61</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>26.67±4.93</td>
<td></td>
<td>27.67±2.89</td>
<td>20.33±1.53</td>
<td>22.33±4.73</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>27.33±6.11</td>
<td></td>
<td>27.00±1.73</td>
<td>31.66±2.52</td>
<td>29.33±4.51</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>118.0±7.55</td>
<td></td>
<td>121.0±4.36</td>
<td>104.6±15.55</td>
<td>120.6±12.15</td>
<td></td>
</tr>
<tr>
<td>RBC(10^6) Control</td>
<td>83.33±1.53</td>
<td></td>
<td>120.6±9.65</td>
<td>96.00±11.00</td>
<td>84.00±5.57</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>97.00±7.00</td>
<td></td>
<td>131.1±15.55</td>
<td>98.33±5.51</td>
<td>94.33±16.23</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>134.0±11.1</td>
<td></td>
<td>124.3±6.81</td>
<td>135.3±7.05</td>
<td>131.3±7.02</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>8.23±0.40</td>
<td></td>
<td>8.867±0.51</td>
<td>6.333±0.65</td>
<td>9.220±0.84</td>
<td></td>
</tr>
<tr>
<td>HB(g/dl) Control</td>
<td>14733.33±2362.90</td>
<td></td>
<td>11266.66±1040.83</td>
<td>14766.66±750.56</td>
<td>9800.00±1228.82</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1400.00±3919.93</td>
<td></td>
<td>14533.33±3744.77</td>
<td>12633.33±1755.94</td>
<td>14100.00±854.40</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1340.00±3919.93</td>
<td></td>
<td>12900.00±624.50</td>
<td>12300.00±1228.82</td>
<td>15000.00±4293.02</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>11666.66±378.60</td>
<td></td>
<td>12166.66±1040.83</td>
<td>13000.00±1900.00</td>
<td>13800.00±1400.00</td>
<td></td>
</tr>
</tbody>
</table>

Values as mean ± standard deviation. Values with different alphabet superscript along a column were significantly different, while values with different numeric superscript across a row were significantly different (p < 0.05).

### Table 3. White blood cell differential (%) of animals treated with *Terminalia catappa* extract

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conc. (mg/kg)</th>
<th>Duration (week)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil</td>
<td>66.67±3.79</td>
<td></td>
<td>18.67±2.08</td>
<td>43.00±4.00</td>
<td>14.67±1.53</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>71.67±4.73</td>
<td></td>
<td>23.00±2.00</td>
<td>42.00±4.00</td>
<td>22.67±4.04</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>71.67±3.79</td>
<td></td>
<td>18.33±2.08</td>
<td>26.33±4.51</td>
<td>16.00±3.50</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>77.66±1.53</td>
<td></td>
<td>19.67±4.62</td>
<td>11.00±1.00</td>
<td>11.00±1.00</td>
<td></td>
</tr>
<tr>
<td>Eosinophil</td>
<td>2.00±1.13</td>
<td></td>
<td>1.33±0.58</td>
<td>0.00±0.00</td>
<td>1.67±1.53</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1.66±0.58</td>
<td></td>
<td>0.667±0.58</td>
<td>0.00±0.00</td>
<td>1.00±1.00</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.00±1.00</td>
<td></td>
<td>1.00±1.00</td>
<td>2.00±1.00</td>
<td>0.67±1.15</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>0.00±0.00</td>
<td></td>
<td>6.67±0.58</td>
<td>0.00±0.00</td>
<td>0.67±1.15</td>
<td></td>
</tr>
<tr>
<td>Monocytes</td>
<td>7.67±2.52</td>
<td></td>
<td>6.67±2.53</td>
<td>11.33±1.53</td>
<td>8.67±2.89</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>6.67±2.31</td>
<td></td>
<td>6.00±2.65</td>
<td>14.00±3.00</td>
<td>11.00±3.46</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>7.00±2.00</td>
<td></td>
<td>7.67±2.89</td>
<td>7.00±2.00</td>
<td>11.33±3.52</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>3.67±0.61</td>
<td></td>
<td>6.00±1.73</td>
<td>7.00±1.00</td>
<td>7.33±1.53</td>
<td></td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>23.00±4.08</td>
<td></td>
<td>60.67±25.82</td>
<td>45.67±32.12</td>
<td>75.00±2.00</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>20.00±2.00</td>
<td></td>
<td>70.33±1.53</td>
<td>44.00±1.73</td>
<td>69.33±1.11</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>19.33±1.53</td>
<td></td>
<td>73.00±1.00</td>
<td>64.67±5.03</td>
<td>72.00±4.60</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>18.67±1.53</td>
<td></td>
<td>73.66±6.62</td>
<td>82.00±1.73</td>
<td>81.00±0.00</td>
<td></td>
</tr>
</tbody>
</table>

Values as mean ± standard deviation. Values with different alphabet superscript along a column were significantly different, while values with different numeric superscript across a row were significantly different (p < 0.05).

### Table 4. Red blood cell derivatives of animals treated with *Terminalia catappa*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conc. (mg/kg)</th>
<th>Duration (week)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV (fl cell⁻¹)</td>
<td>2.093±0.08</td>
<td></td>
<td>2.20±0.06</td>
<td>1.83±0.17</td>
<td>2.29±0.02</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2.919±0.06</td>
<td></td>
<td>1.84±0.33</td>
<td>2.25±0.12</td>
<td>2.76±0.06</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.771±0.06</td>
<td></td>
<td>2.11±0.50</td>
<td>2.07±0.11</td>
<td>2.36±0.13</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>2.073±0.06</td>
<td></td>
<td>2.17±0.16</td>
<td>2.34±0.08</td>
<td>2.23±0.30</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.6985±0.03</td>
<td></td>
<td>0.73±0.02</td>
<td>0.61±0.06</td>
<td>0.76±0.11</td>
<td></td>
</tr>
<tr>
<td>MCH(pg cell⁻¹)</td>
<td>0.972±0.22</td>
<td></td>
<td>0.61±0.11</td>
<td>0.75±0.04</td>
<td>0.78±0.05</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.723±0.03</td>
<td></td>
<td>0.70±0.18</td>
<td>0.69±0.03</td>
<td>0.78±0.04</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.789±0.02</td>
<td></td>
<td>0.72±0.03</td>
<td>0.78±0.03</td>
<td>0.86±0.16</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>0.338±0.07</td>
<td></td>
<td>33.25±0.07</td>
<td>33.34±0.19</td>
<td>33.32±0.01</td>
<td></td>
</tr>
<tr>
<td>MCHC (g/dl)</td>
<td>33.30±0.07</td>
<td></td>
<td>33.32±0.16</td>
<td>33.24±0.08</td>
<td>29.26±0.07</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>26.95±5.71</td>
<td></td>
<td>33.38±0.01</td>
<td>33.28±0.19</td>
<td>33.31±0.23</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40.35±11.4</td>
<td></td>
<td>33.21±0.01</td>
<td>33.37±0.12</td>
<td>39.05±10.18</td>
<td></td>
</tr>
</tbody>
</table>

Values as mean ± standard deviation. Values with different alphabet superscript along a column were significantly different, while values with different numeric superscript across a row were significantly different (p < 0.05).
3.3. Effects of Terminalia catappa on
Biochemical parameters of animals

The changes in the liver enzyme of albino rats exposed to ALETA are shown in Table 5. The level of AST, ALT, ALP, and ACP in the ALETA exposed rats did not differ significantly (p > 0.05) at the end of the experiment. Overall, all the biochemical parameters investigated were not affected significantly by the extract.

Table 5. Changes in the liver enzymes of animals treated with Terminalia catappa

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conc. (mg/kg)</th>
<th>Duration (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>Control</td>
<td>35.67±1.16m</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>70.67±3.06m</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>76.33±11.15m</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>74.67±6.03m</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>42.00±3.61m</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>150</td>
<td>61.00±3.61m</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>72.00±9.64m</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>49.33±5.69m</td>
</tr>
<tr>
<td>ACP (U/L)</td>
<td>Control</td>
<td>22.99±0.64m</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>30.64±4.87m</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>28.42±0.82m</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>25.75±3.15m</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>Control</td>
<td>38.28±1.54m</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>43.22±4.64m</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>45.21±4.66m</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>33.01±2.39m</td>
</tr>
</tbody>
</table>

Values as mean ± standard deviation. Values with different alphabet superscript along a column were significantly different, while values with different numeric superscript across a row were significantly different (p < 0.05).

4. Discussion

Physiological and nutritional observations (Azrul et al., 2013) have shown that Terminalia catappa has the potential to induce primary toxicity in rats. The phytochemical constituents (alkaloids, flavonoids etc.) of the ALETA reported in the current study are in consonance with those observed by previous investigators (Divya et al, 2018, Divya and Vijya-Anand, 2014). The histopathology alterations in the liver against highest (Divya et al, 2018, Divya and Vijya-Anand, 2014). The consonance with those observed by previous investigators the ALETA reported in the current study are in phytochemical constituents (alkaloids, flavonoids etc.) of potential to induce primary toxicity in rats. The

Blood parameters are used to ascertain the physiological effects of foreign compounds, including medicinal plants. The current study revealed significant activity of the plant extract on RBC, PCV, HB, N, E, M, L, MCH, and MCHC, does not affect erythropoiesis and osmotic fragility of the red blood cells. The white blood cells (WBC) are the first line of defense which responds to infectious agents, inflammatory process, or tissue injury. The increased WBC level in the blood cells of wistar rats observed in the current study was due to stimulation of production of leucocytes by Terminalia catappa as immune booster. On the contrary, Ezekiel et al, (2019) reported decreased WBC level in wistar rats exposed to Terminalia catappa leaf extract. More so, there were no significant changes observed in the neutrophils, lymphocytes, and monocytes in Terminalia catappa leaf extract-treated animals. The Hb levels made T. catappa a positive herb for blood building. 450mg/kg T catappa decreased packed cell volume and erythrocyte count in albino rats (Ezekiel et al, 2019, Aimola et al, 2011). No significant change in the PCV was observed in T.catappa decoctions administered albino rats (Ibegbulem et al 2011). The increased MCHC values have been reported to be one of the conditions that precipitated disease conditions such as sickling Ibegbulem et al (2011). Erythrocytes derivatives were not altered after administration of T. catappa to albino rats (Ezekiel et al, 2019).

Liver enzymes are consistently utilized as an index of liver diagnosis, investigation of disease, and safety assessment of herbal plants (Madu and Nador, 2017). The ALETA dosages caused liver damage with increased AST and ALT concentrations in the serum. Terminalia catappa plant extracts affected the level of aminotransferase enzymes (AST and ALT) in the serum supported by the limited degree of altered liver enzyme which indicated amelioration of hepatotoxic in the animal (Lin, 1997). Meanwhile, a two to four folds increase of liver enzymes raised concerns as an indication of potential hepatic injury Arjariya et al, (2013). The mechanism of action of the plant extracts prevented the intracellular release of enzyme and its membrane. Arjariya et al (2013) reported that the transaminases (AST and ALT) are well-known enzymes used as biomarkers predicting possible liver toxicity. This coincided with our present findings of elevated liver enzymes AST, ALT, ACP, ALP on chronic ingestion of ALETA. These observations may indicate that chronic ingestion of ALETA may result in potential hepatic injury/or compromised liver function.

5. Conclusion

The aqueous leaf extract of Terminalia catappa has shown a significant effect on the tissues in the major body organs of rats that were investigated, with no toxicological effects observed in the heart of the animal. Therefore, the use of Terminalia catappa leaf as prophylaxis, nutriment, anti-inflammatory, etc., should be adopted with caution if
it must be used, and serious review on the administration must be emphasized.

Acknowledgment

We acknowledge the Department of Zoology and Environmental Biology for their assistance in providing laboratory work space.

Authors Contributions

Chika B. Ikele (CBI). Designed the experiment, supervised the research, conducted and monitored the experiment, interpreted histological tissues, and proofread the manuscript. Elijah Okwuonu (EO), analyzed the research data. Nnachi A. Ijem (NAI) proofread the manuscript.

Data Availability

Research Data are not shared.

Conflict of interest

The authors declare no conflict of interests.

References


http://www.academicjournals.org/ajpp

Alka D. Raman D and Yogesh KS. 2016. Exploration of phytochemicals found in Terminalia sp and their antimicrobial activities. PHARMACOGREY, 10: 73-83. Doi:10.4103/0973-7847.194048


Wintrobe, P. K. (1967). *Clinical Haematology*. Williams and Wilkins, Lippincott


Green Synthesis of Silver Nanoparticles using Neem and Collagen of Fish Scales as a Reducing and Stabilizer Agents

Mustafa Mudhafar1,2,* , Ismail Zainol2, H.A. Alsailawi1 and C. N. Aiza Jaafar3

1Department of Anesthesia and Intensive Care Techniques, Faculty of AL, Tuff Collage, Karbala, 56001, Iraq
2Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Proton City, 35900 Tanjung Malim, Perak, Malaysia, 3Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43000 Serdang Selangor, Malaysia.

Received: March 16, 2020; Revised: Dec 2, 2020; Accepted: Dec 21, 2020

Abstract

This study was conducted to synthesize and characterize silver nanoparticles (AgNPs) using a rapid green synthesis approach. Antibacterial properties of AgNPs were evaluated. Extract of Melia Dubia (Neem) and collagen produced from the fish scales were used as reducing and stabilizer agents respectively. Uv-Vis Spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX), Fourier-Transform Infrared Spectroscopy (FTIR), and Dynamic Light Scattering (DLS) were used to characterize the synthesized AgNPs. Evaluation of the synthesized AgNP’s antibacterial activity was conducted, with Staphylococcus Aureus (S. aureus) as Gram-positive and Escherichia Coli (E. coli) as the negative bacteria. The peak of absorbance for the synthesized AgNPs was at 454 nm, indicating conformed AgNPs. SEM image showed semi-evenly distributed rod shapes. The EDX data revealed presence of the metallic silver. Meanwhile, FTIR analysis indicated presence of C-H, C=O, C-N groups. DLS showed an average size of 437.6 nm. XRD showed calculation for particle size using d = Kλ/βcosθ. Average size of AgNPs was 141.81 ± 5 nm. AgNPs also displayed tangible antibacterial activity towards the S. aureus and pathogenic E. coli. AgNPS were successfully synthesized and evaluated for their antibacterial properties. The outcomes being the multifaceted biological activities alongside application of biocompatible green nanoparticles, is discoverable in the field of Nanomedicine.

Keywords: Silver nanoparticles, Fish Scales Collagen (FsCol), Melia Dubia (neem), Antibacterial

1. Introduction

AgNPs are common nanoparticles, vastly used in cleaning agents, commercial industry, food storage, healthcare products, packing and textile coating. Their antimicrobial property against bacteria, fungi, and viruses, makes them suitable for several environmental applications besides being used extensively in products specific to biomedical purposes such as topical creams, antiseptic sprays, and wound dressings. This is due to their capability in disabling a microorganism’s enzymatic activities by disrupting the membrane of the pathogenic organisms (Haghighi et al., 2017; Pugazhendi et al., 2018).

Many techniques were introduced to synthesise AgNPs, such as thermal decomposition, chemical reduction of silver ions (Ag+), pyrolysis microwave irradiation, electrochemical methods, and laser ablations (Beyene et al., 2017; Sundarrajan et al.,2019). Among all, the most traditional way to synthesize AgNPs is via chemical reduction technique. The agents commonly used lessen the chemical are sodium borohydride and sodium citrate (Ojo et al., 2017). Traditional chemical synthesis stipulates the necessity to have metal precursor, reducing agents and capping/stabilizing agents to prevent vigorous spreading of the nanoparticles (Chowdhury et al., 2015). The traditional ways are claimed to be more effective in controlling distribution and reproducibility of the nanoparticle size as they require greater input of energy alongside presence of toxic chemicals. Under certain circumstances, it may require occurrence of controlled pressure and temperature. This may lead to higher cost and environmental contamination.

“Green chemistry” was introduced as an economically feasible option and is known to be a biogenic way to synthesize metallic nanoparticles and AgNPs (Ahmed et al., 2019). This approach is known to be a biogenic synthesis of the metallic nanoparticles. This approach is reputable for its simplicity, environmental-friendly, cost-effectiveness and scale-up efficiency. The procedure is carried out at room temperature and pressure, within aqueous ambiance, without organic solvents (Sportelli et al., 2018). It is also conducted via biological systems, which includes algae, bacteria, plants, fungi, diatoms, and yeast. The simplicity of the biogenic way made it possible for plant extracts to be used to eradicate the procedure of sustaining cell cultures. Metallic nanoparticles that are based on plant-mediated synthesis are also less biohazardous (Mudhafar et al., 2020).

Recently, plant extracts have gained much interest. They are commonly used as agents to reduce and cap...
metallic nanoparticles mainly due to their advantageous potentials which include fast, simple, economically feasible green technique, and environmentally-friendly nature (Ajitha et al., 2016). The phytochemicals of the plants play the role of tough reducing agent, resulting in development of capped nanoparticles. This signifies that plant extract is a one-step natural capping and reducing agent, reducing not just the cost but the use of chemical reagents too (Govindarajan et al., 2017). In addition, chemical compounds are replaced with phytochemicals’ surroundings, while organic solvents are replaced by aqueous surroundings (Jyoti et al., 2016). Today, distinct parts of plants, like its fruits, bran, bark, flowers, and leaf, are used in metallic nanoparticle synthesis (Shaik et al., 2018) as they possess medicinal value attributed to presence of amino acids, phenolic compounds, such as polyphenols, flavonoids, terpenoids, and vitamins (Mudhafar et al., 2019).

Neem is a part of the Melia genes belonging to the Meliaceae family. It is greatly distributed in India and Malaysia. The Indian neem have been extracted and used to produce nano-silver, showing good result when AgNO₃ was used for anticancer activity. Kathiravan et al., (2014), have synthesized the AgNPs for anticancer. However, there has yet to be any report of AgNPs synthesis from neem leaves and its antimicrobial activity from neem extract.

Collagen is a known biocompatible polymer that is water-soluble, and synthetic, evidenced by its broad use for biomedical purposes. Among such purpose includes the use of nanoparticles’ coating to enhance spreading of nanoparticles in an aqueous medium and their penetration into the mucus layer. Furthermore, collagen can guard nanoparticle against immune system clearance by avoiding the opsonization of nanoparticle in the blood, lessening the toxicity of nanoparticles, and increasing the lifetime of the nanomaterial within the circulation system (Sawadkar et al., 2019; Mudhafar et al., 2020). Additionally, collagen can also be used as a stabilizing agent (Tarannum et al., 2015). For the purpose of this study, Fish Collagen was used as safe stabilizing agent for AgNPs.

The AgNPs’ biogenic synthesis was studied with the one-pot green protocol because of its advantageous traits. Meanwhile, the reducing agent used was from neem extracts. To enhance the capability of the green neem that synthesized the AgNPs, the nanoparticles were stabilized with collagen. Different analytical methods were conducted to characterize the AgNPs. Absorbance between 200nm and 800 nm was used to corroborate stability of nanoparticles in a solution. Figure 1 displays the extinction spectra of AgNPs. As observed, the extinction spectra of AgNPs was shown at concentration. These support nanoparticles’ antibacterial activity against varying strains of bacteria. Neem were also examined. Next, a total of 10, 20, 40, and 80 μM/ml of AgNPs were dissolved in distilled water and poured onto a 6 mm disk filter. Following 24 hours incubation, inhibited zones were measured and the magnitude of antibacterial impacts on S. aureus and the E. coli were determined.

2. Materials and methods

2.1. Materials

AgNO₃ was obtained from Bendosen Company. Neem leaves were sourced locally from Perak, Malaysia. Collagen was extracted from fish scales and were produced in the Chemistry Department laboratory, UPSI, Perak, Malaysia. The broth and nutrient agar were bought from Merck.

2.2. Methods

2.2.1. Neem leaf preparation

Fresh neem leaves were collected from Perak. The leaves were cleaned several times to eradicate dust and fungi after which it was sun-dried for one week to completely remove moisture. The dried neem leaves were then crushed and converted to powder form. A total of 10g powder was extracted with 100 ml distilled water in a 250 ml conical flask. Subsequently, the powder was heated for 10 minutes, cooled and filtered to obtain a crude extract before being incubated at 4 °C.

2.2.2. Green synthesis of AgNPs

1 mM of AgNO₃ was dissolved in 90 ml distilled water and the solution formed was transferred into a 250ml conical flask. 10 ml of crude extract was then added into the conical flask and the mixture was again stirred thoroughly. UV-Vs Spectroscopy was then utilized to analyses development of AgNPs. The solution containing AgNPs was centrifuged for 10 minutes at a rate of 14000 rpm. Meanwhile, the supernatants were discarded, and the NP portion was sterilized in distilled water. This aforementioned step was repeated three times to eradicate unused biomaterial and impurity. The freeze-drying method was used to obtain dry particles for the purified sample of dry particles (Joseph et al., 2015).

2.2.3. Characterization of AgNPs

Absorbance between 200nm and 800 nm was conducted using the UV–Vis Spectroscopy Agilent Cary 60 UV Sprotrophotometer. EDX, SEM, and DLS were performed respectively via Bruker X Flash 6110, Nova Nanosem 450.

2.2.4. Antibacterial activity

Paper disk diffusion test was employed to investigate antibacterial activities of E. coli and S. aureus. Nutrient agar media was used to cultivate bacteria. 10 μg of AgNPs was saturated in 1 ml of distilled water and tested against the bacteria. Neem were also examined. Next, a total of 10, 20, 40, and 80 μM/ml of AgNPs were dissolved in distilled water and poured onto a 6 mm disk filter [24]. Upon 24 hours incubation, inhibited zones were measured and the magnitude of antibacterial impacts on S. aureus and the E. coli were determined.

3. Results and Discussion

3.1. UV–Vis Spectroscopy

UV–Vis Spectroscopy was used to corroborate stability and development of AgNPs in a solution. Figure 1 displays the extinction spectra of AgNPs. As observed, the
absorption band of synthesized AgNPs was 454 nm. Many studies have documented absorbance of AgNPs, whereby peak of surface plasmon for AgNPs sized <100 nm was located between 400–450 nm (Rathod et al., 2016).

Figure 1. UV-Vis Spectroscopy of AgNPs, AgNO3, and FsCol

3.2. SEM

SEM was utilised to classify the parts of synthesized AgNPs. SEM’s image displays the AgNPs’ constant spreading. It was discovered that the AgNPs had a rod-like shape with smooth morphology, almost the same shape as the AgNPs when using a microwave. Figure 2 displays SEM image such as that of the prepared powdered AgNPs. The magnification specification for SEM image was 100000x for 500 nm image size, which is a considerably big for AgNPs. Especially since the formation of AgNPs were considerably shorter compared to that mentioned in literature; that the size of the Silver Nanoparticles will decrease with increased formation time (Dehnavi et al., 2013).

Figure 2. SEM for the morphology and measured of AgNPs

3.3. FTIR

FTIR was used to evaluate factional groups of fish collagen and neem leaves in comparison with factional groups of synthesized AgNPs. This is to gain insight on factional groups surrounding the silver nanoparticles. As shown in Figure 4, the FsCol reveals two major peaks, which are 3441 cm-1 for the NH (amide A) and 1646 cm-1 for CO stretching (amide I) (Hamidi et al., 2019). Peaks of the four miners were monitored at 1548 cm-1, 1466 cm-1, 1392 cm-1, and 1242 cm-1. 1548 cm-1-1466 cm-1 refers to the N-H bend coupled with C-N stretch (Amide II), and 1392 -1242 cm-1 refers to the N-H bending (Amide III) [23]. Neem leaves were characterized with two major peaks located at 3296 cm-1 and 1629 cm-1. The peak at 3296 cm-1 refers to the stretch of N–H and O–H due to the presence of water, alcohols, and phenols (polyphenols) in neem extract (Philip, 2010). Amide I was observed at 1629 cm-1, while miner peaks were observed at 2115 cm-1, 618 cm-1, 480 cm-1, and 333 cm-1. At 2115 cm-1, the bands appeared parallel to the present Alkyne group (C2H2) because of neem extract phytoconstituents (Mudhafar et al., 2019). At 618 cm-1, the band matched the C-H bonds in the phenolic rings while the band at 480 cm-1 were attributed to the existence of alkyl halides.

Figure 4. FTIR spectrum of FsCol, M. Dubia, and AgNPs

Table 1: Factional groups in AgNPs in FTIR

<table>
<thead>
<tr>
<th>Fractional groups</th>
<th>Wavenumber cm⁻¹</th>
<th>FsCol</th>
<th>Plant extract</th>
<th>AgNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-H (stretch)</td>
<td>3446 cm⁻¹</td>
<td>3296 cm⁻¹</td>
<td>3301 cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>Alkyne group (C2H2)</td>
<td>--</td>
<td>2115 cm⁻¹</td>
<td>2140 cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>C=O Stretching (amide I)</td>
<td>1646 cm⁻¹</td>
<td>1629 cm⁻¹</td>
<td>1668 cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>N-H bends couple C-N stretch (Amide II)CN</td>
<td>1531 cm⁻¹</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Amide III N-H bend</td>
<td>1348 cm⁻¹</td>
<td>1366 cm⁻¹</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Amide III N-H bend</td>
<td>1242 cm⁻¹</td>
<td>1227 cm⁻¹</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>O-H</td>
<td>--</td>
<td>618 cm⁻¹</td>
<td>634 cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>Alkyl halides</td>
<td>--</td>
<td>480 cm⁻¹</td>
<td>488 cm⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

3.4. DLS

Zeta sizer shows the peak of AgNPs. Based on the pattern, the AgNPs synthesized through this technique had a 0.249 polydispersity index (PDI) with a Zeta average diameter of 437.6 nm. The size of the zeta sizer measures is slightly bigger than the size of the particle as measured in SEM micrographs due to DLS method which measures the hydrodynamic radius (Ahmed et al., 2017). In addition, DLS also measures attached surface proteins,
carbohydrates, and other cellular materials. However, they could not be kept in a vacuum under an electron beam as it can also be associated with the consistency of biosynthesis (Liu et al., 2019). The DLS graph of synthesized AgNPs showed two peaks, a strong peak at 480.7 nm with 98% intensity area and a weak peak at 5256 nm with 2% intensity area. Meanwhile, the Zeta average diameter was 437.6 nm, as shown in Figure 5.

### Antibacterial activities

The AgNPs’ antibacterial properties were recorded according to disk diffusion method. A ruler was used to measure the AgNPs’ ability to prevent bacterial growth against both bacteria (Anandalakshmi et al., 2016). Distilled water was used for negative control, while ampicillin was used and tested against bacteria for positive control. Figure 5 shows the inhibition zones of *E. coli* and *S. aureus* bacteria. The distilled water inhibition appeared zero in both bacteria. The inhibition zones of the extract were 12.2 and 10.4 mm, in contrast to *E. coli* and *S. aureus*, respectively. The inhibition zones of ampicillin were 28.6 for *E. coli* and 22.1 for *S. aureus*. Many AgNPs’ concentrations resulted in good inhibition zones against both bacteria. The inhibition zone increased with AgNPs concentration. Table 2 shows details of AgNPs inhibition and control.

### References


### Acknowledgement

This study was partially supported by grant no. FRGS 2019-0147-103-02.


Antioxidant effect of Beta-D-glucan-polysaccharide fractionate of *Auricularia polytricha* on Hyperglycaemia-Induced Kidney Dysfunction in Experimental Diabetic Nephropathy

Agor C A ¹,* and Anyanwu G E²

¹ Department of Anatomy, Faculty of Basic Medical Sciences, University of Calabar, Nigeria; ² Department of Anatomy, Faculty of Basic Medical Sciences, University of Nigeria, Nigeria.

Received: May 18, 2020; Revised: Dec 2, 2020; Accepted: January 4, 2021

**Abstract**

β-D-Glucan polysaccharide is a major bioactive component fractionated from *Auricularia polytricha* (mushroom), an edible fungus used for both nutritional and therapeutic purposes. Local Nigerian men use *A. polytricha* to manage diabetes related complications without accepted experimentation to ascertain the role and mechanism of action of it fractionates. This study was intended to find out the effect of β-D-Glucan polysaccharide supplementation of hyperglycaemia -induces kidney dysfunction in diabetic Wistar rat. Experiment animals were divided into four groups and received treatment as follows; Group A (treated with normal saline and served as normal control), Group B, (diabetic control animals were treated with 65mg/kg.bw of streptozotocin (STZ)), Groups C and D, (placed on 120 mg/kg.bw and 200 mg/kg.bw of β-D-Glucan polysaccharide respectively after inducing diabetics). At termination, 24 hours urine was collected and analyzed for creatinine clearance and proteinuria, both kidneys were harvested and weighed, serum was collected by cardiac puncture and analysed for serum creatinine and oxidative stress markers (Superoxide Dismutase, Catalase, and Malondialdehyde), while histopathological examination was done using routine Hematoxyline and Eosine technique with the help of light microscope. The result showed that hyperglycaemic ambience caused a significant increase in serum level of oxidative stress markers along with concomitant cytoarchitectural alterations of kidney tissue and a change in values of renal parameters (serum creatinine, proteinuria, and creatinine clearance) indicating kidney dysfunction in diabetic control animals. However, decrease in activities of oxidative stress markers, reversal of alterations in kidney microstructure, and the overall improvement in values of renal parameters were observed following administration of β-D-Glucan polysaccharide in a dose-dependent manner. The present study suggests that β-D-Glucan polysaccharide supplementation can ameliorate hyperglycaemia-induced nephrotoxicity in diabetic wistar rat model.

**Keywords:** β-D-Glucan polysaccharide, diabetic nephropathy, *Auricularia polytricha*, kidney, oxidative stress

---

**1. Introduction**

Diabetic nephropathy is one of the major complications associated with diabetes mellitus. It is characterized by accumulation of extracellular matrix in the glomerular and tubulointerstitial compartments of the kidney which may result in renal failure (Nangaku et al. 2004). Researchers have described cellular events during diabetic nephropathy to include generation of Reactive Oxygen Specie (ROS), channeling of glucose intermediates into metabolic pathways resulting in generation of advanced glycation product and the increase in expression of transforming growth factor. The result is hyperglycaemic ambience caused a significant increase in serum level of oxidative stress markers along with concomitant cytoarchitectural alterations of kidney tissue and a change in values of renal parameters (serum creatinine, proteinuria, and creatinine clearance) indicating kidney dysfunction in diabetic control animals. However, decrease in activities of oxidative stress markers, reversal of alterations in kidney microstructure, and the overall improvement in values of renal parameters were observed following administration of β-D-Glucan polysaccharide in a dose-dependent manner. The present study suggests that β-D-Glucan polysaccharide supplementation can ameliorate hyperglycaemia-induced nephrotoxicity in diabetic wistar rat model.

---

¹ Corresponding author e-mail: agbor_cyril@yahoo.com.
management and treatment of several diseases (Anthony et al., 2006). Numerous animal and plant products have been reported to have medicinal properties (Bhatia et al., 2010). β-D-Glucan polysaccharide is a major bioactive constituent of Auricularia polytricha (mushroom), an edible fungus used globally for culinary and therapeutic purposes. β-glucans are glucose polymers polysaccharides linked together by a 1-3 linear β-glycosidic chain core and are found as a major constituent in the cell wall of fungus. They differ from each other by their length and branching structures (Stone and Clarke, 1992) and do not always exist in single form but as conjugate with other biomolecules such as amino acid, protein, lipid and nucleic acid residue. More so, its low molecular weight, chelating effect and chemical modification by biochemical intermediates makes them a strong source of exogenous antioxidant (Nie et al., 2011).

Local Nigerian men have used A. polytricha to manage complications in diabetic men without reliable experimentation to back up their claim. This study tried to find out the antioxidant effect of β-D-Glucan polysaccharide fractionate of A. polytricha on experimental diabetes nephropathy using Wistar rat model.

2. Materials And Methods

2.1. Collection of Mushroom

A. Polytricha was purchased from Etomi central market in Etung Local Government Area of Cross River State. It was then taken to Department of Biological Sciences, University of Nigeria for identification. The mushroom was dried under room temperature, powdered and then extracted with ethanol (Anyanwu and Agbor, 2020).

2.2. Fractionation of β-D-glucan polysaccharide

β-D-glucan polysaccharide was experimentally separated from A. polytricha using acetyl trimethyl ammonium bromide to form a precipitated complex with the acidic polysaccharide. It was further purified and structurally described through the use of a combination of fractional precipitation with acetic acid using ion-exchange chromatography. (Zhang et al. 2007)

2.3. Experimental Animals

Sixteen (16) adult male Wistar rats were weighed and grouped into four in clean cages with four rats in each. The rats were kept for two weeks of acclimatization in animal house, Department of Anatomy, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus and allowed free access to available chow and water.

2.4. Experimental Design

The experimental grouping, treatment and dosage are shown in Table 1

### Table 1. Experimental animals were divided into four (4) groups with 4 animals in each. Treatment received is as follows:

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Animals</th>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>Distilled water</td>
<td>3 mls</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>STZ + β-D-glucan polysaccharide</td>
<td>65mg/kg.bw</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>STZ + β-D-glucan polysaccharide</td>
<td>120mg/kg.bw</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>STZ + β-D-glucan polysaccharide</td>
<td>200mg/kg.bw</td>
</tr>
</tbody>
</table>

2.5. Induction of Hyperglycaemia

Diabetes was induced by administration of 65 mg/kgbw of Strepototocin (STZ) intraperitoneally after allowing the animals to fast for 12 hours, STZ was reconstituted in 0.5M of Sodium citrate before administration (Ugochukwu and Babady 2003).

2.6. Confirmation of Hyperglycaemia

Accu-Check glucometer (Roche diagnostic, Germany) was used to confirm diabetes 3 days after STZ administration, using blood samples from the tails of experimental animals. Blood glucose levels was checked before and after induction to confirm diabetic state (Anyanwu and Agbor, 2020).

2.7. Administration of Extract

After two weeks of sustained hyperglycaemia, β-D-glucan polysaccharide was administered via oral gastric intubation. to experimental groups (B, C and D) once daily. The experiment lasted for 2 weeks,

2.8. Collection of Tissues and Samples for Analysis

At termination, kidneys were harvested weighed together using an electronic weighing balance (Mettler Instrument AG, Switzerland) and suspended in buffered neutral formaldehyde for further processes with conventional histological techniques. Paraffin sections were cut at 5.0 microns using a Manual Rotary Microtome. Hematoxylin and Eosin (H & E) stained sections were observed under a light microscope.

2.9. Evaluation of Oxidative Stress Markers

Oxidative stress markers were analyzed using blood obtained by cardiac puncture. Samples were transported to the laboratory for biochemical study. Oxidative stress marker kits (Sigma-Aldrich Products, Germany) was used to demonstrate for Superoxide Dismutase (SOD), Catalase and Malondialdehyde (MDA) (Anyanwu and Agbor, 2020).

2.10. Analysis for Renal Parameters

Urine was obtained from metabolic cages housing the experimental animals on the last day, before sacrifice. Creatinine auto- analyzer (Beckman Instrument Fullerton CA) was used to evaluate urine and serum creatinine levels while spectrophotometric assay was adopted in estimation of total protein (Sharma et al., 2001).
2.11. Statistical Analysis

Data obtained from this study was recorded and analyzed using one way analysis of variance (ANOVA) with SPSS program (version 20). Post-hoc test was conducted using Fischer’s Least Significant Difference (LSD) to determine statistical significance among groups. Probability level of $P<0.05$ was considered significant.

3. Results

3.1. Weight of Kidney

As shown in Figure 1, a significantly ($p<0.05$) lower kidney weight (0.80±0.34 g) was observed in diabetic control (Group B) when compared to normal control (1.82±0.67 g). However, hyperglycaemic animals that received 120 mg/kg.bw and 200mg/kg.bw of β-D-glucan polysaccharide in Groups C and D respectively recorded kidney weights that were significantly ($p<0.05$) higher when compared to the diabetic control.

![Figure 1](image1.png)

Fig 1: Comparison of Weight of Kidney in different experimental groups. Values are expressed as mean ±SEM. n=4. 
* = significantly different from Group A at $p<0.05$
† = significantly different from Group B at $p<0.05$
‡ = significantly different from Group C at $p<0.05$
§ = significantly different from Group D at $p<0.05$

3.2. Biochemical Analysis

High serum SOD, Catalase and Malondialdehyde (MDA) level were recorded by the diabetic control animals and these values were significantly ($p<0.05$) higher when compared to normal control group. However, all the diabetic animals treated with graded doses of β-D-glucan polysaccharide had significantly lower SOD, catalase and Melondialdehyde activities when compared with diabetic control (Figures 2, 3 and 4).

![Figure 2](image2.png)

Fig 2: Comparison of SOD level in different experimental Groups. Values are expressed as mean ±SEM. n=4. 
* = significantly different from Group A at $p<0.05$
† = significantly different from Group B at $p<0.05$
‡ = significantly different from Group C at $p<0.05$
§ = significantly different from Group D at $p<0.05$

![Figure 3](image3.png)

Fig 3: Comparison of Catalase level in different experimental Groups. Values are expressed as mean ±SEM. n=4. 
* = significantly different from Group A at $p<0.05$
† = significantly different from Group B at $p<0.05$
‡ = significantly different from Group C at $p<0.05$
§ = significantly different from Group D at $p<0.05$

![Figure 4](image4.png)

Fig 4: Comparison of MDA level in different experimental Groups. Values are expressed as mean ±SEM. n=4. 
* = significantly different from Group A at $p<0.05$
† = significantly different from Group B at $p<0.05$
‡ = significantly different from Group C at $p<0.05$
§ = significantly different from Group D at $p<0.05$
3.3. Histopathological Examination

Fig. 4: Histopathological Examination of Kidney – X400

Key GL – Glomerulus MS – Mesangium RT – Renal tubules BS – Bowman’s Space BV – Blood Vessel.

Figure 4. a) Section of the kidney in group A (Normal control) showing prominent renal tubules and glomeruli. The intervening stroma is scanty and consists of sparse interstitial cells and dilated blood vessels. The glomeruli and Bowman’s space were seen intact. b) Section of the kidney of animals in Group B (Diabetic control) showing prominent renal tubules and glomeruli with diffused expansion and proliferation of mesangium, thickening of glomerular basement membrane and renal tubular hypertrophy. The intervening stroma consists of inflammatory infiltrates. The glomeruli are mildly swollen with a distorted Bowman’s space. Extensive haemorrhage is seen within the mesangial matrix. c) Section of the kidney in group C (Diabetic animals placed on 120mg/kg.bw β-D-glucan polysaccharide) shows prominent renal tubules and glomeruli. The intervening stroma is scanty and consists of sparse interstitial cells and mild inflammatory infiltrates. The glomeruli are atrophic with an intact bowman space and a cellular mesangium. d) Section of the kidney in group D (Diabetic animals placed on 200mg/kg.bw β-D-glucan polysaccharide) shows prominent renal tubules and glomeruli. The intervening stroma is scanty and consists of sparse interstitial cells and mild inflammatory infiltrates. The glomeruli have intact Bowman’s space and a cellular mesangium.

3.4. Renal Parameters

As shown in figures 6, 7 and 8, serum creatinine level (2.58±0.44 mg/dl) in diabetic control (Group B) was remarkably increased when compared to normal control (0.69±0.84), proteinuria in diabetic control group was also significantly higher when compared to normal control, whereas creatinine clearance in diabetic control group was significantly (p<0.05) lower when compared to normal control.
4. Discussion

This study has revealed that sustained hyperglycaemia within the tissue of the kidney can cause significant reduction in weight of organ. It has been demonstrated that weight of an organ depends, to a large extent, on the mass of various cells. According to Wolf (2004), hyperglycaemic injury affects all cell types in the kidney including mesangial, vascular endothelial interstitial and fibroblast cells at varying degrees. When compared to the diabetic control group, ten weeks of administration of β-D-glucan polysaccharide to diabetic rat may have caused the increase in kidney weight in a dose-dependent manner. Chang et al. (2011) have reported that A. polytricha (unfractionated fungi) is capable of inhibiting lipid peroxidation in body organs thereby restoring their weight.
from renal parameters in different experimental groups show a correlation between these parameters and hyperglycaemia-induced kidney injury. However, these values were reversed following β-D-Glucan polysaccharide administration. Improvement in these renal parameters following administration of β-D-glucan polysaccharide may have reflected the reversal in hyperglycaemia-induced distortion of glomerular, tubulointerstitial and vascular compartments in the kidney tissue.

In conclusion, the findings from this research revealed that β-D-Glucan polysaccharide fractionate of *A. polytricha* was capable of ameliorating hyperglycaemia-induced kidney damage in experimental diabetic nephropathy models. This research therefore suggest that β-D-Glucan polysaccharide may reduce the risk of kidney dysfunction in diabetic men.

**Acknowledgment**

I acknowledge the technical support from the Department of Histopathology, University of Calabar Teaching Hospital, Nigeria and Endocrinology Laboratory in the Department of Biochemistry, University of Calabar Nigeria.

**Funding**

This research had no external source of funding.

**Competing Interest**

All authors in this research are not by any means linked to any funding body, and so there was a complete absence of competing interest.

**Authors’ Contributions**

All authors gave equal contribution to this research.

**Ethical Clearance**

Ethical clearance for this research was obtained from the Ethical Committee, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Nigeria.

**References**


Effect of Stress on Ontogeny of Humoral Immunity in Catla  

Purandara Ballyaya Abhiman¹, Md. Abdullah-Al Mamun¹,²,*, Manjulesh Pai¹, Shamima Nasren¹,³, Sanjay Singh Rathore¹ and Kalkuli Mariappa Shankar¹  

¹Laboratory of Aquatic Health Management, Department of Aquaculture, College of Fisheries, Mangalore-575002, Karnataka, India. ²Department of Fish Health Management, Sylhet Agricultural University, Sylhet-3100, Bangladesh. ³Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh.  

Received: May 9, 2020; Revised: Dec 22, 2020; Accepted: January 12, 2021  

Abstract  
The present study aimed to evaluate the crowding and handling stress with increased cortisol production, its effect on growth and ontogeny of humoral immunity in *Catla catla*. Fishes were stressed at different stocking densities (T₁, T₂, T₃ and T₄) in crowding stress and were monitored for various parameters including length, weight, serum cortisol and immunoglobulin in comparison to low stocking density group (T₁). In response to handling, all the stressed groups (HS1, HS2, HS3, HS4, HS5 and HS6) revealed a decrease in average length and weight in comparison to control. The results of T₄ (18000/m²) showed drastic reduction up to 40th day in comparison to low stocking density group T₁ (3000/m²), high stocking groups (T₂, T₃ and T₄) showed reduction in both average length and weight on 6th day onwards up to 40th day. The results of ELISA for crowding stress showed that immunoglobulins were detectable in the spawn from 3 days post hatching (DPH). The immunoglobulin levels decreased till 18 DPH in T₂, T₃ and T₄ groups, although the levels were significantly higher (P<0.05) in lower stocking density group (T₁). In response to handling, all the stressed groups showed significant decrease (P<0.05) in immunoglobulin production in comparison to control at 18 DPH onwards. A slow recovery was observed on 40th day, although the immunoglobulin levels in stressed groups were remained lesser than the control.  

Keywords: Stress, Cortisol, Humoral, Immunoglobulin, ELISA, *Catla catla*  

1. Introduction  
The maintenance of good fish health is critical to profitable fish culture. Aqua cultural ecosystems are innately unstable, unnatural environments. In general, the greater the culture intensity, the greater is the environmental instability. Fishes are exposed to various stressors under natural and cultural conditions (Sharma et al., 2016; Tengjaroenkul and Neeratanaphan, 2020). Alteration of water salinity, pH, hardness, alkalinity, dissolved solids, water level or current, inadequate nutrition and exposure to waterborne pathogens or toxicants are the common stressors for fish (Harper and Wolf, 2009, Lavanya et al., 2011). The procedural stressors include handling, crowding, netting, sorting, vaccine administration etc. Stressors may be acute or chronic and their impacts on fish are additive and cumulative at least for a short period. The extent of stress may vary with nature of stress and its duration and dependable upon age, sex, maturation stage, species and strain of the fish (Perumal et al., 2015). Fish react to stress with a primary neuroendocrine response, represented by a rapid hyper secretion of catecholamines (adrenaline and noradrenaline) and corticosteroids (mainly cortisol) into the blood stream (Pickering, 1981). As a result of their high levels in the circulatory system, a wide range of secondary responses can be observed. The effects of these hormones at blood and tissue level include disturbance of the metabolic and hydro mineral balance. Tertiary responses include behavioral modifications, implications for fish growth and reproduction and increased susceptibility to diseases (Pickering et al., 1982; Pankhurst et al., 1997; Okpashi et al., 2018).  

A variety of biochemical measurements are used as indicators of stress in fish. Among the most frequently measured variables, there are levels of circulating corticosteroid hormones (mainly cortisol) and glucose, lactate, haemoglobin, proteins and haematocrit (Poli et al., 2005). In addition, some components of innate immune system (e.g. lysozyme, haemolytic and haemagglutinating activity) and humoral factors such as IgM levels are used as indicators of immunocompetence in fish exposed to stress (Sunyer et al., 1995; Tort et al., 2004). The immune parameters including IgM are essential to measure the health status of fish and as markers for stress (Sahoo et al., 2005). The immune system in newly hatched larvae is not fully developed and they are exposed to a potentially pathogenically hostile environment (Breuil et al., 1997). The immunoglobulins detected in the eggs, hatchlings and the spawns are of maternal origin. The maternal transfer of IgM has been documented in several teleost fish including, tilapia (*Oreochromis aureus*) (Avtalion and Mor, 1992; Takemura, 1993), channel catfish, (*Ictalurus punctatus*)  

* Corresponding author e-mail: mamunfl@gmail.com.
(Hayman and Lobb, 1993), chum salmon, (Oncorhynchus keta) (Fuda et al., 1992) and coho salmon Oncorhynchus kisutch (Youisif et al., 1995), Indian major carps (Bag et al., 2009). Limited research has been carried out relating with growth and humoral immune parameters with husbandry stress on early developmental stages in Indian Major Carps, Catla catla, an aquaculture potential species. The present study was undertaken in an attempt to explain the mechanism of growth inhibition, cortisol indication and humoral immunity by crowding and handling stress.

2. Materials and methods

2.1. Seed collection and transportation

Two day post hatch spawn of the Indian major carp, catla (Catla catla) used in the present study was procured from the fish seed farm, State Department of Fisheries, Bhadra Reservoir Project (BRP), Shimoga, Karnataka, India in packed plastic bags containing 1/3 rd water and 2/3rd oxygen.

2.2. Larval rearing

The larvae were reared in hapas suspended in the freshly manured water (cow dung 10,000kg/ha) of pretreated cement cisterns of size 25m² at the fish farm of College of Fisheries, Mangalore. The aquatic insects were eradicated by using Butox (0.04ml/m³), one week after the manuring. Hatchlings were stocked at the rate of 1000/m². Larvae were fed on the naturally available planktons; in addition, they were fed daily with rice bran and groundnut oil cake at a ratio 1:1 at 10% of the body weight. The experimental protocol lasted for 40 days and temperature variation was in the range of 21 °C to 26 °C during the entire study period.

2.3. Stressing protocol

2.3.1. Crowding Stress

The hatchlings were individually stocked in the hapas at the densities of 3000, 6000, 12000 and 18000 per m² in triplicate. The samples for cortisol and IgM estimation were collected from the experimental hapas using a hand net, on 3rd, 6th, 12th, 18th, 24th, 30th and 40th day post hatching.

2.3.2. Handling Stress

Spawn were held in seven different hapas at equal stocking densities (3000/m²). Fishes of the one hapa were maintained as control without any handling. Fishes of the other six hapa were stressed according to the method of Feist and Schreck (2001) with slight modifications by holding them out of water for 30 sec and releasing back to recover for a period for 15 min, were stressed again two times by holding them out of water for 15 sec after 15 and 30 min of the original stressing. Fishes were sampled after 15 min of the last stressor. Fishes were sampled after 15 min of the stressor. Fishes were sampled on 3rd, 6th, 12th, 18th, 24th, 30th and 40th day post hatching.

2.4. Preparation of fish extracts for antibody extraction

Spawn and fry extracts of both control and stressed groups were prepared according to the method of Breuil et al. (1997) with slight modification in rpm employed in centrifugation. The spawn and fry of catla were homogenized with three volumes of PBS pH 7.4; and the resultant homogenate was centrifuged at 12000 rpm for 15 min under 4°C. The supernatants were collected, centrifuged twice at 12000 rpm for 10 min, and pooled supernatants were stored at -40 °C with addition of Protease inhibitor cocktail (Sigma,USA) till use.

2.5. Determination of protein concentration

Protein concentration of tissue extracts of different samples of catla was determined according to Lowry et al. (1951) using protein estimation kit (Bangalore, Genei India Pvt. Ltd.)

2.6. Monoclonal Antibody production from the hybridoma clone C6E2

Hybridoma clones C6E2 raised against IgM of catla (Honnananda, 2008) were revived from the frozen state at -196 °C by thawing at 37 °C in the water bath. The cell suspension was suspended in 10 ml of serum (FBS) free RPMI cell culture medium. The cells were harvested by centrifuging at 1800 rpm. The supernatant was decanted and the cell pellet was re-suspended in 5 ml RPMI medium enriched with 15% FBS and distributed to 96 well tissue culture plate or 25 cm² flask according to the cell density. The plates/flasks were incubated at 37°C in CO₂ incubator and subsequently transferred to 75 cm² flasks for production of monoclonal antibody (MAb).

2.6.1. Enzyme- linked Immunosorbent Assay (ELISA)

ELISA was carried out according to Furuta et al. (1995) with slight modifications. Microtitre plates were coated with tissue extract (100μl/well) diluted in carbonate-bicarbonate buffer (pH 9.6) to a concentration of 10μg/ml protein and incubated overnight at 4°C. Unbound proteins were removed by washing once with PBS-T20 (0.05% Tween-20 in PBS) subsequently with PBS with a 3 min interval. 300 μl of PBS-5% skimmed milk was added as a blocking reagent to each well and 2h at room temperature. The blocking was followed by washing with PBS-T20 and PBS. 100μl MAb was added to each well except to the antibody blank and incubated for 3h at room temperature. The excess MAb was poured off and the plate was washed twice with PBS-T20 and once with PBS alone. The plates were then incubated for 45min at room temperature by adding Rabbit anti mouse IgG peroxidase conjugate at 1:2000 dilution in 3% BSA-PBS (Bangalore, Genie Pvt. Ltd.), washed three times PBS-T20 and once
with PBS. The peroxidase activity was then measured by adding 100 µl of a substrate solution containing tetramethylbenzidine and hydrogen peroxide (TMB/H₂O₂) diluted in distilled water at a ratio 1:20. After incubation for 10 min in the dark at room temperature, the enzyme reaction was stopped by adding 50 µl of 2N H₂SO₄ to each well and the optical density was measured at 450 nm using a Microplate reader (Bio-Tek Instruments, Inc. USA).

2.7. Estimation of whole body cortisol levels

2.7.1. Preparation fish extracts for cortisol estimation

Spawn and fry extracts of both control and stressed groups were prepared as previously described, except that the centrifugation was carried out at 3000 rpm for 10 min at 4°C. The supernatant was immediately analysed after processing.

2.7.2. Determination of Cortisol levels in stressed fish by competitive ELISA

Cortisol levels in the stressed (both crowding and handling) as well as control groups were measured using Cortisol Saliva Kit (Diagnostics Biochem Canada Inc.). Working solutions of the cortisol-HRP conjugate and wash buffer were prepared according to manufacturers’ instructions. Each calibrator, control and stressed samples 50 µl were pipetted into strips of labelled microwells in duplicates. The conjugate working solution of 100 µl was dispensed into each well. The plate was then incubated on a plate shaker at 200 rpm for 45 min at room temperature. The wells were washed three times with 300 µl of diluted wash buffer per well and plate was tapped firmly against a plate shaker at 200 rpm for 45 min at room temperature. 50 µl of stopping solution was pipetted into each well and the plate was read on a Microplate reader (Bio-Tek Instruments, Inc. USA) at 450 nm within 20 min of addition of the stopping solution.

2.8. Statistical analysis

All data were expressed as mean ± SE (standard error). Differences in the cortisol and immunoglobulin levels between the treatments were analysed statistically through one-way analysis of variance (ANOVA) followed by Duncan’s multiple range test by using SPSS software (20.0 version). The level of significance was chosen at $P<0.05$.

3. Results

3.1. Measurement of average length and weight

3.1.1. Crowding stress

The initial average length and weight of a sample of 3DPH larvae was measured before stocking. The mean length and weight were found to be 0.5 cm and 0.0015 g respectively (Table 1). Sampling was done for cortisol and IgM estimation was done on scheduled days up to 40th day. In comparison to low stocking density group T₁ (3000/m²), high stocking groups showed reduction in both average length and weight 6th day onwards up to 40th day. There has been slight variation observed among the groups T₁ (3000/m²) and T₂ (6000/m²). The results of T₄ (18000/m²) showed drastic variation up to 12th day in comparison to all other groups. In comparison to groups T₁ and T₂ the reduction in the average length and weight in the group T₃ (12000/m²) was observed throughout the study period up to the 40th day.

Table 1. Average length and weight of catla subjected to crowding stress (CS)

<table>
<thead>
<tr>
<th>Sampling days</th>
<th>T₁ (3000/m²)</th>
<th>T₂ (6000/m²)</th>
<th>T₃ (12000/m²)</th>
<th>T₄ (18000/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(cm)</td>
<td>W(g)</td>
<td>L(cm)</td>
<td>W(g)</td>
<td>L(cm)</td>
</tr>
<tr>
<td>3rd day</td>
<td>0.5±0.03</td>
<td>0.0015±0.0002</td>
<td>0.5±0.03</td>
<td>0.0015±0.0002</td>
</tr>
<tr>
<td>6th day</td>
<td>0.70±0.03</td>
<td>0.0030±0.0003</td>
<td>0.68±0.02</td>
<td>0.0025±0.0003</td>
</tr>
<tr>
<td>12th day</td>
<td>1.20±0.03</td>
<td>0.004±0.002</td>
<td>1.1±0.03</td>
<td>0.0038±0.0004</td>
</tr>
<tr>
<td>18th day</td>
<td>1.80±0.02</td>
<td>0.028±0.004</td>
<td>1.6±0.03</td>
<td>0.016±0.002</td>
</tr>
<tr>
<td>24th day</td>
<td>2.50±0.04</td>
<td>0.070±0.003</td>
<td>2.4±0.02</td>
<td>0.068±0.002</td>
</tr>
<tr>
<td>30th day</td>
<td>3.10±0.06</td>
<td>0.096±0.002</td>
<td>3.0±0.02</td>
<td>0.094±0.003</td>
</tr>
<tr>
<td>40th day</td>
<td>3.60±0.04</td>
<td>0.142±0.005</td>
<td>3.5±0.01</td>
<td>0.140±0.001</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE

3.1.2. Handling stress

The initial average length and weight were measured for samples of control groups and different treatment groups. The initial mean length and weight were 0.5 cm and 0.0015 g respectively. The group HS₂ was handled only on 6th day (when the larvae were 6DPH), reduction in average length and weight of the previously stressed group HS₁ was noted on 6th day sampling. Similarly HS₃, HS₄, HS₅ and HS₆ were handled on 12, 18, 24 and 30 DPH respectively and showed reduced length and weight compared to the control groups at different sampling periods. On 40th day, no handling was done, only sampling was done for all previously stressed groups which showed reduced growth rate in comparison to control groups (Table 2).
Table 2. Average length and weight of catla subjected to handling stress (HS)

<table>
<thead>
<tr>
<th>Sampling days</th>
<th>Control</th>
<th>HS1</th>
<th>HS2</th>
<th>HS3</th>
<th>HS4</th>
<th>HS5</th>
<th>HS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>0.5 ± 0.03</td>
<td>0.5 ± 0.0015</td>
<td>0.5 ± 0.0017</td>
<td>0.5 ± 0.0028</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6th day</td>
<td>0.8 ± 0.03</td>
<td>0.5 ± 0.0030</td>
<td>0.5 ± 0.0034</td>
<td>0.5 ± 0.0030</td>
<td>0.5 ± 0.0030</td>
<td>0.5 ± 0.0030</td>
<td>0.5 ± 0.0030</td>
</tr>
<tr>
<td>12th day</td>
<td>1.3 ± 0.05</td>
<td>0.9 ± 0.0038</td>
<td>1.1 ± 0.0038</td>
<td>1.2 ± 0.0038</td>
<td>0.004 ± 0.0006</td>
<td>0.004 ± 0.0006</td>
<td>0.004 ± 0.0006</td>
</tr>
<tr>
<td>18th day</td>
<td>1.9 ± 0.04</td>
<td>1.6 ± 0.0099</td>
<td>1.4 ± 0.0099</td>
<td>1.3 ± 0.0099</td>
<td>0.005 ± 0.001</td>
<td>0.005 ± 0.001</td>
<td>0.005 ± 0.001</td>
</tr>
<tr>
<td>24th day</td>
<td>2.5 ± 0.04</td>
<td>2.0 ± 0.0063</td>
<td>1.9 ± 0.0063</td>
<td>1.6 ± 0.0063</td>
<td>0.018 ± 0.001</td>
<td>0.018 ± 0.001</td>
<td>0.018 ± 0.001</td>
</tr>
<tr>
<td>30th day</td>
<td>3.1 ± 0.05</td>
<td>2.6 ± 0.0030</td>
<td>2.2 ± 0.0030</td>
<td>2.0 ± 0.0030</td>
<td>0.052 ± 0.001</td>
<td>0.052 ± 0.001</td>
<td>0.052 ± 0.001</td>
</tr>
<tr>
<td>40th day</td>
<td>3.6 ± 0.04</td>
<td>2.9 ± 0.0060</td>
<td>2.6 ± 0.0060</td>
<td>2.2 ± 0.0060</td>
<td>0.060 ± 0.001</td>
<td>0.060 ± 0.001</td>
<td>0.060 ± 0.001</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE.

3.2. Cortisol response to crowding and handling in catla

3.2.1. Crowding stress

The data on effect of crowding stress are presented in the Fig 1. Cortisol was detectable in the four groups, namely T1:3000/m²; T2:6000/m²; T3:12000/m² and T4:18000/m². Significantly, lower level (P<0.05) of cortisol were detected in T1 compared to T2 and T3 in 3DPH. Moreover, the significant increased levels of cortisol were noted in all the higher stocking groups at the respective sampling periods. The highest cortisol levels were found in T3 at 18DPH (54.6 ng/ml) and then declined sharply up to 40DPH. In T4, cortisol levels rose very sharply up to 12DPH, and all the fish in this group died thereafter.

3.2.2. Handling stress

The data on the cortisol response to handling stress of different age groups of spawn and fry of catla are presented in the Table 3. There was a sharp increase in cortisol levels in the early handled period (HS1). There were significantly higher (P<0.05) cortisol levels in HS2 and HS3 groups compared to control. Similarly, cortisol levels were significantly elevated in different stressed groups (HS4, HS5, HS6 and HS7) in comparison to the control handled in different sampling periods. The highest cortisol level were detected in HS4 stress group (100±7.10 ng/ml) at 40DPH. The cortisol level were returned to normal levels in HS1, HS2 and HS3 with non-significant level with control group at 40DPH; however, values remained significantly higher in HS4, HS5 and HS6 groups. The values in those groups were declining, indicating that they would return to normal level.
Table 3. Cortisol levels (ng/ml) in response to handling stress of catla.

<table>
<thead>
<tr>
<th>Sampling days</th>
<th>Control</th>
<th>HS1</th>
<th>HS2</th>
<th>HS3</th>
<th>HS4</th>
<th>HS5</th>
<th>HS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>7.1±0.84 b</td>
<td>46.2±2.80 a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6th day</td>
<td>8.0±0.52 c</td>
<td>31.3±1.70 b</td>
<td>54.6±2.86 a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12th day</td>
<td>8.8±0.84 d</td>
<td>23.8±2.34 a</td>
<td>38.2±1.15 b</td>
<td>64.5±3.52 a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18th day</td>
<td>9.1±0.88 e</td>
<td>19.2±2.28 a</td>
<td>32.4±2.18 b</td>
<td>48.6±2.88 a</td>
<td>86.2±4.62 c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24th day</td>
<td>10.4±1.21 f</td>
<td>15.7±1.18 c</td>
<td>25.8±1.65 a</td>
<td>39.6±3.32 b</td>
<td>62.4±5.20 a</td>
<td>90.1±5.37 a</td>
<td>-</td>
</tr>
<tr>
<td>30th day</td>
<td>11.5±0.95 g</td>
<td>14.9±0.97 d</td>
<td>19.3±1.70 a</td>
<td>27.4±2.37 a</td>
<td>44.2±3.15 a</td>
<td>76.4±6.27 b</td>
<td>100±7.10 a</td>
</tr>
<tr>
<td>3rd day</td>
<td>14.1±1.14 h</td>
<td>13.4±1.18 a</td>
<td>15.2±1.34 b</td>
<td>18.9±1.41 b</td>
<td>26.4±2.27 c</td>
<td>34.3±2.64 b</td>
<td>39.2±3.74 a</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE in the rows with different superscripts differ significantly (P<0.05).

3.3. Measurement of Immunoglobulins through ELISA

3.3.1. Immunoglobulin levels in different crowding stress treatments during life stages of catla

The results of ELISA showed that immunoglobulins were detectable in the spawn from 3DPH onwards. The immunoglobulin levels decreased till 18DPH in T2, T3 and T4 groups, although the levels were significantly higher (P<0.05) in lower stocking density group (T1). An increment level of immunoglobulins from 18DPH to the end of the research period of 40DPH were detected. Moreover, the IgM level were remarkably down-regulated in higher stressed group fishes (T3) in comparison to treatments of lower stocking densities T2 and T1 at that period. The IgM levels in different treatments during different life stages are shown in Fig. 2.

3.3.2. Immunoglobulin levels in different handling stress treatments during life stages of catla

The results of ELISA showed that immunoglobulins were detectable in the larvae from 3DPH onwards. The immunoglobulin levels decreased till 18DPH in T2, T3 and T4 groups, although the levels were significantly higher (P<0.05) in lower stocking density group (T1). An increment level of immunoglobulins from 18DPH to the end of the research period of 40DPH were detected. Moreover, the IgM level were remarkably down-regulated in higher stressed group fishes (T3) in comparison to treatments of lower stocking densities T2 and T1 at that period. The IgM levels in different treatments during different life stages are shown in the Table 4.
4. Discussion

Suppression of growth is often considered to be a good indicator of chronic stress. A variety of stressors challenge a fish at all times either in captivity or wild (Galhardo and Oliveira, 2009). In captivity, Nile tilapia, *O. niloticus* showed significant reduction (P<0.05) in the values of haemoglobin (Hb) and other blood parameters (Ugwe et al., 2011). In captive condition of fish, overcrowding may be accompanied by additional stressors such as poor water quality, exposure to organic pollutants, and conspecific aggression and predation (Harper and Wolf, 2009).

High stocking density has been reported to cause decreased growth in salmonids (Vijayan and Leatherland, 1988) due to different factors such as decreased food consumption and social interactions (Wedemeyer, 1997) or decreased water quality (Pickering and Stewart, 1984). Moreover, high stocking density produces both hormonal and metabolic alterations (Leatherland and Cho, 1985; Schreck et al., 1985) including a reduction in thyroid hormone activity (Vijayan and Leatherland, 1988). The high stocking density has been shown to exert adverse effects on growth, and there is a negative correlation between them in the fish culture (Andrews, 1971; Pickering and Stewart, 1984). The results of present study suggest that stocking density has a marked effect on growth of catla. There has been reduction in average length and weight, with increased cortisol levels in high density stressed groups in comparison to low stocking density groups, suggesting that stress induced growth suppression. Suppression of growth is often considered to be a good indicator of chronic stress (Pickering, 1990; Pankhurst and Van der Kraak, 1997; Barton and Iwama, 1991). Similarly, the present study showed reduction in average length and weight also in case of handling stress groups, with elevated levels of plasma cortisol in comparison to control. The present findings corroborated with results of Khan and Moseki (2018) reported significantly higher levels of shock proteins in both hepatopancreas and muscles of catla exposed with high light intensities. Moreover, as a consequence of stress due to intense light, a 12.5% of growth retardation was found in treated fish.

During earlier development, cortisol levels have shown a general pattern of relatively higher levels after fertilization followed by a decline until the time of hatching. It is believed that the cortisol is of maternal origin and that embryos are mobilizing the cortisol during early development (Paitz et al., 2016). Typically, the first signs of cortical tissue in teleosts are observed before hatching (Chester Jones et al., 1980), which was consistent with the findings of Stouthart et al. (1998) reported that upon handling (mechanical pressure during egg stage or netting during the larval stage) embryos and larvae increased their whole-body cortisol levels. In the present study conducted on catla spawn and fry, all the stressed groups showed sharp increase in cortisol levels in response to acute handling throughout the study period. In general, plasma cortisol levels rise at the beginning of high stocking density condition and decrease to initial values in a few days (Pickering and Stewart, 1984; Tort et al., 2004), indicated the adaptation of the fish to the new situation. This effect has been described for different species, including coho salmon (Patino et al., 1986) and Arctic char (*Salvelinus alpinus* Jorgensen et al., 1993). Vijayan et al. (1990) found high plasma cortisol values in brown trout held at high stocking density. However, in the present study, fish held at high stocking density showed significantly higher levels of plasma cortisol than those held at low density, suggesting the incapacity of these fish to reach adaptation under these conditions. A similar elevation of plasma cortisol with high rearing density has been described for Atlantic salmon, *Salmo salar* (Mazur and Iwama, 1993).

In the present study the IgM production in catla was observed from 3DPH for control and all the stressed groups. In the previous work by Lokesh (2009) in catla, the IgM production was reported from 21DPH onwards, the reason being the variability in the environmental conditions leading to the variability in the period of development of functional immunity. Indian major carp, catla showed lower non-specific immune values indicated its weak resistance compared with rohu, *Labeo rohita* (Sahoo et al., 2009). One degree fall of temperature from 28 °C resulted into 10.7 % mortality of larvae of catla (Sharma et al., 2016). The autologous production of IgM in channel catfish was first reported on 21st day (Petrie-Hanson and Ainsworth 1999). The subsequent work by Petrie-Hanson and Ainsworth (2001) reported the appearance of IgM on 7, 10, 14DPH. The first appearance of IgM in carp was reported from 2nd week post hatch (Koumans-van Diepen et al., 1994). The present study has revealed that stress induces elevated plasma cortisol levels leading to growth suppression and reduction in IgM production as a consequence of crowding stress and handling stress on ontogeny of catla, although the age at which humoral response is initiated is not affected by stress. Transportation stress demonstrated reduction in the IgM concentration and fry of catla were more sensitive to stress.

### Table 4. Immunoglobulin levels (OD) in different handling stress of catla.

<table>
<thead>
<tr>
<th>Sampling days</th>
<th>Control</th>
<th>HS1</th>
<th>HS2</th>
<th>HS3</th>
<th>HS4</th>
<th>HS5</th>
<th>HS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>0.212±0.005a</td>
<td>0.182±0.005a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6th day</td>
<td>0.183±0.006b</td>
<td>0.146±0.008b</td>
<td>0.162±0.004b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12th day</td>
<td>0.159±0.007b</td>
<td>0.131±0.006b</td>
<td>0.136±0.007b</td>
<td>0.142±0.004b</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18th day</td>
<td>0.154±0.005c</td>
<td>0.123±0.005c</td>
<td>0.113±0.007c</td>
<td>0.109±0.003c</td>
<td>0.148±0.007c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24th day</td>
<td>0.225±0.004c</td>
<td>0.141±0.005bc</td>
<td>0.129±0.005bc</td>
<td>0.134±0.006bc</td>
<td>0.150±0.006b</td>
<td>0.218±0.005b</td>
<td>-</td>
</tr>
<tr>
<td>30th day</td>
<td>0.274±0.006c</td>
<td>0.153±0.008bc</td>
<td>0.142±0.007b</td>
<td>0.146±0.005c</td>
<td>0.154±0.003c</td>
<td>0.160±0.006c</td>
<td>0.248±0.004b</td>
</tr>
<tr>
<td>40th day</td>
<td>0.325±0.005b</td>
<td>0.180±0.006c</td>
<td>0.167±0.005c</td>
<td>0.166±0.007c</td>
<td>0.164±0.006bc</td>
<td>0.174±0.004c</td>
<td>0.228±0.005b</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE, in the rows with different superscripts differ significantly (P<0.05)
than the fingerling (Ahmed and Shenoy, 2012). In a study by Saha et al. (2004) in vitro administration of cortisol was shown to reduce the number of IgM-secreting cells and IgM secretion in common carp.

In the present study, the results show that catla held at high stocking density appear to be experiencing stress, as indicated by the significant elevation in plasma cortisol. This crowding stress affected the immune activity. The fish showed no signs of disease but displayed symptoms of immunosuppression with reduced antibody or IgM production in the early stages of development. In case of crowding stress, low stoking density groups increase in the level of Immunoglobulins were detected on 24th day and gradually increased thereafter till the study period of 40th day (Fig. 2). On the other hand, in stressed groups the increase in antibody production was very slow compared to the non-stressed group. In response to handling stress, all the stressed groups have shown significant decrease in immunoglobulin production in comparison to control. Observation on 40th day showed that there was a slow recovery in all the previously stressed groups, but still the values remain significantly lesser than the control, clearly explaining that handling stress induced suppression in the IgM production on ontogeny of catla, but not the ontogeny of humoral immune response.

5. Conclusion

In our investigation, both crowding and handling stress have resulted in elevated levels of plasma cortisol as a primary response in early developmental stages of catla. As a consequence of crowding and handling stress, elevated levels of plasma cortisol had a deleterious impact on growth of catla. Both crowding and handling stress induced immune suppression on ontogeny of catla linked with elevated levels of plasma cortisol. There is no effect as the onset of ontogeny of humoral immunity, but the strength of the responses decreases with increasing level of crowding as well as handling stress. Both crowding and handling stress need to be minimized for producing healthy catla fry.

Funding

This work was funded by the project # 8086, Department of Biotechnology (DBT), Government India.

Acknowledgments

All the authors are grateful to the DBT, India for financial supports. The 2nd and 4th authors are thankful to the Indian Council of Agricultural Research (ICAR) for sponsoring their Ph.D. and for the award of the Netaji Subhas International Fellowship 2015-2016.

Conflict of Interest

Authors have no conflict of interest to declare.

References


Avitalion RR and Mor A. 1992. Monomeric IgM is transferred from mother to egg in tilapias. Isr J Aquacult., 44:93-98


Lokesh J. 2009. Ontogeny of humoral immunity in Indian major carps – studies using monoclonal antibody based ELISA. M.F.Sc., thesis, submitted to the Karnataka Veterinary Animal and Fisheries Sciences University, Bidar, India


Covid-19: Viral Pathogenesis and The Host Immune Response

Nasiru Usman Adabara1, Sherifat Ozavize Enejiyon1,* , Faruk Adamu Kuta1, Ayanwale Oluwatobi Abraham1 and Samia Alkhalil2

1 Department of Microbiology, School of Life Sciences, Federal University of Technology Minna, Nigeria; 2Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Saudi Arabia.

Received: Sep 9, 2020; Revised: Dec 7, 2020; Accepted: January 12, 2021

Abstract

COVID-19, a pandemic caused by a betacoronavirus known as SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has recorded 18,354,342 number of cases and 696,147 deaths globally as of August 5, 2020. It was first recorded in Wuhan, China in 2019. The virus bears close resemblance to SARS-CoV-1 and MERS-CoV that have emerged and caused outbreaks of deadly human diseases. The main component of the virus responsible for the host range specific tropism and pathogenicity is the S-glycoprotein. The primary route of transmission of infection is through human to human via close contact, usually through spraying of droplets from sneeze or cough of an infected person. The incubation period for COVID-19 following viral infection is between 2 to 14 days. The target cells of SARS-CoV-2 are those cells that highly expressed ACE2 (angiotensin-converting enzyme 2). Viral receptor binds to the ACE2, to allow the virus entry into the cell via endosomal pathway. The host innate immune system detects the viral infection by using pattern recognition receptors which result in activation of downstream signalling cascade. Understanding the virulence factors contributing to pathology, host immune responses and strategies employed by the virus in bypassing host immune response is paramount in developing therapeutic options that can help to tackle the COVID-19 pandemics.

Keywords: COVID-19, coronavirus, receptors, immune response, pathogenesis.

1. Introduction

Corona Virus Disease 2019, abbreviated as COVID-19, is caused by a novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) (Kowalik et al., 2020). It is a newly emerging virus previously named 2019 novel coronavirus (2019-nCoV). The international committee on the taxonomy of viruses (ICTV) christened the new coronavirus as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the 11th day of February, 2020 due to its close genetic relatedness to SARS-CoV that caused an outbreak in 2002/2003 (Wu et al., 2020; CSG-ICT, 2020). An outbreak of the disease was first recorded in Wuhan, Hubei Province of China in December 2019, from which it disseminated to other parts of China and every other country. It was later declared a pandemic in March 2020 by the World Health Organization (Cucinotta and Vanelli, 2020). Currently, more than 6 million people have been infected globally with over 369,258 deaths (WHO, 2020). The newly emerging virus, SARS-CoV-2 is an enveloped, un-segmented, positive sensed single stranded-RNA virus found within the subfamily “Coronavirinae”, which includes viruses that infect humans and mammals. Three of these viruses known to cause human diseases have emerged during the last two decades and have caused widespread outbreaks of deadly human diseases. These highly pathogenic zoonotic coronaviruses include SARS coronavirus-1(SARS-CoV-1) which was first observed in 2002, Middle East respiratory syndrome coronavirus (MERS-CoV) first identified in 2012 and SAR-CoV-2 which was first reported towards the end of 2019 (Dorsten et al., 2003; Zaki et al., 2012; Wu et al., 2020). The clinical manifestation, morbidity rate, mortality rate and the case fatality ratio have slowly emerged. However, there are still some confusion about the pathogenesis and the specific role of the host immune responses in combating the infection. A lot of conclusion is being drawn from cumulated data on the previous coronaviruses namely SARS-CoV-1 and MERS-CoV because of their close genetic relatedness to the novel SARS-CoV-2. This review examines issues related to SARS-CoV-2 pathogenesis as well as the specific role played by the host immunity during infection drawing insights from other published works on the outbreak of COVID-19.

2. Virulence Factors

The occurrence and course of clinical manifestation in COVID-19 depend on pathogen factors which include virus type, virulence factors, viral load, mutation, replication and viability of the virus in vitro (Tang et al., 2020). Meanwhile, host factors such as the age of an infected person and the presence of comorbidities have also been identified to affect the clinical outcome of the viral infection (Abduljalil and Abduljalil, 2020).
Coronaviruses are crown-like shaped, enveloped viruses of about 100 nm in diameter that are surrounded by spikes which protrude from the envelope. The virus genome is complemented by about 14 open reading frames (ORF). Each ORF encodes an array of proteins, accessory proteins, structural proteins and non-structural proteins that have important roles in virulence and propagation of the virus. The virus consists of four important structural proteins, membrane (M) glycoprotein, envelope (E) glycoprotein spike (S) glycoprotein and nucleocapsid (N) glycoprotein, as well as 16 nonstructural proteins (Fehr and Perlman, 2015; Kim et al., 2020).

Membrane and envelope glycoproteins are required for virus maturation, assembly, and replication. Together, they form the viral envelope as well as determine its shape. N-glycoprotein forms an enclosure around the virus RNA genome known as viral nucleocapsid while spike glycoprotein is the elemental determinant of pathogenicity and host tropism (Hulswit et al., 2016; Felsenstein et al., 2020).

S glycoprotein is a transmembrane protein found in the outer region of the virus with a molecular weight of 150 kDa. It enables the binding of viruses to host cells by forming homotrimers projecting on the surface of the virus to bind ACE2 found in cells of various organs including the kidney, liver and the lung (Fehr and Perlman, 2015). Furin-like pro tease of host cell split S protein into two subunits (S1 and S2). S1 subunit consists of two important domains; receptor binding domain (RBD) and N-terminal domain (NTD) (Wall et al., 2020). The RBD of the S glycoprotein has six critical acidic amino acids that are responsible for binding to receptor ACE2 on host cells as well as the determination of virus cellular and host tropism (Andersen et al., 2020). On the other hand, the S2 functions in mediating the fusion between the virus and host cellular membrane (Guo et al., 2020).

Nonstructural proteins (nsps) carry out very essential roles in several processes in viruses as well as in the host cells; Nsp5 and Nsp3 encode proteases enzymes; chymotrypsin-like main protease and papain-like protease respectively. These enzymes help in the expression of cytokines, production and cleavage of viral amino acids polyprotein.

The virus demonstrates a high replication number (Anastassopoulos et al., 2020; Li et al., 2020) and it is more infectious probably as a result of acquisition of furin-cleavage site, which makes it spread very easily amongst people than the previous coronaviruses (Liu et al., 2020). The genome of SARS-CoV-2 consists of a sequence encoding amino acids PRRA and R within the original sequence of the S glycoprotein, generating a polybasic cleavage site (RRAR) for Furin protease at the junction of S1 and S2, leading to increase in the virus infectivity (Andersen et al., 2020; Liu et al., 2020). Combination of RBD and an insertion of cleavage site in genome of the virus have been reported to increase its infectivity in a study involving analysis of genomic sequences of SARS-CoV-2 (Wu et al., 2020).

SAR-CoV-2 has been indicated to evolve into leucine (L) and serine (S) types from the analyses of 103 SARS-CoV-2 genomes, where the serine type might be the ancestral type and leucine type might spread rapidly and be more aggressive (Tang et al., 2020). It has been suggested that variations in genome of SARS-CoV-2 might provide a basis for multiple sources outbreak (Zhang et al., 2020; Ceraolo and Giorgi, 2020).

3. Viral Recognition by the Immune System

Pathogenesis of coronavirus disease is still under research; the first site of infection with SARS-CoV-2 is airways epithelial cells. COVID-19 affects only the lungs in most patients as it is mainly a respiratory disease. The transmission of viral infection is primarily between humans through spraying droplets from cough or sneeze of an infected person in close contact with a susceptible person. The incubation period of COVID-19 is between 2 to 14 days, during which the virus can be spread (CDC, 2020). On the average, an infected person has the potential to infect at least two other people (Wu et al., 2020). Fever, cough, sore throat, fatigue and shortness of breath are the most common symptoms of the disease.

The functional receptor of SARS-CoV-2, angiotensin converting enzyme 2 (ACE2) plays a critical role in the pathogenesis of the virus. It provides the virus the opportunity of entry into human cells (Sherereen et al., 2020; Lan et al., 2020). S glycoprotein of SARS-CoV-2 binds to ACE2. The binding domains of S-protein are present in 331 to 524 residues. Coding variants of ACE2 display high similarity in structural and binding affinity with the S glycoprotein of SARS-CoV-2. The cells of the host most commonly targeted by SARS-CoV-2 are those cells that highly expressed ACE2 and these include epithelial cells of oesophagus and ileum, alveolar cells, proximal tubule cells of kidney, myocardial cells and bladder urothelial cells (Chen et al., 2020; Zhou et al., 2020). Subsequent to the receptor binding, the virus gains entry into the cell through the endosomal pathway. The virus entry is mediated by S glycoprotein activated by the host cell type II transmembrane serine protease (TMPRSS2) present on the host cell surfaces (Ou et al., 2020). TMPRSS2 will clear the ACE2 and also activate S glycoproteins attached to the receptor by cleaving it into S1 and S2 subunit (Simmons et al., 2013; Rabi et al., 2020). S2 subunit facilitates the fusion of virus to the host cell membranes. Upon entry, the genomic material of the virus is released within the cytoplasm. The virus mRNA released into the cytoplasm is subjected to translation in the nuclei to produce replicase polyproteins (pp1a and pp1b) by ribosomal frame-shifting (Masters, 2006). The polyproteins are processed by protease enzymes encoded in Nsp3 and Nsp5. Subsequent cleavage of pp1a and pp1b into small proteins (Nsp1–Nsp11 and Nsp1–Nsp16 respectively) occurs. Viral RNA and nucleocapsid proteins interaction occur in the endoplasmatic reticulum-Golgi complex compartment leading to the assembly of the virion which can be liberated from the infected cell through exocytosis to infect adjacent cells (Hoffmann et al., 2020; Zhou et al., 2020).

4. Immune Effector cells and their Activation

With RNA viruses especially the coronaviruses, the human innate immune system uses the PRRs (pattern recognition receptors) such as TLR (toll-like receptors), RIG-I (retinoic acid inducible gene-I-like receptor), NLR (nucleotide-binding oligomerization domain like receptor), MDA5 (melanoma differentiation-associated protein 5...
CD4+ T promotes the production of virus-specific long-lived immunity (B cells produce two specific immunoglobulins (Ig); recognized by virus-specific cytotoxic T lymphocytes. Complex or human leukocyte antigen (HLA) and then helper (Th1) cells when fragmented viral structural protein.

Recognition events by PRRs lead to the activation of the downstream signaling cascade using specific signal adapter proteins to produce immune system effector cells followed by their translocation into the nuclei. NF-κB and IRF3 (transcription factors) promote the synthesis of type I interferons (IFNs) and other pro-inflammatory cytokines in the nuclei (de Witt et al., 2016). Type I IFN via the cell surface receptor; IFN-α receptor complex (IFNAR) subsequently activates the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, where JAK1 and JAK2 kinases phosphorylate STAT 1 and 2. STAT1/2 produce a complex with IRF9 and together, enter the nucleus to begin the transcription of interferon-stimulated genes, which leads to the suppression of viral replication by limiting viral spread and promotion of phagocytosis of viral particles by macrophages (Bergmann and Silvermann, 2020; Prompetchara et al., 2020). However, excess expression of pro-inflammatory cytokines and chemokines such as IFN-γ, IFN-α, IL-33, IL-21, IL-18, IL-12, IL-6, IL-1β, TGFβ, TNF-α and MCP-1 from effector cells of immune system, result in hyper-inflammation which will ultimately lead to acute respiratory distress syndrome (ARDS) (Chen et al., 2010; Li et al., 2020).

T lymphocytes (CD4+) are promptly activated into T-helper (Th1) cells when fragmented viral structural protein particles are presented by the major histocompatibility complex or human leukocyte antigen (HLA) and then recognized by virus-specific cytotoxic T lymphocytes. CD4+ T promotes the production of virus specific antibody by activating T cell-dependent B cells. Activated B cells will produce two specific immunoglobulins (Ig); IgM that last for only 12 weeks and IgG that can last for longer period and also provide long lasting immunity (Rabi et al., 2020; Astuti and Ysralfi, 2020). Activated T-helper cells are able to stimulate CD8+, which are part of the effectors of T lymphocyte that are cytotoxic and can destroy coronaviruses infected cells. Pro-inflammatory cytokines including interleukins-12 and interferon-α are generated by T-helper cells via NF-κB signaling pathway. Generated cytokines induce inflammatory T cells, monocytes and neutrophils which induce inflammatory response (Zhou et al., 2020). These monocytes and T cells might move into blood circulation fromwhere monocytes transformed into macrophages in tissues (Tang et al., 2020). Several cytokines including IL-6 in combination with dendritic cells (Nazinitsky and Rosenthal, 2010) trigger cytokine release syndrome (CRS) (Zhou et al., 2020). These responses allow the suppression of the viral infection inside the infected organs, clearance of the virus as well as the repair of the damaged tissues.

5. Virus Response to Host Immune System

Viral pathogenicity depends, in part, on the response of the virus against immune responses mounted by the host immune system. There are various strategies employed by coronaviruses in their response to the host immune system (Kikkert, 2020). Below are some of the specific mechanisms detected to play protective role in coronaviruses pathogenicity.

Viruses try to escape recognition by PRR in the cytosol through the formation of vesicle using some non-structural proteins by forming a capsule composed of protein and intracellular membrane around its genetic material. Viruses avoid recognition by MDA5 through the synthesis of RNA terminus crown to hide its 5' end thereby mimicking RNA terminus crown of human cells (Li et al., 2020; Petrosillo et al., 2020; Siddique and Mehra, 2020).

Apart from avoiding recognition by PRR which is important for the initiation of host immune response, coronaviruses employ mechanisms that directly disrupt host defenses. Evidence of interruption of some processes of protein synthesis within cells infected with coronaviruses has been provided (Gaete-Arge et al., 2019). Viruses employ proteases to disrupt regulatory processes such as interferon activation within the infected cells that are dependent on ubiquitin. SARS-CoV-2 has been found to cause the alteration of ubiquitination and the degradation of RIG-I/MDA5/MAVS/TRA23/IRF3/IRF7 pathways (Siu et al., 2009). Important pathways for host specific responses against viruses such as RIG 1 and IRF3/7 can be targeted and blocked by viral proteins in various ways; inhibition of mitochondrial antiviral signaling (MAVS) proteins synthesis, increase in stimulation of pro-inflammatory cytokines, NF-κB and necroptosis leading to inadequate synthesis of type 1 interferon and impairment of specific immune responses which will invariably result in hyper-inflammation, enhanced cellular death and cytokine storm (Li et al., 2020; Yi et al., 2020).

SARS-CoV-2 viral proteins target and inhibit various signaling proteins involved in the activation of TLRs/TRIF/MyD88/IKβ/NF-kB/MAPK/AP-1 pathway thereby causing inhibition of the synthesis of pro-inflammatory cytokines (Conti et al., 2020). Nonstructural proteins are involved in blockage and inhibition of interferon pathway and NF-κB pathway while interferon-inducible mRNA nuclear export complex can be impeded by Orf6 (Dai et al., 2020; Gordon et al., 2020).

Coronavirus can combine with non-neutralizing antibodies to form immune complexes which often lead to a severe inflammation (Hohdatsu et al., 1998; Jaume et al., 2011). These complexes can bind to the Fc receptor of specific neutralizing antibodies thereby enabling SARS-CoV-2 to penetrate and multiply in target cells such as antigen-presenting cells and phagocytes. Maffia et al. (2019) reported that SARS-CoV-2 directly infects macrophages and T cells by attaching to CD209 receptor on macrophages thereby invading effector cells in vascular and cardiac tissues.

Impairment of protective immune responses by SARS-CoV-2 allows it to easily propagate and cause severe damage to infected cells in organs such as intestine and kidney where ACE2 are highly expressed. Pro-inflammatory cells such as granulocytes and macrophages...
in the damaged cells induce inflammatory response in the lung (Shi et al., 2020).

6. Conclusion

COVID-19 caused by SARS-CoV-2 is still a pandemic affecting the lives of millions of people worldwide. SARS-CoV-2 propagates and replicates easily in target cells by actively disrupting host immune responses. It induces hyper-inflammation which often leads to cytokine storm or life threatening condition by recruiting uninfected cells to the focal point of infection and/or infecting effector cells of immune system. Understanding the virulence factors contributing to pathology, host immune responses and strategies employed by the virus in bypassing host immune response is paramount in developing therapeutic options that can help to tackle the COVID-19 pandemics.

References


The Role of Calcium Ions to Improve Activity of Chitinase Isolated from Vibrio sp.

Noor Harini¹, Ya Xi Han², and Johan Sukweenadhi³,*

¹Department of Food Science and Technology, Faculty of Agriculture-Animal Science, University of Muhammadiyah Malang, Jl. Raya Tlogomas No 246, Malang 65114, Indonesia; ²Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; ³Department of Bionutrition and Food Innovation, Faculty of Biotechnology, University of Surabaya, Jl. Ngagel Jaya Selatan No 169, Surabaya 60294, Indonesia.

Received: May 15, 2021; Revised: June 18, 2021; Accepted: June 22, 2021

Abstract

Chitinase (EC 3.2.1.14) plays a crucial role in chitin degradation, specifically breaking down the 1→4 β-glycosidic bonds of N-acetyl-D-glucosamine (GlcNAc) to produce its mono- or oligomers. This study aims to study the characteristics of chitinase from Vibrio sp. (isolated from tiger shrimp in Indonesia) and explore the role of calcium ions (Ca²⁺) in increasing chitinase activity. The optimum condition for chitinase activities is pH 7.5, 45 °C of temperature, and 120 min of incubation time. The enzyme activity parameters such as Kₘ and Vₘₐₜ values were calculated by varying the concentration of Ca²⁺, namely: 0 %; 0.2 %; 0.4 %; 0.6 %; 0.8 %. The final product of the chitinase reaction, the GlcNAc, is then used to measure the enzyme activity based on the Somogyi-Nelson method. The results showed that chitinase isolated from Vibrio sp. has increasing activity with the addition of Ca²⁺. Without the addition of Ca²⁺, the Kₘ and Vₘₐₜ of chitinase were 7.781 µmol mL⁻¹ and 0.066 µmol min⁻¹, respectively. The treatment of 0.4 % Ca²⁺ shows optimum activity with the Kₘ and Vₘₐₜ at 6.723 µmol mL⁻¹ and 0.079 µmol min⁻¹, respectively. The results showed the potential use of Ca²⁺ as a chitinase activator to fulfill demands for energy-efficient and economically profitable chitinase usage.

Keywords: Eco-friendly waste management, Enzyme activity, Marine waste, Profitable chitinase, Utilization of Agro-industrial waste.

1. Introduction

Chitinase is an enzyme that catalyzes the hydrolysis reaction of N-acetyl-D-glucosamine (GlcNAc) polymers. It can be used in the decomposition and re-utilization of chitin, one of the major marine waste problems (Atalla et al., 2020). GlcNAc itself has been widely applied in the health sector, including reducing blood pressure and blood fat levels, suppressing cancer cell development, malignant tumors, and other inflammation, low-calorie sweeteners, cosmetics, biocontrol agents, and packaging materials (Awad et al., 2014; Krolicka et al., 2018; Rathore and Gupta, 2015; Van den Broek et al., 2015; Veliz et al., 2017). Thus, looking for the chitinase can be key to reducing environmental hazards through eco-friendly waste management and generating an added-value product that is important to the industry (Hamed et al., 2015; Jahromi and Barzkar, 2018; Sadik et al., 2021).

Chitinase is a chitinolytic enzyme in cell organisms and can be synthesized from various sources such as bacteria, fungi, and various other types of microorganisms. Chitinase synthesized by animals and plants has several functions, including helping the metabolic process and preventing infections, such as preventing the growth of fungi or bacteria that can damage the individual's tissues. Chitinase, which is produced by bacteria, has the function to degrade chitin into compounds that can fulfill the nutritional needs of these bacteria (Adrangi and Faramarzi, 2013). Recent chitinase isolated from several species of Vibrio sp. has optimum enzyme activity at pH 5 to pH 7 with incubation temperature at 45 °C to 50 °C (He et al., 2020).

Vibrio sp. is a bacterium often found in prawns bred in brackish water or from the water itself (Felix et al., 2011; Kharisma and Manan, 2012; Kusmarwati et al., 2017). It can infect and cause diseases, namely Vibriosis, which can cause huge loss in shrimp culture. This disease is caused by bacteria Vibrio genera such as V. harveyi, V. alginolyticus, V. parahaemolyticus, and V. penaeicida (Utami, 2016). Some cofactors such as Na⁺, Ca²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cu²⁺, and Zn²⁺ can function as chitinase activators (Jahromi and Barzkar, 2018). The presence of calcium ions in brackish water...
water is normal due to efforts to regulate salinity conditions, which later relate to the Vibrio survivability, osmoregulation, and post-larval metabolic ability of shrimp (Taqwa et al., 2014). Based on these problems, it is necessary to examine the effect of Ca\(^{2+}\) in addition to increasing chitinase activity. After finding the chitinase optimum parameter, chitinase activity with and without the addition of Ca\(^{2+}\) will be compared. This can be known by optimum parameter, chitinase activity with and without the increasing chitinase activity. After finding the chitinase optimum parameter, chitinase activity with and without the addition of Ca\(^{2+}\) will be compared. This can be known by the maximum V value. The study aims to determine the role of Ca\(^{2+}\) ions in increasing isolated chitinase activity from Vibrio sp.

2. Materials and Method

2.1. Research materials

The research was conducted in the Laboratory of Parasites and Fish Diseases, Department of Aquaculture, Faculty of Fisheries; Biochemistry Laboratory, Biomolecular Laboratory, Microbiology Laboratory, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang; Agricultural Product Technology Laboratory, Agricultural Biotechnology Center, Science and Technology of Food Laboratory, University of Muhammadiyah Malang; and Bionutrition and Food Innovation Laboratory, Faculty of Biotechnology, University of Surabaya. The materials and tools used include a tool to characterize chitinase and test the enzyme activity. The Vibrio sp. used in this research was obtained from previous work (Zafra et al., 2017) located at Provincial Fish Seed Center (Balai Benih Ikan Provinsi-BBIP), Gondol, Bali. The strain was isolated from tiger shrimp (Penaeus monodon Fabricius, 1798), and the only one which is non-pathogenic was used in this research.

2.2. Preparation of Vibrio culture

The solid medium was made for the propagation of Vibrio bacteria in a petri dish (Pyrex 3160-100), wherein how to make it followed previous work by Zarkasi et al. (2019) with some modification. Nutrient composition so that TCBSA (Thiosulfate-citrate-bile salts-sucrose agar, Oxoid, United Kingdom) for 1 L was needed as much as 88 g so that for making solid medium as much as 20 mL it was needed TCBSA as much as 1.76 g and chitin (Oxoid, United Kingdom) as much as 0.4 g. Nutrients to be dissolved in distilled water to a volume of 20 mL, heated to boiling for 10 min then put 10 mL each into petri dish that has been sterilized in an autoclave (All-American 25×, USA) at 121 °C, pressure 1.5 atm for 15 min (1 atm = 101 325 Pa). Furthermore, it was desirable for cooling it down at room temperature (25 °C) to harden. In another way, a liquid medium was used for Vibrio growth medium on growth curves and enzyme production. The medium used for making liquid medium was TSB (Tryptone Soya Broth, Oxoid, United Kingdom). To make 100 mL of liquid TSB medium, 3 g TSB, 0.5 g NaCl (Oxoid, United Kingdom), and 2 g chitin were dissolved in 100 mL distilled water and then sterilized in an autoclave at 121 °C, 1.5 atm for 15 min.

2.3. Isolation of crude chitinase

Vibrio sp. cultures that had been rejuvenated for 2 d (day) were taken using a loop wire and suspended in 20 mL of the sterile liquid medium in 125 mL Erlenmeyer flask (Pyrex 4450-125) and placed in a shaking incubator at room temperature (25 °C) for 16 h (half logarithmic phase). The 20 mL inoculum solution was inoculated into 200 mL of sterile liquid medium and grown at room temperature (25 °C) on a shaking incubator (Bionics, BST/MIS-100B, India) at speeds of 125 rpm (1 rpm = 1/60 Hz) to 32 h (stationary phase). Then it was centrifuged at 4 °C for 10 min at 3 000 rpm (Denley BR401, United Kingdom) and the supernatant was immediately tested for its enzyme activity. The enzyme was purified by the saturated ammonium sulfate (Oxoid, United Kingdom) precipitation method followed by dialysis and Sephadex 75G (Oxoid, United Kingdom) column chromatography method. Each enzyme fractionation was tested for chitinase activity (Harini and Indranila, 2006).

2.4. Chitinase Activity Test

The chitinase activity was tested by using Somogyi-Nelson assay. As much as 1 mL of 30 mg L\(^{-1}\) N-acetyl-D-glucosamine (Sigma-Aldrich, Germany) standard solution was taken and added with 1 mL of the Somogyi-Nelson cooper reagent (Sigma-Aldrich, Germany). The mouth of the tube was covered with aluminum foil, then heated in boiling water for 10 min. The tube was cooled in ice water and added with 1 mL of arsenomolybdate reagent, shaken, and allowed to stand for several minutes until the foam disappeared. After that, the distilled water was added up to 10 mL in volume and then shaken and measured the absorbance in the wavelength range of 500 nm to 800 nm by UV-vis spectrophotometer (Shimadzu-1601A, Japan), which maximum wavelength (\(\lambda_{\text{max}}\)) was 750 nm (Shalaby et al., 2019). The arsenomolybdate reagent was made of 25 g of ammonium molybdate (Sigma-Aldrich, Germany) dissolved in 450 mL distilled water, 21 mL of concentrated \(\text{H}_2\text{SO}_4\) (JT Baker, United States), and 3 g of \(\text{Na}_2\text{HAsO}_4\cdot7\text{H}_2\text{O}\) (Sigma-Aldrich, Germany) dissolved in 25 mL of \(\text{H}_2\text{O}\), mix then place in an incubator (Heraeus B5042, Germany) at 37 °C for 24 h to 48 h. The standard N-acetyl-glucosamine curves were prepared by testing several N-acetyl-glucosamine concentrations [10, 20, 30, 40, 50, and 60] mg L\(^{-1}\)] following exactly Somogyi-Nelson assay which written above.

A total of 1 mL of 2.5 % (w/v) chitin in 0.1 M phosphate buffer pH 7.5 was added to 1 mL of chitinase solution. Then the mixture was incubated at 45 °C and after 120 min of incubation time, it was centrifuged at 5 000 rpm for 10 min. The enzyme activity was stopped by heating it in boiling water for 15 min before it was mixed with the reagent. Furthermore, the supernatant obtained was taken
as much as 1 mL to be tested by Somogyi-Nelson assay. The solution was diluted with distilled water to a final volume of 10 mL and read the absorbance at $\lambda_{\text{max}}$ with a phosphate buffer blank which was treated the same as the sample. Enzyme activity value was measured by the levels of N-acetyl-D-glucosamine obtained from the plot results against the standard curve of N-acetyl-D-glucosamine. The measurement of enzyme activity was done by converting the absorbance value to the concentration of N-acetyl-D-glucosamine (Yang et al., 2016) and calculating it following equation (1):

$$\text{Enzyme Activity} = \frac{|N - \text{Acetyl} - D - \text{Glucosamine}| \times V \times df}{M_r \times N - \text{Acetyl} - D - \text{Glucosamine} \times E \times t}$$

Note: $V = $ total sample volume (mL), $E =$ amount of crude enzyme (mL), $t =$ incubation time (min), $df =$ dilution factor, Enzyme Activity (unit) = $\mu$mol N-acetyl-D-glucosamine which is produced by each mL of the enzyme each one minute under certain conditions. The N-acetyl-D-glucosamine obtained was measured absorbance by the UV-Vis spectrophotometer at $\lambda_{\text{max}}$ 750 nm.

2.5. Determination of the optimum pH, temperature and incubation time

The determination of the optimum pH of chitinase was carried out with a variation of pH 6; pH 6.5; pH 7.0; pH 7.5; pH 8; and pH 8.5. Each test tube was provided with 1 mL chitin 2 % (w/v) in a phosphate buffer with variation of pH 6; pH 6.5; pH 7.5; pH 8; and pH 8.5. Then 0.5 mL of enzyme filtrate was added and incubated at 45°C for 60 min. The solution was centrifuged at 5 000 rpm for 10 min, then the filtrate obtained was taken 1 mL and added 1 mL of Somogyi-Nelson reagents and shaken. The mouth of the tube was covered with aluminum foil and heated for 20 min in boiling water. After chilling, 2 mL of arsenomolybdate reagent was added, mixed, and allowed to stand for 4 min. Subsequently, the solution was diluted with distilled water to a volume of 10 mL and the absorption was read at the $\lambda_{\text{max}}$. Then the activity was determined, where the optimum pH was determined from the graph of the relationship between changes in pH of the enzyme activity.

Determination of the optimum temperature was done by the same procedure as the method used to determine the optimum pH, while the incubation temperature was varied at (30, 35, 40, 45, 50, 55) °C for 60 min at pH 7. Then the activity was determined based on the absorbance value of the molybdenum blue complexes which is equivalent to the amount of N-acetyl-D-glucosamine produced from the enzymatic reaction of chitinase. The optimum temperature was determined from a graph of the relationship between temperature changes and enzyme activity.

The optimum incubation time was determined by the same procedure as the method used to determine the optimum pH and temperature, while the incubation time variations were (30, 60, 90, 120, 150, 180) min, at 45°C and pH 7. Then the activity was determined based on the absorbance value of the molybdenum blue complexes which is equivalent to the amount of N-acetyl-D-glucosamine produced from the enzymatic reaction of chitinase. The optimum incubation time was determined from a graph of the relationship between time changes to enzyme activity.

2.6. Effect of Ca$^{2+}$ ions

Addition of Ca$^{2+}$ ions to increase chitinase activity was done by checking the chitinase reaction with variations in Ca$^{2+}$ concentration, as follows: (0; 0.2; 0.4; 0.6; 0.8) %. For each kind of treatment, $K_m$ and $V_{\text{max}}$ were measured. The enzyme activity and the $K_m$ and $V_{\text{max}}$ values were determined employing the linear regression from the graph of the relationship between $V^{-1}$ and $[S]^{-1}$ (or called Lineweaver-Burk curve). Those enzyme reactions were done using the optimum parameter (pH, temperature, incubation time) which was first tested.

3. Results

3.1. Optimum Condition of Chitinase Activity

Based on sequential trials on each reaction parameter, such as pH, temperature, and incubation time, it is shown that chitinase from *Vibrio* sp. has optimum reaction condition at pH 7.5 (Figure 1A), the temperature of 45°C (Figure 1B), and 120 min incubation time (Figure 1C).

![Figure 1](image_url)
3.2. Determination of Km and Vmax

In this study, the determination of $K_m$ and $V_{max}$ of chitinase were carried out with variations in substrate (chitin) concentration as follows: (1; 1.5; 2; 2.5; 3; 3.5) % (w/v). The relationship of enzyme activity to substrate concentration is shown in Figure 2. It shows that the greater concentration of chitin, the greater the speed of the enzymatic reaction to a point where an increase in substrate concentration does not significantly increase the reaction speed.

Based on the Lineweaver-Burk curve shown in Figure 3 the values of $K_m$ and $V_{max}$ can be determined from the equation $Y = aX + b$. The value of $V_{max}^{-1}$ is 15.145 and $K_m$ $V_{max}^{-1}$ is 117.84, so the $V_{max}$ is 0.066 µmol min$^{-1}$ and $K_m$ is 7.781 µmol mL$^{-1}$.

Figure 4. shows that Ca$^{2+}$ increases enzyme activity until the addition of 0.4 % (w/v), whereas above 0.4 %, the enzyme activity starts to decline. The enzyme can be saturated with Ca$^{2+}$ because the ability of the allosteric site to bind Ca$^{2+}$ decreases. Thus, the addition of excess Ca$^{2+}$ may cause denaturation on the enzyme which is characterized by decreased enzyme activity (Kumari et al., 2010).

3.3. The Role of Calcium Ions on Chitinase Enzyme Activity

The effect of chitinase activity in the presence of Ca$^{2+}$ ions on various variations is shown in Figure 5. Changes in activity caused the price of $K_m$ and $V_{max}$ to change. The value of $K_m$ obtained is 6.723 µmol mL$^{-1}$ and $V_{max}$ is 0.079 µmol min$^{-1}$ (Figure 6).

4. Discussion

The optimization results of chitinase activity (Figure 1) are concurrent with the previously reported study of He et al. (2020), which showed optimum chitinase activity at pH 5 to pH 7 with incubation temperature at 45 °C to 50 ºC. However, it quite a different condition compared to other
work of Nguyen and Nguyen (2020), which stated warm temperature (30 °C or 35 °C) and mildly alkaline pH (8.0) are the best conditions of chitinase from *V. parahaemolyticus*, one of the pathogenic species which infect shrimp.

One of the important things to know about the characteristics of an enzyme is the determination of $K_m$ and $V_{max}$. The Michaelis-Menten constant ($K_m$) is a certain substrate concentration when the enzyme reaches half the maximum speed. Whereas $V_{max}$ is the maximum speed of an enzyme. To determine the value of $K_m$ and $V_{max}$, measurement of enzyme activity was done at various concentrations of substrate, under optimum conditions (pH 7.5, temperature 45 °C, and 120 min incubation time). Thus, the $K_m$ indicates the amount of substrate needed to obtain high chitinase activity as indicated by $V_{max}$, which is the fastest enzyme reaction achieved at the optimum concentration (Nakamura et al., 2018). According to Robinson (2015), the speed of enzymatic reactions will increase with increasing substrate concentration until finally reaching a stationary point. After exceeding that point, although the substrate amount is increased, the increase of enzyme reaction speed is very small (almost constant), but will never reach the condition of various. This condition limit is called the maximum speed ($V_{max}$) where the enzyme becomes saturated by its substrate, as shown in Figure 2.

The Michaelis-Menten equation for precisely determining $K_m$ and $V_{max}$ is quite difficult. For this reason, the Michaelis-Menten equation is transformed into the Lineweaver-Burk equation. The Lineweaver-Burk equation is the opposite of the Michaelis-Menten equation which can determine $K_m$ and $V_{max}$ precisely, as shown in Figure 3. Thus the substrate concentration added was equal to the value of $K_m$. Whereas the $V_{max}$ value shows that the speed of the formation of the final product (N-acetyl-D-glucosamine) and the speed of returning to the enzyme chitinase must be the same as the speed of the breakdown of chitin that is equal to 0.066 µmol min$^{-1}$.

Calcium ions can form bridge complexes with enzymes and substrates according to their role in enzymatic reactions. Ca$^{2+}$ can function as an enzyme inhibitor but can also be an enzyme activator. Enzymes that require Ca$^{2+}$ as activators especially in extracellular enzymes (Bilecen and Yildiz, 2009; Garrison-Schilling et al., 2011). It plays an important role in modifying the structure needed for their catalytic activity. With the addition of substrate concentration, chitinase activity also increases with a fairly high increase in the concentration of 2.5 % (w/v). Calcium ion acts as an activator for enzymes that work to hydrolyze a macromolecule. The Ca$^{2+}$ ions change the conformation and orientation of the active site of the enzyme, also increase the activeness of the enzyme to bind to the substrate to form an Enzyme-Substrate complex. The added Ca$^{2+}$ influences chitinase activity because Ca$^{2+}$ act as cofactors so that they can increase chitinase activity. The effect of Ca$^{2+}$ on the chitin isolated from *Vibrio* sp. is shown in Figure 4.

The presence of Ca$^{2+}$ ions causes an increasing number of enzymes that bind to the substrate. This causes a greater level of substrate saturation as indicated by changes in the values of $K_m$ and $V_{max}$. Determination of $K_m$ and $V_{max}$ values was carried out by measuring chitinase activity with an optimum Ca$^{2+}$ concentration of 0.4 % in each variation of substrate concentration (Figure 5). The value of $K_m$ and $V_{max}$ (Figure 6) provides information that the substrate concentration needed to reach half of the maximum speed becomes smaller (13.5 % fewer) and the enzymatic reaction becomes faster (19.7 % faster) at the optimum concentration with the addition of Ca$^{2+}$ ions. In the other words, additional Ca$^{2+}$ up to 0.4 % can provide benefits of larger chitinase activity and lesser required chitin.

Hydrolysis of chitin by chitinase with Ca$^{2+}$ shows that the Calcium on the allosteric site (Asp-142) binds the substrate which can then change the active site conformation (Asp-142) to become active and bind to the substrate. When the conformation Asp-142 corresponds to the substrate and there is an interaction between those two, Ca$^{2+}$ ions are released. The release of Ca$^{2+}$ causes Asp-142 to rotate so that it is oriented closer to Glu-144 and hydrogen bonds occur. The interaction between Glu-144 and chitin causes the breakdown of glycosidic bonds and N-acetyl-D-glucosamine is formed. The interaction between Asp-142 and the amine group chitin and chitin with water also causes the formation of N-acetyl-D-glucosamine (Paknisa, 2014).

The presence of Ca$^{2+}$ ions causes an increasingly enzymatic reaction which is characterized by an increase in chitinase activity after adding Ca$^{2+}$ ions. The increase in chitinase enzyme activity is still relatively smaller compared to the research of Park et al. (2000) after adding Ca$^{2+}$ ions. This is allegedly due to the concentration of the addition of Ca$^{2+}$ ions which are relatively small and the use of chitin substrate in the form of powder, so that chitinase work is less optimal than the use of chitin substrate in the form of colloids and the addition of greater Ca$^{2+}$ ion concentrations. The presence of Ca$^{2+}$ causes conformation changes that make enzymes bind easier with the substrate, thereby increasing the saturation of the enzyme to the substrate as indicated by the increase in $K_m$ and $V_{max}$ values.

### 5. Conclusion

The optimum reaction parameters for the chitinase isolated from *Vibrio* sp. are pH 7.5, temperature 45 °C, and 120 min incubation time. The chitinase activity increases until the addition of Ca$^{2+}$ 0.4 % and decreases with an increasing concentration of Ca$^{2+}$ above 0.4 %. The value of $K_m$ and $V_{max}$ before adding Ca$^{2+}$ was 7.781 µmol mL$^{-1}$ and 0.066 µmol min$^{-1}$, respectively. After adding Ca$^{2+}$, the value of $K_m$ and $V_{max}$ was 6.723 µmol mL$^{-1}$ and 0.079...
μmol min⁻¹. In conclusion, chitinase kinetic parameters with the addition of Ca²⁺ affects $K_m$ (13.5 % fewer substrate) and $V_{max}$ (19.7 % faster), which means its reaction efficiency is improved.

6. Competing interest statement

The authors have declared that no competing interest exists in the manuscript.

Acknowledgments

Appreciation was sincerely conveyed to the Head of Laboratory for Fish Health and Environment Assessment, Muntian, Central Java, Indonesia who has supported the place to carry out the research. We also thank the Head of the Laboratory from all related affiliations for providing the means for the implementation of this research.

Funding disclosure

The researchers would like to thank several parties who helped in this research, namely the UMM Rector and staff who have helped fund this research; Director of Directorate of Research and Community Service (DPPM) of the University of Muhammadiyah Malang (UMM), and staff (contract Number. 1322/SK-BAA/XII/2016), who facilitated the implementation of this research.

References


Tagwa FH, Sasanti AD, Harmain K, Kusirini E and Gaffar AK. 2014. Addition of calcium to swamp water as a diluent for salinity media for post-larvae maintenance of giant prawns on survival,
Callus-mediated Somatic Embryogenesis and Plant Regeneration in *Vanda tricolor* Lindl. var. Pallida

Popy Hartatie Hardjo1,*, Wina Dian Savitri1, Ida Bagus Made Artadana1, Sulistyo Emantoko Dwi Putra1, Elizabeth Pio Parac2 and Asad Jan3

1Faculty of Biotechnology, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60292, East Java, Indonesia; 2College of Agriculture and Agri-Industries, Caraga State University, Amapayon, Butuan City, 8600 Philippines; 3Institute of Biotechnology and Genetic Engineering, University of Agriculture, Peshawar, Pakistan

Received: May 20, 2021; Revised: June 18, 2021; Accepted: June 22, 2021

Abstract

In this study, a protocol to induce indirect somatic embryogenesis from the basal leaf segments of *Vanda tricolor* Lindl. var. Pallida has been developed. The experiments consisted of two stages: i.e. induction of SEs from calli and regeneration of plantlet from SEs. Embryogenic calli obtained from previous experiment (0.05 mg L\(^{-1}\) NAA + 0.01 mg L\(^{-1}\) BAP) were used to induce somatic embryos (SEs) on half-strength Murashige and Skoog (MS) medium supplemented with (0.05 mg L\(^{-1}\) to 0.20 mg L\(^{-1}\)) 6-benzylaminopurine (BAP) alone or in combination with 0.01 mg L\(^{-1}\) α-naphtale acetic acid (NAA). Embryogenic calli, those cultured on 0.05 mg L\(^{-1}\) BAP and 0.01 mg L\(^{-1}\)NAA resulted in 90 % induction of SE structures at 30 d of culture period. Histological observation exhibited development of pro-embryo to form completed embryo. The pattern of SEs development started from embryogenic callus to form pro-embryo, followed by globular phase at 10 d of culture. Globular embryo elongated to form suspensor at 20 d of incubation period, and completed embryo. Regeneration of SEs into complete plantlets was attained on the half-strength MS medium without addition of any plant growth regulator (PGR). Based on the results of the present study, it can be concluded that half-strength MS medium supplemented with NAA 0.01 mg L\(^{-1}\) and BAP 0.05 mg L\(^{-1}\) is the best medium for induction of SEs from embryogenic calli.

Keywords: Embryogenic calli, Histology, Half-strength Murashige-Skoog medium, Micropropagation, Orchid, Pro-embryo

1. Introduction

*Vanda* is a genus of orchids that consists of approximately 50 species. *Vanda tricolor*, just like its name, has fragrant flowers composed of three colors, i.e. white sepal, white with brown spot petal, and violet labellum. *Vanda tricolor* Lindl. in the slope of Mount Merapi located in Central Java, and *Vanda tricolor* Lindl. var. pallida in Amerta Jati Forest, Bali are local endemic species labelled endangered in Indonesia (Kurniawan et al., 2020; Semiarti, 2018). These species are generally used as the parental for crossing to produce hybrids that have economic value.

The propagation of orchids, in most cases, is done by seed germination by *in vitro* culture. Thus, the result is not homogeneous and the flowers are varied. To overcome this problem, the clonal multiplication by using *in vitro* technique can be performed. Besides, *V. tricolor* as well as *V. testacea* are monopodial orchids that are not easy to be propagated vegetatively in conventional method (Sebastianraj et al., 2014). It is necessary to develop a rapid and efficient micropropagation protocol in large quantities and in a short period of time. Micropropagation through callus has the potential for somaclonal variation, so it should be carried out in a shorter culture period as well as reducing costs (Melviana et al. 2021a).

Cardoso et al. (2020) stated that induction, proliferation and regeneration of protocorm-like bodies (PLBs) is one of the most advantageous methods for mass propagation of orchids. *In vitro* multiplication by direct or indirect embryogenesis through callus will result in somatic embryo(s). According to Naing et al. (2011) and Shen et al. (2018), embryogenesis in orchids, both direct and indirect, occurred through the development of protocorm-like bodies (PLBs). Thidiazuron cytokinin (< 1 μM) significantly stimulated formation and regeneration of PLBs compared to other plant growth regulators (Kundu and Gantait, 2018). Lee et al. (2013) stated that in early stage of PLBs development, the cells had characteristics that cytologically similar to that of the zygotic embryos. Therefore, it was concluded that PLBs were actually somatic embryos (SEs) in orchids. As reported by Jainol and Gansau (2017), embryogenic callus developed into nodular structures and progressed further formed into aggregates of PLBs. Somatic embryogenesis was a process where cells developed resemble the zygotic embryos with bipolar structure (Shen et al., 2018). The use of somatic embryo derived from callus tissue was chosen in this research because the produced propagules were unlimited where each somatic embryo originated from a somatic cell, i.e. callus cell.

Orchids propagation using protocorm-like bodies had been studied by Soe et al. (2014). In addition to that,
somatic embryogenesis protocols from several orchids have been reported, for examples Phalaenopsis bellina (Rchb.f.) Chinnarnathan et al., 2011), Phalaenopsis amabilis (L.) - Blume Orchid (Mose et al., 2017, Mose et al., 2020), Tolumnia Louise Elmore ‘Elsa’ (Shen et al., 2018). Concentration and combination of plant growth regulators play an important role throughout in vitro proliferation of different orchids. Auxins, plant growth regulators play an important role throughout (Shen

2. Materials and Method

2.1. Plant material

In vitro grown plantlets of V. tricolor var. Pallida were provided by Handoyo Budi Orchid, in Malang City, East Java, Indonesia. Three-month old in vitro plantlets, measuring 3 cm had four leaves and long roots. Leaf basal segments were used as explant source for callus induction.

2.2 Induction and regeneration of somatic embryo

Basal segment of leaf was cultured on half-strength MS medium + 0.05 mg L⁻¹ NAA + 0.01 mg L⁻¹ BAP (following Hardjo and Savitri, 2017). Subculturing was carried out after 4 wk (week)s intervals. The experiments consisted of two stages, i.e. induction of SEs from calli and regeneration of plantlet from SEs. Embryogenic calli (approx. 5 mm in diameter), formed after subculturing, were transferred to half-strength MS medium added with various levels of BAP (0.05 mg L⁻¹ to 0.20 mg L⁻¹ and 0.01 mg L⁻¹ NAA) to induce SEs.

2.3. Culture conditions

The half-strength MS basal medium contained half-strength macro- and microelement of MS enriched with: myo-inositol (100 mg L⁻¹), niacin (0.5 mg L⁻¹), pyridoxine.HCl (0.5 mg L⁻¹), thiamine HCl (0.1 mg L⁻¹), glycine (2.0 mg L⁻¹), sucrose (10 000 mg), and phytagel (2 500 mg). Plant growth regulators as well as compulsory additives (according to the experimental objectives) were added to the media prior to autoclaving. The pH of the media was adjusted to 5.8 with 1 N KOH or HCl prior to autoclaving for 20 min at 121 °C. Explants were incubated under 16:8-h photoperiod at 24 °C to 26 °C. Subculturing was also executed every 4 wk.

2.4. Histological observation of SE

The tissue was fixed in formaldehyde-acetic acid - ethanol (FAA) solution (5 % formaldehyde: 5 % glacial acetic acid: 90 % ethanol 70 %) for 24 h, then continued with further processes (washing and gradual dehydration) until finally the tissue was covered in paraffin. The paraffin embedded tissue was cut at a thickness of 5 µm, and stained with hematoxylin-eosin. At the end, the specimen was then observed under the light microscope.

2.5. Complete plantlet regeneration and acclimatization

Regeneration of SE was performed on hormone-free MS medium and half strength MS + BAP (0 mg L⁻¹ to 0.05 mg L⁻¹). The observations were recorded weekly to trace different stages of protocorm development. For stereo microscopy and histological observations, about five PLBs at every developmental stage were randomly collected from culture tubes. Plantlets with four leaves and three roots were transplanted into a 2-inch pot containing sphagnum moss and were covered with a clear plastic lid in greenhouse. Plastic lids were removed after 15 d. The moisture content of the pots was maintained by regular water spraying. Survival plantlets were recorded 2 mo after transplanting.

2.6. Experimental design and statistical analysis

The experiment was based on completely randomized design. Each experiment was composed of six treatments and 40 replications. Embryogenic callus induction from basal leaf explant was carried out as long as 4 wk. Embryogenic calli were transferred to various treatment media to promote somatic embryo formation. Observation parameters for SE induction were the initial time of SE formation, percentage of callus forming SE, and histological analysis of SE. For the observation of SE regeneration, the parameters were the initial time of emerging shoot, percentage of SE forming shoots, and percentage of SE forming plantlet. Data were analyzed with analysis of variance (ANOVA) and followed by Duncan’s Multiple Range Test (DMRT) at α = 0.05 (Adinurani, 2016)

3. Results and Discussions

3.1. Embryogenic callus induction and stages of SE

Basal leaf of V. tricolor var pallida’s explant formed callus on half-strength MS medium + NAA 0.05 mg L⁻¹ + BAP 0.01 mg L⁻¹ (Figure 1A). Naing et al. (2011) reported the same thing that high auxin and cytokinin ratio has synergistic effect to induce callus on Coelogyne cristata Lindl. leaf explant. Figure 1B shows that after first subculture, callus structure shaped nodule and compact, with isodiametric size and shiny green in color. According to Jainol and Gansau (2017), these characteristics are typical in embryogenic callus and will be subsequently developed into embryo. Figure 1C represents callus that develop into SE, while the nodule size is bigger than others and color is dark green.
Treatment of 0.05 mg L⁻¹ BAP and 0.01 mg L⁻¹ NAA, all at once, was able to induce SE formation (90%) in faster time rather than single BAP treatment (0.05 mg L⁻¹ to 0.2 mg L⁻¹) as shown in the Table 1. Combination of NAA with cytokinin like BAP on various orchid species can increase the formation of PLBs such as Tolumnia cv. Snow Fairy (0.5 mg L⁻¹ NAA with 4 mg L⁻¹ BA) (Chookoh et al., 2019) while on leaf explant of Phalaenopsis ‘Join Angle × Sogo Musadian’ 2 mg L⁻¹ 2,4-D was applied in combination with 1 mg L⁻¹ TDZ but number of PLBs was less than the combination treatment of 0.5 mg L⁻¹ NAA, 5 mg L⁻¹ BAP, and 0.5 mg L⁻¹ IAA that used root explant (Meilasari and Iriawati 2016). Furthermore, Mose et al. (2020) also reported combination of 3 mg L⁻¹ TDZ with 1 mg L⁻¹ NAA effectively induced Phalaenopsis amabilis L. (Blume) SEs formation from stem explants. Basal segment explants of Dendrobium (Sw) Sonia ‘Earsakul’ cultured on ½ MS medium supplemented with 1 mg L⁻¹ TDZ alone could be stimulated to form PLBs (Juntada et al., 2015). In numerous orchids, SE induction has been completed with cytokinin alone or as a group with auxin at low concentration. The effect of various concentration is variable, depending on the type of explant and species. The decrease of auxin concentration results in inhibition of cell division and cells are encouraged to develop into embryos.

Table 1. Percentage of callus forming SE and time duration of SE maturation in V. tricolor var. pallida at various concentration and combination of BAP and NAA.

<table>
<thead>
<tr>
<th>PGR treatment (mg L⁻¹)</th>
<th>Time duration formed SEs (d)</th>
<th>Percentage of callus formed SEs after 30 d cultured (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP 0.2 + NAA 0.01</td>
<td>65.7 ± 0.65²</td>
<td>60.2±8.9²</td>
</tr>
<tr>
<td>BAP 0.1 + NAA 0.01</td>
<td>45.3 ± 0.52²</td>
<td>70.2±5.45²</td>
</tr>
<tr>
<td>BAP 0.05 + NAA 0.01</td>
<td>30.8 ± 0.84⁴</td>
<td>90.1±4.72²</td>
</tr>
<tr>
<td>BAP 0.2</td>
<td>112.3 ± 0.75²</td>
<td>60.1±7.63²</td>
</tr>
<tr>
<td>BAP 0.1</td>
<td>120.5 ± 0.64⁴</td>
<td>55.4±9.83²</td>
</tr>
<tr>
<td>BAP 0.05</td>
<td>130.2 ± 0.54⁴</td>
<td>50.3±8.15²</td>
</tr>
</tbody>
</table>

Note.: numbers followed by different letter in a column means that they are significantly different, tested with DMRT at α = 0.05. There were 40 explants used for every treatment.

According to histological observation of longitudinal section of V. tricolor var. pallida’s SE, it was noticeable that there were embryogenic cells in the form of proembryo which consisted of three cells (Figure 2A), and then developed into globular shape (Figure 2B), and differentiation occurred where cells in apical area were small while they were huge in basal area (Figure 2C). Furthermore, globular structure started to elongate at basal area, forming a suspensor-like structure and at apical area it formed a curvature, consequently there were two bulges (Figure 2D). At next development, the two bulges transformed into two leaves primordial, while the curvature developed into shoot apical meristem (Figure 2E). Figure 2F, exhibits that there was cell differentiation at the center of the specimen to form vascular tissue which will connect shoot apical meristem and root apical meristem. Embryogenic calli were able to form embryos because medium contained BAP cytokinin combined with low content of NAA (0.01 mg L⁻¹).

3.2. Regeneration of SE to form plantlets

First and foremost, SE (Figure 3A) regenerated to form shoot (Figure 3B) occurred in a faster time on hormone-free half strength MS. Yet, it was not significantly different with half-strength MS supplemented with 0.05 mg L⁻¹ BAP + 0.01 mg L⁻¹ NAA; C. Globular stage of SE; D. Basal of SE with suspensor-like structure; E. Shoot apical meristem after 30 d on hormone-free ½ MS medium; F. Differentiation of the procambium at SE. (m = meristem; lp = leaf primordia; rp = root primordia).
High concentration of BAP actually inhibit SE germination. Morphological observation (Figure 3C) showed that the roots emerge after the first and second leaf develop. In a period of 30 d of culture (Table 2) all of SEs (100 %) form whole plantlets, while on MS medium and half-strength MS + BAP ≥ 0.03 mg L⁻¹ only 80 % SEs form plantlets. Low concentration cytokinin has beneficial effect on SE germination of V. tricolor var. pallida. Naing et al. (2011) stated that BAP effectively promote regeneration on Coelogyne cristata (Lindl. )’s PLBs to form shoots, and it was similar to the result reported by Zhao et al. (2013) using Dendrobium wangiangii (G.W.Hu, C.L.Long &X.H.Jin). Generally, cytokinins have the effect of encouraging cell division and regeneration to form shoots, and the optimum concentration is specific for each species. Cytokinin BA are also commonly used for in vitro shoot multiplication of various species such as for example Ammi visnaga (L.) Lam. (Al-Saleh et al., 2019).

4. Conclusion

Embryogenic calli formed SEs on ½ MS medium + NAA 0.01 mg L⁻¹ + BAP 0.05 mg L⁻¹ at 30 d of culture period. The development of embryo started with the formation of proembryo structure from embryogenic callus and then developed into globular structure with suspensor. Somatic embryo could germinate to form shoots firstly and subsequently form root on hormone-free half-strength MS medium after 30 d of culture period. Plantlets regenerated through somatic embryogenesis would be a new procedure of clonal propagation in V. tricolor.

The success in somatic embryo formation from callus followed by the establishment of Vanda tricolor Lindl. var. Pallida plantlets opened the chance to develop orchid synthetic seed and advanced plant breeding.

Acknowledgement

This research was funded by Campus Intellectual Product Business Development Program Grant [Hibah Program Pengembangan Usaha Produk Intelektual Kampus (PPUPIK)] Kemendikbud-Ristek 2021 with contract no. 004/SPP-PPM/LPPM-02/DRPM/FTB/IV/2021 (on behalf of Dr.retr.nat. Sulistyo Emantoko Dwi Putra). All experiments were conducted in Faculty of Biotechnology University of Surabaya. The authors would like to thank to our laboratory assistants and students for their intensive helped to support this research.

Table 2. Regeneration of SEs of V. tricolor var. Pallida forming plantlets on half-strength MS and MS supplemented with PGRs after 30 d of culture period

<table>
<thead>
<tr>
<th>Medium and PGR</th>
<th>SE forming plantlet (%)</th>
<th>Percentage of SE forming shoot (%)</th>
<th>Percentage of SE forming shoot (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 17.8 ± 3.45</td>
<td>100</td>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>½ MS + BAP 0.05 22.4 ± 2.85</td>
<td>80</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>½ MS + BAP 0.03 20.8 ± 2.85</td>
<td>90</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>½ MS + BAP 0.01 15.2 ± 2.68</td>
<td>100</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>½ MS + BAP 0.02 16.4 ± 2.85</td>
<td>100</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Note.: numbers followed by different letter in a column means that they are significantly different, tested with DMRT at α = 0.05. There were 40 explants used for every treatment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Adinurani PG. 2016. Agro Experimental Data Design and Analysis. Plastaxia, Yogyakarta, Indonesia


Figure 3. Mature SE of Vanda tricolor Lindl. var. pallida transformed into plantlet on hormone-free half-strength MS medium. A. Somatic embryo (SE); B. SE with shoot; C. SE with shoot and root; D. Plantlet; E. Acclimatized plantlets (2 mo old after planting)


Growth and Productivity of Four Cassava Cultivars on Several Levels of Mixed Fertilizers

Sri Wahyuningsih¹, Febria Cahya Indrani¹, Joko Restuono¹, Kartika Noerwijati¹*, Abdullah Taufiq¹, Yuliantoro Baliadi¹, Rohmad Budiono², Nguyen Van Minh³ and Peeyush Soni⁴

¹Indonesian Legumes and Tuber Crops Research Institute, Jl. Raya Kendalpayak km 8, Malang 65101, East Java, Indonesia; ²East Java Assessment Institute of Agriculture Technology, Jl.Raya Karanggloso km 4 PO BOX 188, Malang 65101, East Java, Indonesia; ³Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Ea Tam, Thanh pho Buon Ma Thuot, Dak Lak 630000, Vietnam; ⁴Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India – 721302;

Received: May, 5, 2021; Revised: August, 20, 2021; Accepted Oct, 16, 2021

Abstract

Cassava is responsive to fertilization, and it is one of the important factors for high productivity. Root formation needs sufficient Phosphorus (P) and Potassium (K) nutrients, and adequate nutrients uptake increases root weight and starch content. However, the optimum effect of P and K fertilization should be balanced with Nitrogen (N) fertilization. The objective of the study was to determine the effect of mixed (inorganic and organic) fertilizers doses on the growth and yield of several cassava cultivars grown in Pati district, Central Java, Indonesia. The experiment was carried out during planting season in 2018. Four cassava cultivars (Litbang UK 2, UK 1 Agritan, Malang 4, and UJ 5) were tested under five doses of mixed fertilization. The split-plot design with three replicates was used in this experiment, where fertilizations as the main plot and cultivars as the subplot. The results showed that mixed fertilization had no significant effect, while the cultivars had a significant effect on growth and yield parameters as well as starch content. No significant interaction effect of the two factors, except in plant height.

Keywords: Environmentally-friendly fertilization, Improving cassava production, Optimal fertilizer, Prevent nutrient loss, Rational and balanced fertilization, Root yield, Soil fertility, Starch content

1. Introduction

Central Java Province contributes 15.70% of the cassava (Manihot esculenta Crantz) production in Indonesia. Pati District, Central Java, Indonesia is one of the highest cassava producers among 12 other districts with a planting area of 20,000 ha and productivity of 43.55 t ha⁻¹. In this district, cassava is a commodity that attracts many farmers, and has become the main crop in their farming. So that, cassava production in Pati District in the period of 2011 to 2015 increased by 9.7% each year (BPS Jawa Tengah, 2016). The appeal of cassava is triggered by the increasing demand for industrial raw materials.

The majority of cassava in Indonesia is grown on dry land with marginal soil fertility, and hence fertilization plays an important role in cassava cultivation. Several Inorganic Compound (Nitrogen, Phosphorus, and Potassium — NPK) fertilizers grades commonly used for food crops are 15-15-15, 20-10-10, and 30-6-8 (Budiono et al. 2019). Cassava plants are known to be very responsive to fertilization (Howeler, 2017). Increasing cassava productivity due to NPK fertilization is well reported by Biratu et al. (2018). In the soil with low fertility, high rate of inorganic fertilizers are required (Budiono et al., 2021; Macaloua et al., 2018). Agronomic research is needed to significantly increase the cassava yield through optimal fertilizer application (Ezui et al., 2016).

Cassava absorbs potassium (K) nutrients in high amount, even higher than N. For producing 30 t ha⁻¹, cassava uptake 147.6 kg N, 47.4 kg P₂O₅, and 179.4 kg K₂O. Potassium (K) has an important role in synthesis and accumulation of starch in cassava root (Fernandez et al., 2017). However, imbalance fertilization hampered productivity and profitability (Hiironen and Riekkinen, 2016). Imbalance fertilization will also increase nutrient loss (Van der Velde et al., 2014), and consequently degrade soil fertility (Adimunani et al. 2021, Li et al., 2013), as well as pollute the environment (Muhammad et al., 2021; Utami et al. 2020). Cassava more response to inorganic fertilizer when combined with organic fertilizer (Biratu et al., 2018). Badewa et al. (2020) recommend to use 100 kg N — 22 kg P — 83 kg K ha⁻¹ combined with 2.4 t ha⁻¹ chicken manure to increase cassava yield. Optimum NPK fertilizer dosage varies among cultivar and environment. Wahyuningsih and Sutrisno (2019) found that to attain yield of 33 t ha⁻¹, Malang 4 cultivar grown under young teak stands needs fertilization of 125 kg Urea ha⁻¹ + 150 kg SP36 ha⁻¹ + 100 kg KCl ha⁻¹. Noerwijati and Budiono (2015) found different yield in different altitude with same fertilization at rates of 200 kg ha⁻¹ Urea + 100 kg ha⁻¹ SP36 + 100 kg ha⁻¹ KCl, where the higher yield of

¹ Corresponding author e-mail: tika_iiletri@yahoo.com
54.84 t ha⁻¹ attained at altitude of 80 m a.s.l., followed at 530 m a.s.l. (37.08 t ha⁻¹), and 7.79 t ha⁻¹ at 800 m a.s.l.

The study was aimed to determine optimum dose of mixed (inorganic and organic) fertilizers on the growth and yield of several improved-cassava cultivars grown in Pati district, Central Java, Indonesia.

2. Materials and Methods

2.1. Experiment site

The field experiment was carried out during planting season of 2018 in Pati district, Central Java, Indonesia. Soil in the study site is acidic, but contains very low Al. The soil has very low organic matter, N, and Mg content, low Ca content, and medium available P, but high exchangeable K (Table 1).

Table 1. Soil properties in the experiment site.

<table>
<thead>
<tr>
<th>Soil properties</th>
<th>Methods</th>
<th>Value</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-H₂O</td>
<td>1:5 (soil : H₂O)</td>
<td>4.68</td>
<td>L</td>
</tr>
<tr>
<td>C-organic (%)</td>
<td>Walkley &amp; Black</td>
<td>1.21</td>
<td>VL</td>
</tr>
<tr>
<td>N-total (%)</td>
<td>Kjeldahl</td>
<td>0.06</td>
<td>VL</td>
</tr>
<tr>
<td>P₂O₅ (mg kg⁻¹)</td>
<td>Bray-1</td>
<td>13.6</td>
<td>M</td>
</tr>
<tr>
<td>Exchangeable K</td>
<td>1 N NH₄OAc pH 7.07</td>
<td>0.24</td>
<td>H</td>
</tr>
<tr>
<td>Exchangeable Ca</td>
<td>1 N NH₄OAc pH 7.07</td>
<td>1.08</td>
<td>L</td>
</tr>
<tr>
<td>Exchangeable Mg</td>
<td>1 N NH₄OAc pH 7.07</td>
<td>0.05</td>
<td>VL</td>
</tr>
<tr>
<td>Exchangeable Al</td>
<td>1 N KCl</td>
<td>3.39</td>
<td>VL</td>
</tr>
</tbody>
</table>

²L=low, VL=very low, M=medium, H=high according to Howeler (2002; 2014), Howeler et al. (2019).

2.2. Treatment and experimental design

The experiment consisted of two factors which were laid out in a split-plot design, three replicates. The main plot was five fertilizer levels, namely P₁: 275 N + 45 P₂O₅ + 45 K₂O kg ha⁻¹ (farmer practice as check), P₂: 135 N + 60 P₂O₅ + 30 K₂O kg ha⁻¹, P₃: P₂ + manure 0 t ha⁻¹, P₄: 130 N + 60 P₂O₅ + 60 K₂O kg ha⁻¹, and P₅: P₄ + manure 10 t ha⁻¹. The subplot was four cassava cultivars consisting of Lithbang UK2 (V₁), UK1 Agritan (V₂), Malang 4 (V₃), and U15 (V₄). Urea 46 % N, SP36 36 % P₂O₅, and KC1 60 % K₂O use as the source of N, P, and K fertilizer, respectively.

2.3. Procedure

The soil was cultivated and moulded before planting. The cutting stems of 20 cm length were planted in plot measuring of 5 m × 5 m with planting distance of 1 m × 1 m. Phosphorus (P) and K fertilizer according to the treatments were applied once at 1 mo (month) after planting (MAP), while half dose of N fertilizer was applied at 1 MAP, and the remaining at 3 MAP.

2.4. Data collection and analysis

Growth variables (plant height and biomass), fresh root yields, yield components (number and weight of fresh root per plant, and harvest index), and starch content (wet base) were recorded at harvest (10 MAP). The plant height was measured from the stem above ground up to the tallest branch of the plant (Gyau 2015; Macalau et al. 2018). The shoot biomass measured based on weight of three plants at 9 mo after the crop was established (Pacheco et al. 2020). Yield components were observed from three plants (Fukuda et al. 2010). Yield was calculated through destructive harvesting by uprooting and weighing cassava roots from a 25 m² land area in the farmer’s field, and the final yield (t ha⁻¹) calculated through extrapolation (Tarawali et al. 2012). Harvest index was calculated as the ratio of the storage root weight to the total biomass of shoots and storage root (Adjebug-Danquah et al. 2016; Ada et al. 2020). Starch content was measured according to Fukuda et al. (2010). Red mite (Tetranychus urticae Koch) attacks were recorded during the growth according to Bellotti and Schoonhoven (1978). Observation of mite attack was carried out by scoring on the affected leaves, by giving a score 0 to healthy leaves (no spots), score 1 if there is early yellowish spotting (about 10 %) on some lower and/or middle leaves, score 2 if there is slightly yellowish spots (11 % to 20 %) on lower and middle leaves, score 3 if there is obvious damage; a lot of yellow spots (21 % to 50 %), few areas are necrotic (< 20 %), especially the lower and middle leaves are slightly wrinkled; some leaves turn yellow and fall off, score 4 if there is severe damage (51 % to 75 %) on the lower and middle leaves, the mite population is abundant and white threads are found like spider webs, and score 5 if total leaf loss occurs; plant shoots shrink; more and more white thread; plant death.

The collected-data were subjected to statistical analysis of variance (ANOVA) and the means were compared using the LSD test at a 5 % level of significance (Adinurani, 2016).

3. Result and Discussions

3.1. Soil chemical properties

The soil data indicate that soil fertility is low. The acidic soil pH with very low Al might be due to Ca and Mg cations leached-out from the top soil layer. Soil pH is classified as optimum for cassava growth because it is in the optimum soil pH range for cassava, which is 4.5 to 6.5, according to Howeler et al. (2019). The soil pH might not become a major limiting factor for cassava because it is still in the range of the optimum value. Available P is medium, but it might become limiting factor because of low soil pH. Under low soil pH, P nutrient become less mobile due to Al or Fe fixation. Soil organic matter content as indicated by C-organic content is below the critical levels of organic matter of 3.2 % according to Howeler (2014), or at least at the critical level of 1.3 % according to Gomes (1998). Organic matter (OM) content is very low, and so that N content is also very low because OM is a main source of N in soil. The soil data indicate that soil fertility is low, and OM, N, P, Ca, and Mg might become the main constraint for cassava growth and high yield.

3.2. Growth and yield of four cassava cultivars

The results of the analysis of variance (ANOVA) showed that the fertilizer factor did not significantly affect all parameters observed, while the cultivars significantly affected all the parameters observed. There is no significant interaction between the two factors, except for plant height (Table 2). The genetic differences among cultivars have more effect on growth, yield, and yield components than fertilizer treatment.
Table 2. Results of ANOVA on all parameters observed.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean square value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant height (cm)</td>
</tr>
<tr>
<td>Fertilizer (F)</td>
<td>0.08 ns</td>
</tr>
<tr>
<td>Cultivar (V)</td>
<td>0.11 *</td>
</tr>
<tr>
<td>F x V</td>
<td>0.06 *</td>
</tr>
<tr>
<td>CV (%)</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Annotation: ns = not significant, * = significantly different at 5 %, ** = significantly different at 1 %, wb = wet basis.

Soil N, P, and organic matter in the experiment site were low, but application of N-P-K fertilizer, and also addition of organic fertilizer could not improve cassava growth (Table 3), as well as root yield and yield components (Table 4). The results indicate that fertilizer applied may be ineffective. Cassava in this experiment was planted in January 2018, so that the crop received high rainfall only for 3 mo (January to March), and rainfall decreased from April 2018 (Figure 1). It means that the plants suffer from drought after 3 MAP. The age at 3 MAP to 6 MAP is critical period for cassava because fast growing, root formation, as well as root development take place during that period. Lack of water will limit water absorption, as well as nutrient uptake which reduce crop growth and yield. Under these conditions, production efficiency was low as indicated by low harvest index. Plant height at harvest averaged 175.2 cm, biomass accumulation less than 1 kg plant⁻¹ (Table 3), fresh root yield (14.22 to 16.29) t ha⁻¹, harvest index about 0.6, and starch content 13.82 % to 15.17 % (Table 4). Decrease in nutrient uptake occurred in cassava plants under insufficient soil water (Howeler, 2012), and also reduction of plant height of cassava by 33 % to 47 % (Vitor et al., 2019). Root yield, harvest index, and starch content in this experiment is low. In acidic soil in Lampung with fertilization of 135 N + 36 P₂O₅ + 30 to 60 K₂O kg ha⁻¹, UJ3 and UJ5 cultivar at 6 MAP produced (30 to 40) t ha⁻¹ of fresh root with harvest index 0.7 to 0.8 and starch content >25 % (Taufiq et al., 2015), and Malang 4 cultivar in East Java produced > 40 t ha⁻¹ at 10 MAP with harvest index 0.7 to 0.8 and starch content > 26 % (Taufiq et al., 2016).

Table 3. Effect of fertilizer doses on plant height, shoot weight, and biomass accumulation of cassava crop Pati district, Central Java, Indonesia 2018

<table>
<thead>
<tr>
<th>Fertilizer doses</th>
<th>Plant height (cm)</th>
<th>Shoot weight plant⁻¹ (kg)</th>
<th>Biomass weight plant⁻¹ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>185.8</td>
<td>0.24</td>
<td>0.99</td>
</tr>
<tr>
<td>P₂</td>
<td>165.8</td>
<td>0.21</td>
<td>0.89</td>
</tr>
<tr>
<td>P₃</td>
<td>168.6</td>
<td>0.22</td>
<td>0.89</td>
</tr>
<tr>
<td>P₄</td>
<td>180.0</td>
<td>0.20</td>
<td>0.91</td>
</tr>
<tr>
<td>P₅</td>
<td>175.9</td>
<td>0.25</td>
<td>0.95</td>
</tr>
<tr>
<td>Average</td>
<td>175.2</td>
<td>0.22</td>
<td>0.93</td>
</tr>
<tr>
<td>LSD (5 %)</td>
<td>0.19</td>
<td>0.05</td>
<td>0.196</td>
</tr>
</tbody>
</table>

Figure 1. Rainfall in Pati District, Central Java, Indonesia during the experiment (January to October 2018).
Table 4. Effect of fertilizer on root number plant\(^{-1}\), root weight plant\(^{-1}\), root yield (t ha\(^{-1}\)), harvest index, starch content (% wb), and starch yield (t ha\(^{-1}\)), in dryland. Pati district, Central Java, Indonesia 2018

<table>
<thead>
<tr>
<th>Fertilizer doses</th>
<th>Root number plant(^{-1})</th>
<th>Root weight plant(^{-1}) (kg)</th>
<th>Root yield (t ha(^{-1}))</th>
<th>Harvest index</th>
<th>Starch content (% wb)</th>
<th>Starch yield (t ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(_1)</td>
<td>7.11</td>
<td>1.59</td>
<td>14.32</td>
<td>0.61</td>
<td>14.32</td>
<td>2.44</td>
</tr>
<tr>
<td>P(_2)</td>
<td>8.11</td>
<td>1.59</td>
<td>14.22</td>
<td>0.64</td>
<td>13.82</td>
<td>2.29</td>
</tr>
<tr>
<td>P(_3)</td>
<td>7.44</td>
<td>1.68</td>
<td>15.15</td>
<td>0.65</td>
<td>14.62</td>
<td>2.48</td>
</tr>
<tr>
<td>P(_4)</td>
<td>7.99</td>
<td>1.64</td>
<td>14.76</td>
<td>0.63</td>
<td>14.69</td>
<td>2.46</td>
</tr>
<tr>
<td>P(_5)</td>
<td>8.33</td>
<td>1.81</td>
<td>16.29</td>
<td>0.65</td>
<td>15.17</td>
<td>2.72</td>
</tr>
<tr>
<td>Average</td>
<td>7.76</td>
<td>1.66</td>
<td>14.94</td>
<td>0.64</td>
<td>14.52</td>
<td>2.48</td>
</tr>
<tr>
<td>LSD (5 %)</td>
<td>0.93</td>
<td>0.252</td>
<td>2.27</td>
<td>0.025</td>
<td>1.08</td>
<td>0.44</td>
</tr>
</tbody>
</table>

The fertilization doses independently did not significantly affect the yield and the components of yield (Table 4). Similar to Pypers et al. (2011), the addition of fertilizer did not influence root yield. But reported by Cuvaca et al. (2017), fertilizer addition increased cassava root yield. Application 60 kg N ha\(^{-1}\) + 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) + 60 kg K\(_2\)O ha\(^{-1}\) increase root yield up to 27.7 t ha\(^{-1}\) compared with no fertilizer application. Organic matter utilization could improve root yield and soil fertility (Badewa et al. 2020), but in this study organic matter didn’t improve the yield. Although not significantly different, it is seen that the root yield (t ha\(^{-1}\)) in the P\(_2\) to P\(_5\) fertilizer treatment is higher than the root yield in P\(_1\) (farmer control) as well as the harvest index. Highest starch content and starch yield found in P\(_5\) (130 kg N ha\(^{-1}\) + 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) + 60 kg K\(_2\)O ha\(^{-1}\) + manure 10 t ha\(^{-1}\)) which indicate that increasing K fertilizer dose and the addition of manure could increase the starch content.

Table 5. Effect of cultivars on plant height, shoot weight plant\(^{-1}\), and biomass weight plant\(^{-1}\) in dryland. Pati District, Central Java, Indonesia 2018

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Plant height (cm)</th>
<th>Shoot weight plant(^{-1}) (kg)</th>
<th>Biomass weight plant(^{-1}) (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litbang UK 2</td>
<td>164.3 b</td>
<td>0.17 b</td>
<td>0.88 bc</td>
</tr>
<tr>
<td>UK1 Agritan</td>
<td>182.9 a</td>
<td>0.27 a</td>
<td>1.01 a</td>
</tr>
<tr>
<td>Malang 4</td>
<td>173.1 ab</td>
<td>0.19 b</td>
<td>0.98 ab</td>
</tr>
<tr>
<td>UJ 5</td>
<td>180.6 a</td>
<td>0.26 a</td>
<td>0.84 c</td>
</tr>
<tr>
<td>Average</td>
<td>175.2</td>
<td>0.22</td>
<td>0.93</td>
</tr>
<tr>
<td>LSD (5 %)</td>
<td>0.13</td>
<td>0.05</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Note: Mean values in each column followed by different letters were significantly different (\(P < 0.05\)).

The interaction between fertilizer doses and cultivar only significantly affected plant height. The highest plant height was achieved in the P\(_3\) V\(_2\) treatment (195.0 cm), while the lowest was in the P\(_1\) V\(_1\) treatment which was 140.7 cm (Figure 2). It can be seen that the UK 1 Agritan (V\(_2\)) variety which has good plant growth, plant height increased with the treatment P\(_3\) (135 N + 60 P\(_2\)O\(_5\) + 30 K\(_2\)O kg ha\(^{-1}\) + manure 10 t ha\(^{-1}\)). This indicates that the plant height of UK 1 Agritan didn’t require the addition of K nutrients because the soil had high K nutrient, even the addition of K actually reduced plant height as shown in treatment P\(_4\) and P\(_5\).
Cultivars showed significant differences in yield and yield components, namely the root number plant\(^{-1}\), root weight plant\(^{-1}\), root yield ha\(^{-1}\), harvest index, starch content, and starch yield ha\(^{-1}\) (Table 6). These suggested that among varieties used, there were potential genetic differences.

The highest root number plant\(^{-1}\) was found in UJ 5 cultivar, but it was not significantly different with UK 1 Agritan cultivar. The smallest root number plant\(^{-1}\) was found in Malang 4. Likewise, the highest root weight plant\(^{-1}\) and the highest root yield ha\(^{-1}\) was in UK 1 Agritan cultivar, and the lowest was in the Litbang UK 2 cultivar. UK 1 Agritan was a cassava cultivar released in 2016 with early maturity characters. Based on farmers’ information, UK 1 Agritan was quite preferred as a choice besides UJ 5 because it has not only high yield potential but also plant posture was not too long, with white root skin color. UK 1 Agritan also had a high harvest index (HI). HI is one indicator to estimate root yield. Harvest index were positively correlated \((r = 0.61^{**})\) with root yield, so that the higher harvest index will have higher root yields. Karim et al. (2020) also found positive correlation between root yield and HI. The HI is variable to measure the efficiency of storage root production (Badewa et al., 2020). UJ 5 cultivar had the highest starch content followed by Malang 4 and Litbang UK 2, and the lowest was UK 1 Agritan (Table 6). Even though it has the lowest starch content, UK 1 Agritan has the highest root yield and hence the higher starch yield ha\(^{-1}\).

Table 6. Effect of cultivar on root number, plant weight, root yield, harvest index, starch content, and starch yield in dryland. Pati district, Central Java, Indonesia 2018

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Root number plant(^{-1})</th>
<th>Root weight plant(^{-1}) (kg)</th>
<th>Root yield (t ha(^{-1}))</th>
<th>Harvest index</th>
<th>Starch content (% wb)</th>
<th>Starch yield (t ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithbang</td>
<td>7.07 e</td>
<td>1.16 e</td>
<td>10.45 e</td>
<td>0.57</td>
<td>16.88 b</td>
<td>1.76 d</td>
</tr>
<tr>
<td>UK 2</td>
<td>7.07 c</td>
<td>0.70 a</td>
<td>10.45 c</td>
<td>0.70</td>
<td>15.17 c</td>
<td>3.10 a</td>
</tr>
<tr>
<td>Agritan</td>
<td>8.11 ab</td>
<td>2.29 a</td>
<td>20.57 a</td>
<td>0.70</td>
<td>15.17 c</td>
<td>3.10 a</td>
</tr>
<tr>
<td>Malang 4</td>
<td>7.43 bc</td>
<td>1.53 b</td>
<td>13.77 b</td>
<td>0.70</td>
<td>15.17 c</td>
<td>3.10 a</td>
</tr>
<tr>
<td>UJ 5</td>
<td>8.41 a</td>
<td>1.67 b</td>
<td>14.99 b</td>
<td>0.70</td>
<td>15.17 c</td>
<td>3.10 a</td>
</tr>
<tr>
<td>Average</td>
<td>7.76</td>
<td>1.66</td>
<td>14.95</td>
<td>0.70</td>
<td>15.17 c</td>
<td>3.10 a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.036</td>
<td>0.95</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red mite pests commonly attack cassavas in the dry season. A red mite score, that was observed in the 3\(^{rd}\) mo, was between 7.35 to 18.57. P\(_1\)\(_V\) treatment showed the lowest attack, and the highest in P\(_V\)\(_3\) treatment (Table 7). Fertilization treatment P\(_1\) and P\(_3\) had a higher mite attack score than the other treatments. It seems that the addition of organic matter can increase N nutrition, which causes plant tissue to become softer and it is easily attacked by mites. Altieri et al (2005) stated that an increase of N nutrient results in increased plant damage due to mites attack. Howeler et al. (2013) stated that application soil organic matter early in the cropping cycle, increases pest-regulating populations. To prevent more severe damage from mite attacks, spraying using Starban insecticides is carried out.

Table 7. Red mite pests population in cassava at 3 MAP.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mite score (%)</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10.44</td>
<td>7.44</td>
<td>7.35</td>
<td>9.19</td>
<td>8.61</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>12.57</td>
<td>8.36</td>
<td>12.03</td>
<td>6.93</td>
<td>9.97</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>16.41</td>
<td>9.36</td>
<td>18.57</td>
<td>10.70</td>
<td>13.81</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>11.50</td>
<td>11.55</td>
<td>11.48</td>
<td>9.69</td>
<td>11.05</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>13.80</td>
<td>13.90</td>
<td>14.34</td>
<td>13.98</td>
<td>14.01</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>12.94</td>
<td>10.12</td>
<td>12.75</td>
<td>9.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions

Reducing N fertilizer dosage from 275 kg N ha\(^{-1}\) to (130 to 135) kg N ha\(^{-1}\) and K from 45 K\(_2\)O ha\(^{-1}\) to 30 kg K\(_2\)O ha\(^{-1}\), increasing P dosage from 45 P\(_2\)O\(_5\) ha\(^{-1}\) to 60 P\(_2\)O\(_5\) ha\(^{-1}\), and application of 10 t ha\(^{-1}\) manure has no effect on both cassava growth and yield. Agronomic and yield performance of UK 1 Agritan cultivar is better than Litbang UK 2, Malang 4, and UJ 5 cultivars, and hence can be recommended as an alternative cultivar for farmers in the Pati area, Central Java, Indonesia. But the increase in N nutrient increases the attack of mite pests.

References


© 2021 Jordan Journal of Biological Sciences. All rights reserved - Volume 14, Number 5
Utilization of “Uwi” Plant (Dioscorea sp.) as a Renewable Bioenergy Resource

Wuryantoro Wuryantoro1,*, Praptiningsih Gamawati Adinurani1, Ratna Mustika Wardhani1, Sutrisno Sutrisno2, Bohari Mohammad Yamin3 and Syukri Muhammad Nur4,5

1Department of Agrotechnology, Faculty of Agriculture, Merdeka University of Madiun, Jl. Serayu 79 Madiun 63133, Indonesia; 2Department of Mechanical Engineering, Faculty of Engineering, Merdeka University of Madiun, Jl. Serayu 79 Madiun 63133, Indonesia; 3Department of Chemistry, Faculty of Science and Technology, Kebangsaan University of Malaysia, 43600 UKM, 43600 Bangi, Selangor, Malaysia; 4Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; 5Center of Renewable Energy Studies, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450

Received: June, 11, 2021; Revised: Sep, 20, 2021; Accepted Oct, 16, 2021

Abstract

Many countries are currently making efforts to obtain alternative energy to reduce dependence on fossil energy resources. “Uwi” plant is a carbohydrate source that has many types and is tolerant of being planted on the upland, so it has the potential to be used as a food crop and as bioenergy. This research aims to study the potential of varieties of “uwi” (Dioscorea sp.) as raw material for ethanol production. The eight varieties of “uwi” were studied to assess their ethanol potential. The selected raw materials are Dioscorea alata L. (white yam, purple yam, and yellow yam); Dioscorea esculenta (Lour.) Burkill (“uwi gembili” and “uwi gembolo”); Dioscorea bulbifera L. (“uwi gandul”); Dioscorea pentaphylla L. (“uwi katak”) and Dioscorea hispida Dennst. (“uwi gadung”). A field experiment with Randomized Block Design was used to obtain homogenous tuber raw material, followed by laboratory methods on the assessment of ethanol production potential through fermentation. The research showed that the variety, D. hispida had the highest ethanol content (4.94 %), followed by D. esculenta (4.16 %) and D. alata (3.89 %). The lowest ethanol production was obtained from D. pentaphylla (0.36 %) and D. bulbifera (1.53 %). However, in terms of productivity, D. alata (white-yam) is the most prospective considering its high production, ease of cultivation and tolerance of forest stands.

Keywords: Alternative energy, Bioethanol, Clean energy, Diversity, Energy plant, Root tuber crop, Upland, Yam

1. Introduction

Indonesia is the country with enormous energy consumption in Southeast Asia and fifth in the Asia Pacific, after China, India, Japan and South Korea. Increasing energy demand will increase along with the high average Gross Domestic Product (GDP) growth of 6.04 % during 2017 to 2050. Indonesia’s final energy consumption (without firewood) in 2016 was still dominated by fuel oil at 47 % (Aninditha et al., 2018). The dependency on fuel is a problem because, in future time, it will run out and give emissions that harm the environment (Adinurani et al. 2017). The threat of scarcity of fossil energy has implications for an increase in the price of itself. On the other hand, Indonesia has great potential in producing renewable energy, one of which is biofuels (Adinurani et al., 2015; Tampubolon and Fauzi, 2016).

Biofuels such as bioethanol are a form of fuel that will be dominant for the future because they are renewable (Adelabu et al. 2018). The production of renewable fuels, especially from starchy materials such as root crops, has great potential to meet future energy demand. The tuber group is a promising raw material for bioethanol because it has enough carbohydrates (16 % to 24 %), abundant availability and cost-effective processing (Wuryantoro et al., 2020). Root crops are a better choice for bioethanol because they are cheap and less competitive as food than grains, only about 45 % of the tuber plant is consumed as food, and the rest is used for feed and industrial raw materials.

"Uwi" plant, ["uwi" is a common name in Indonesian, while in English it is called “yam” (Dioscorea sp.)] is a tuber group with lesser attention and has not received priority as a food source. This plant has many species and varieties, about 200 varieties with colours, shapes and flavours. Types of Dioscorea alata L., in particular, have colour variants and forms ranging from primary colours from white, yellow and purple, along with variations in shapes such as elongated, oblong, rounded, fingerling to irregular (Wuryantoro et al., 2021). The existence of this plant is increasingly marginalized from cultivation techniques and is even allowed to grow wild. This group of tubers has excellent potential as a source of carbohydrates to use as raw material for bioethanol without disturbing food needs. “Uwi” plants are very suitable for planting in various land conditions,

* Corresponding author e-mail: wuryantoro@unmer-madiun.ac.id.
especially in an upland that has not been optimally utilized. This upland area covers more than 60% of the land area in Indonesia (Hakim et al., 2017) and more than 40% in the world (UNESCO, 2020). This highlights the adaptability of “uwi” to the local climatic conditions and ability to thrive without significant climate impacts (Okongor et al., 2021). Some varieties can even be adapted to forest stands with higher production capacity (Wuryantoro et al., 2019). However, the product potential of this commodity for industrial use is still not well utilized (Andres and Adeoluwa, 2016). These plants are also crucial in socio-religious life in various countries. Research in Nigeria shows the importance of “uwi” plant in social, economic, religious and cultural fabric of society (Obidiegwu and Akbapio, 2017). In Ghana, these plants have even become an essential commodity being cultivated intensively involving men and women with various levels of education, which ultimately determines the level of productivity and farming efficiency (Tanko and Alidu, 2017). And in Cameroon, the commodity of yam is the primary buffer for food security and in overcoming poverty. There are seven species cultivated in this country, and about 17 wild species are feared for genetic erosion if there is no Gen Bank Institute to handle it immediately (Azeth et al., 2019).

According to Hoover (2001) in Ulyarti (2016), the starch content of D. alata tubers reaches 80% of the total dry weight (Ulyarti and Lavlinesia, 2016). The starch content in D. alata tubers varies greatly depending on the cultivar and growing conditions. Sahusilawane et al. (2011) stated that this plant produces an excellent source of carbohydrates in tropical and subtropical areas. In Indonesia, Dioscorea sp. is a type of tuber plant that has not been widely cultivated and even grows as wild plants on the edge of gardens, forests or abandoned land. This plant productivity is quite high if cultivated properly; it can reach (40 to 60) t ha⁻¹. Under certain types of forest stands, they still produce (3 to 5) kg plant⁻¹. The results of the study by Winarti and Saputro (2013) showed the starch content of Dioscorea alata L. (yellow yam = 83.38 %, purple yam = 86.12 %, and white yam = 86.68 %), Dioscorea esculenta (Lour.) Burkhill (“uwi gambili” = 82.82 %), Dioscorea pentaphylla L. (“uwi katak” = 79.27 %), and Dioscorea bulbifera L. (“uwi gembolo” = 84.80 %). Due to its high starch concentration, the tuber plant is considered one of the most important first-generation feedstocks for bioethanol production. Root starch can be hydrolyzed, fermented, and then refined to produce ethanol (Thatoi et al., 2016). Starch content is a good substrate for producing glucose as an intermediate product for making bioethanol. Variations in the starch content of Dioscorea sp. may depend on several environmental factors and agronomic practices, and the degree of maturity. The difference in starch content in Dioscorea sp requires studying to determine the potential varieties as raw material for bioethanol. The research on tuber skin yielded 12.3 % bioethanol. It showed that the tubers could produce bioethanol, although not as good as cassava peels which grew 18.6 %, using the yeast Gloeophyllum saplarium, Pleurotus ostreatus, Zygomonas mobilis and Saccharomyces cerevisiae (Adiotomre, 2015). The fermentation process has been widely used in agricultural, livestock, and fishery activities to obtain material inputs for biological productivity processes (Yasmin et al., 2020). Fermentative microbes are widely available in nature, which is accessible to isolated for various needs. It is reported that traditionally fermented vegetables are a good source of Lactobacillus probiotics (Mahasneh et al., 2020). Another study on fermentation resulted in ethanol yield of 13 % and 11 % from bitter yam [Dioscorea dumetorum (Kunth.) Pax.] and skin of water yam tubers (Dioscorea alata L.), respectively (Banjo et al., 2019).

2. Materials and Method

2.1. Time and Place

The research was carried out with field experiments in the Cepoko village's uplands, Ngayran sub-district, Ponorogo district, East Java at an altitude of 700 m a.s.l., in the rainy season of November 2019 to June 2020. Subsequent experiments on ethanol production were carried out in the Faculty of Agriculture Laboratory, the Merdeka University of Madiun, from August 2020 to October 2020.

2.2. Materials and Tools

The materials used in the field experiment were eight varieties of “uwi” plants, compost and NPK "Mutiar" fertilizer (N:P:K = 16:16:16), from PT Meroke, Indonesia. The equipment used is a hoe, sickle, bamboo for plant propagation, and measuring equipment such as meters, scales and calipers. For laboratory experiments, using tuber materials from field experiments, distilled water, well water, "tape" yeast brand "Kencana", Indonesian product, alpha-amylase enzyme, NaOH. The equipment used is in the form of boiling equipment: gas stove, pan, peel knife and chopper, fermentation equipment in the form of closed jars, pH meters, refractometers, distillation equipment: laboratory-scale distillation, Erlenmeyer flasks, round flask, thermometers, cooling water reservoirs, distillate containers, Bunsen heaters, gas stoves and electric stoves.

2.3. Research method

The field experiment used a Randomized Block Design consisting of eight treatments of “uwi” species (Dioscorea sp.), repeated three times. The treatments consisted of three sub-varieties of D. alata (white yam, yellow yam and purple yam), two sub-varieties of D. esculenta (“uwi gambili” and “uwi gembolo”), D. hispida (“uwi gadung”), D. bulbifera (“uwi gandul”) and D. pentaphylla (“uwi katak”). Observations were made on the production of tubers after going through homogeneous cultivation techniques. The experiment used a Randomized Block Design (Ramesh et al., 2019), and as a block, the length of fermentation time was 5 d, 7 d, and 10 d. The eight types of “uwi” tubers from field experiments as treatments were:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Type of Yam</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>D. alata type yellow yam</td>
</tr>
<tr>
<td>U2</td>
<td>D. alata type purple yam</td>
</tr>
<tr>
<td>U3</td>
<td>D. alata type yellow yam</td>
</tr>
<tr>
<td>U4</td>
<td>D. esculenta type “gambili”</td>
</tr>
<tr>
<td>U5</td>
<td>D. esculenta type “gembolo”</td>
</tr>
<tr>
<td>U6</td>
<td>D. bulbifera (“uwi gandul”)</td>
</tr>
</tbody>
</table>
2.4. Practices

The study has two experimental stages. The first is a field experiment using a Randomized Block Design and soil fertility as block and repeated three times. Observations variable on the production of tubers after going through homogeneous cultivation techniques. Planting was carried out on the mounds in the treatment plot with four bunds for each treatment type and repeated in three blocks. The tuber weight for seedlings ranged ending with measuring ethanol production by distillation.

The second stage is the laboratory experiment using a randomized block design and a grouping according to fermentation time, namely 5 d, 7 d, and 10 d. The study used eight treatments of "uwi" tubers whose productivity had been investigated from previous field experiments. The stages of ethanol production are material preparation, stripping, cutting, boiling, administering enzymes (alpha-amylase), yeast (Saccharomyces cervisiae) and NPK, fermentation, filtering, refining, ending with measuring ethanol production by distillation.

Table 1. Density conversion of ethanol at various ethanol content

<table>
<thead>
<tr>
<th>Ethanol content (%)</th>
<th>Density (30 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.995 68</td>
<td>13</td>
<td>0.974 24</td>
<td>26</td>
<td>0.954 42</td>
<td>39</td>
<td>0.929 79</td>
</tr>
<tr>
<td>1</td>
<td>0.993 79</td>
<td>14</td>
<td>0.972 78</td>
<td>27</td>
<td>0.952 72</td>
<td>40</td>
<td>0.927 70</td>
</tr>
<tr>
<td>2</td>
<td>0.991 94</td>
<td>15</td>
<td>0.971 33</td>
<td>28</td>
<td>0.950 98</td>
<td>41</td>
<td>0.925 58</td>
</tr>
<tr>
<td>3</td>
<td>0.990 14</td>
<td>16</td>
<td>0.969 90</td>
<td>29</td>
<td>0.949 22</td>
<td>42</td>
<td>0.923 44</td>
</tr>
<tr>
<td>4</td>
<td>0.988 39</td>
<td>17</td>
<td>0.968 44</td>
<td>30</td>
<td>0.947 41</td>
<td>43</td>
<td>0.921 28</td>
</tr>
<tr>
<td>5</td>
<td>0.986 70</td>
<td>18</td>
<td>0.966 97</td>
<td>31</td>
<td>0.945 57</td>
<td>44</td>
<td>0.919 10</td>
</tr>
<tr>
<td>6</td>
<td>0.985 07</td>
<td>19</td>
<td>0.965 47</td>
<td>32</td>
<td>0.943 70</td>
<td>45</td>
<td>0.916 92</td>
</tr>
<tr>
<td>7</td>
<td>0.983 47</td>
<td>20</td>
<td>0.963 95</td>
<td>33</td>
<td>0.941 80</td>
<td>46</td>
<td>0.914 72</td>
</tr>
<tr>
<td>8</td>
<td>0.981 89</td>
<td>21</td>
<td>0.962 42</td>
<td>34</td>
<td>0.939 86</td>
<td>47</td>
<td>0.912 50</td>
</tr>
<tr>
<td>9</td>
<td>0.980 31</td>
<td>22</td>
<td>0.960 80</td>
<td>35</td>
<td>0.937 90</td>
<td>48</td>
<td>0.910 28</td>
</tr>
<tr>
<td>10</td>
<td>0.978 75</td>
<td>23</td>
<td>0.959 29</td>
<td>36</td>
<td>0.935 91</td>
<td>49</td>
<td>0.908 05</td>
</tr>
<tr>
<td>11</td>
<td>0.977 23</td>
<td>24</td>
<td>0.957 69</td>
<td>37</td>
<td>0.933 90</td>
<td>50</td>
<td>0.905 80</td>
</tr>
<tr>
<td>12</td>
<td>0.975 73</td>
<td>25</td>
<td>0.956 07</td>
<td>38</td>
<td>0.931 86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Result and Discussion Carbohydrate and Glucose Level

From the analysis, results of carbohydrate content of fresh tubers from eight varieties of Dioscorea sp. were observed to be between 18.80 % and 26.60 %, sugar content before fermentation was 1.00 % to 7.00 % and sugar content after 10 d fermentation was between 0.77 % and 4.10 % (Figure 1).

Figure 1 also shows that the varieties with higher carbohydrate content in fresh tubers do not always produce high sugar content. The highest carbohydrate content in white yam (D. alata) was 26.60 %, with sugar content before fermentation (0 d) was 1.2 % and 10 d as 2.00 %. On the other hand, "uwi gambili " and "uwi gembolo" (D. esculenta) varieties with the lowest carbohydrate content (18.80 % and 20.62 %) produced the highest sugar content during the fermentation process, which indicates that the starch from these materials were more readily hydrolyzed into sugar. This condition causes an increase in breaking the starch polymer chains in carbohydrates of "uwi gambili" and "uwi gembolo" species into sugar.

Figure 1 also shows that the varieties with higher carbohydrate content in fresh tubers do not always produce high sugar content. The highest carbohydrate content in white yam (D. alata) was 26.60 %, with sugar content before fermentation (0 d) was 1.2 % and 10 d as 2.00 %. On the other hand, "uwi gambili " and "uwi gembolo" (D. esculenta) varieties with the lowest carbohydrate content (18.80 % and 20.62 %) produced the highest sugar content during the fermentation process, which indicates that the starch from these materials were more readily hydrolyzed into sugar. This condition causes an increase in breaking the starch polymer chains in carbohydrates of "uwi gambili" and "uwi gembolo" species into sugar.
The high sugar content indicates that glucose conversion to ethanol has not maximized for 10 d of fermentation. This speed of hydrolysis, in turn, yields higher ethanol (Table 2). At the same time, the enzymatic hydrolysis process of many carbohydrates in *D. alata* (white yam) needed relatively longer duration than that of "uwi gembili" to produce lower sugar levels. The α-amylase enzyme used in hydrolysis can specifically break α-1,4-glucoside bonds and quickly reduce the starch molecules size into a simple form, namely sugar (Praputri and Sundari, 2019). "uwi gadung" has a high starch content, and the amylase enzyme plays a role in the formation of high sugar until the 10th d of the fermentation process, which produces 4.94 % ethanol although not significantly different from "uwi gembili", "uwi gembolo", and white yam. This process is not the case if the hydrolysis runs faster and the hydrolyzed substrate contains enough sugar to be fermented as in the "uwi gembili" variety. High substrate concentrations can reduce energy use and overall water consumption. This is to increase the effectiveness of the fermentation process.

Based on Figure 1, the highest sugar content was in the "uwi gembolo" variety but did not show the maximum ethanol production. This may be due to the inhibition of reducing sugar fermentation (Raul *et al*. 2016). Even though the ethanol content of the "uwi gembili" variety (3.89 %) was not high, the ethanol content produced was quite a lot and not significantly different from the ethanol content of the "uwi gembolo" (4.17 %), as shown in Table 2. These results have no significant difference from the results of the research by Yuniawati *et al*. (2010), carried out for the ethanol production from white yam (3.2 %), yellow yam (2.6 %), and purple yam (2.6 %). For the "uwi gembolo" variety, the sugar content from the beginning was high (7 %), indicating that the starch was hydrolyzed into sugar, resulting in higher ethanol yield. The enzymatic and fermentation processes that run simultaneously require high energy and are generally in the early fermentation stages. In the beginning, the high amount of sugar converted a lot to ethanol during the fermentation process, so caused the amount to be lower at the end of fermentation. The amount of sugar available in the media is still tiny. In this condition, microbial growth is slow and affects ethanol production—the level of ethanol yield is determined by the yeast activity used with fermented sugar substrate. Microbial activity in yeast enters a death phase when there are enough sugar substrates. Therefore, the microbial population does not considerably impact ethanol production, but it significantly consumes the sugar content in the fermentation substrate (Selim *et al*., 2018). In the "uwi gembili" variety, the number of microbes grows slowly. Therefore, there is no increase in the number of microbes that can convert the substrate into bioethanol, thereby reducing bioethanol production. This moment causes the ethanol content produced to be not optimal.

The fermentation process can take a long time, depending on the yeast’s ability to convert sugar into alcohol. In the fermentation process, microbes change the substrate that can turn into ethanol and produce enzymes to catalyze the conversion of complex carbohydrates to simpler sugars (Thatoi *et al*., 2016). Enzymatic and fermentation processes that run simultaneously will reduce energy input and increase the substrate (Chen-Yeon Chu *et al*., 2012).

<table>
<thead>
<tr>
<th>Types of &quot;Uwi&quot;</th>
<th>Tuber yield (t ha⁻¹)</th>
<th>Level of ethanol (%)</th>
<th>Estimation of ethanol product (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>47.77 c</td>
<td>3.56 cd</td>
<td>1.089 cd</td>
</tr>
<tr>
<td>U2</td>
<td>57.57 d</td>
<td>3.04 bc</td>
<td>1.141 d</td>
</tr>
<tr>
<td>U3</td>
<td>56.70 d</td>
<td>2.76 bc</td>
<td>1.049 cd</td>
</tr>
<tr>
<td>U4</td>
<td>29.80 ab</td>
<td>3.89 cd</td>
<td>0.517 abc</td>
</tr>
<tr>
<td>U5</td>
<td>33.47 b</td>
<td>4.17 cd</td>
<td>0.687 bcd</td>
</tr>
<tr>
<td>U6</td>
<td>25.07 ab</td>
<td>1.53 ab</td>
<td>0.162 ab</td>
</tr>
<tr>
<td>U7</td>
<td>23.57 a</td>
<td>0.36 a</td>
<td>0.042 a</td>
</tr>
<tr>
<td>U8</td>
<td>30.27 ab</td>
<td>4.94 d</td>
<td>0.885 cd</td>
</tr>
</tbody>
</table>

Notes: The number followed by same letters, in the same column, not significant at 5 % DMRT

The research results on ethanol content in the varieties of *Dioscorea* sp. did not show linearity in the relationship of sugar content with ethanol yield. The relationship between 10th d fermentation substrate sugar content and ethanol content follows the equation $y = 2.815 + 0.025x$. 

![Figure 1. Carbohydrate content of fresh tubers and sugar content of various types of “uwi” at different fermentation times](image-url)
The ethanol content (% of types of “uwi” in the three fermentation stages is shown in Figure 2.

Figure 2. The average of “uwi” tuber plant ethanol content (%) in three stages of fermentation

Figure 2 shows that the fermentation time of (5 to 10) d did not show any significant changes and differences, indicating that the fermentation process of up to 5 d is sufficient to convert carbohydrates into sugar and ethanol. The ethanol content did not increase until 10 d due to the fermentation process’s delay by the high level of ethanol in the fermentation liquid, which caused the yeast to become inactive.

The amount of sugar substrate produced from the hydrolysis process seems to be an obstacle in increasing the ethanol yield. The hydrolysis process is the key to an optimum ethanol recovery from starch-based materials. The use of alpha-glucosidase enzymes and variations in hydrolysis temperature affected in increasing the rate of hydrolysis (Kusmiyati, 2010). Other studies also showed that the longer the fermentation time, the greater the bioethanol content produced until the 3rd d. There was a decrease in bioethanol levels the next day (Novia and Khairunnas, 2017). The research results regarding the durian (Durio zibethinus L.) seed bioethanol content revealed the optimal fermentation time of 72 h.

The ethanol production process was determined by two factors, namely tuber-plant productivity and ethanol content of each type. The purple tuber of *D. alata* species produced the highest ethanol (1.141 t ha⁻¹) due to increased tuber production (57.57 t ha⁻¹), although it is not significantly different from the yellow yam. Meanwhile, “gembolo” yielded a higher ethanol yield with low tuber productivity; therefore, estimation ethanol productivity was few (0.687 t ha⁻¹). Thus, in terms of productivity, white, purple and yellow *D. alata* variety have more potential for ethanol production (Figure 3). The tuber production process determined by many factors such as climate, soil, fertilization and other cultivation techniques such as population size, seed quality, plant varieties and others. *D. alata* has more variety, differentiated based mainly on the colour and shape of the tubers. The research results of *D. alata* species revealed productivity of (5 to 7) kg plant⁻¹ with a spacing of 1.00 cm × 0.75 cm. However, the other varieties of *D. alata* had production of less than 2 kg per plant. The yellow yam is rarely used as food because of its unfavourable taste, which can be considered as a raw material for bioethanol.
4. Conclusion

The “uwi” plant species D. alata, namely white yam, purple yam and yellow yam, had the highest tuber and ethanol productivity even though the ethanol content was lower than the “uwi gadung” (D. hispida), “uwi gembolo” and “uwi gembili” (D. esculenta). High levels of tuber carbohydrates, not necessarily resulting in high ethanol yield, still depend on the speed of converting carbohydrates into sugar at the beginning and during the fermentation process. The highest percentage of ethanol yield was obtained for “uwi gadung” (D. hispida) at 4.94%, followed by “uwi gembolo” and “uwi gembili” at 3.89% and 4.17%, and the lowest was for “uwi katak” (D. pentaphylla) at 0.36%. The highest ethanol productivity was obtained by the species of “uwi kelapa” (D. alata) with production of (1.049 to 1.141) t ha⁻¹ of ethanol, considering higher tuber production.

Acknowledgment

The authors appreciate Kemenristekdikti (Ministry of Research, Technology and Higher Education of Republic of Indonesia) for funding this research, by contract number 009/KP2TJ/PTUPT/Unmer.Mdn/LPPM/III/2020, Rector of Indonesia) for funding this research, by contract number Kemenristekdikti (Ministry of Research, Technology and Higher Education of Republic of Indonesia) for funding this research, by contract number 009/KP2TJ/PTUPT/Unmer.Mdn/LPPM/III/2020. The team and students have helped get a lot of data in the field and laboratory.

References


Metabolite Profiling of Black Rice (Oryza sativa L.) Following Xanthomonas oryzae pv. oryzae Infection

Ema Nur Hidayah¹, Febri Adi Susanto²,³, Tri Joko²,⁴, Yekti Asih Purwestri¹,², Tri Rini Nuringtyas¹,²,* , Manar Fayiz Mousa Atoum⁵,⁶, and Asad Jan⁷

¹Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia; ²Research Center for Biotechnology, Universitas Gadjah Mada; Jl. Teknika Utara, Depok, Sleman, Yogyakarta 55281, Indonesia; ³Department of Biochemistry Molecular Biology & Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA; ⁴Department of Crop Protection, Faculty of Agriculture, Universitas Gadjah Mada; Jl. Flora, Balaksumur, Yogyakarta 55281, Indonesia; ⁵Molecular Biology and Genetics, The Hashemite University, PO Box 330127, 13133 Zarqa, Jordan; ⁶Department of Medical Laboratory Sciences, The Hashemite University, Zarqa, Jordan; ⁷Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan

Received: May, 10, 2021; Revised: Sep, 25, 2021; Accepted Oct, 22, 2021

Abstract

Black rice as a functional food contains a high anthocyanin content, which functions as an antioxidant. However, bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has resulted in a reduction in yield. Black rice has been reported to have a higher resistance to BLB than white rice cultivars. This study aimed to determine the metabolite responses of two black rice cultivars, ‘Melik’ and ‘Pari Ireng’, compared to two white rice cultivars, ‘IR64’ and ‘Java14’, after infection with Xoo pathotype IV and mock negative control. Gas Chromatography-Mass Spectrometer (GC-MS) was used for the metabolite profiling analysis, followed by the quantification of total phenolic concentration (TPC) and total flavonoid concentration (TFC). Across all cultivars, the results revealed that following Xoo infection, there were significantly higher concentrations of primary metabolites including sugars, sugar alcohols, fatty acids, glycerol, and some organic acids. In ‘Pari Ireng’ and ‘Melik’ cultivars, sugars including fructose, and gluco-hexodialdose were significantly higher than the white cultivars following the infection. The infection significantly increased the TFC of all cultivars. ‘Java 14’ contained the highest TFC while ‘Pari Ireng’ was observed as cultivars with the highest TFC. These results suggested that pigmented rice cultivars possess a different chemical defense strategy from the white ones to respond to Xoo infection.

Keywords: Bacterial leaf blight, Disease resistance, Functional food, GC-MS, Improvements rice production, Metabolomics, Pigmented rice, Xoo infection

1. Introduction

Rice (Oryza sativa L.) is one of the most important staple foods of many Asian countries such as China, India, Bangladesh, Vietnam, the Philippines, and Indonesia. Statistical data indicate that the global consumption of rice from 2016 to 2017 was an average of 54.24 kg per capita. After China and India, Indonesia had the third-highest rice consumption of more than 50 × 10⁶ t over this period (Shahbandeh, 2019). The increasing rice consumption in Indonesia is related to the increasing population. However, this increase in population has not been reflected in the overall rice production, resulting in increasing rice demand (Pratiwi and Purwestri, 2017).

Rice farmers aim to meet the rising demand through improvements in the rice production process (Hameed et al., 2014; Pratiwi and Purwestri, 2017). However, biotic and abiotic factors have caused many problems, with one of them being bacterial leaf blight (BLB) in rice caused by Xanthomonas oryzae pv. oryzae (Xoo). The symptoms of BLB can present early in the seedling phase to maturity (Tasliah, 2012). Xoo has many pathotypes (i.e. strains) and is characterized by rapid changes, making its control difficult (Sudir et al., 2013; Susanto and Sudir, 2012). The BLB infestation from April to September 2018 was estimated at approximately 2.3 million ha, making this disease the third most devastating pest after rats and rice stem borers (Direktorat Perlindungan Tanaman Pangan, 2018). Almost all rice cultivation areas in Indonesia have experienced some levels of infection.

One of the strategies to manage BLB is planting rice varieties resistant to the pathotypes. The use of disease-resistant rice cultivars is the most economical way to combat the disease. Black rice is one of the pigmented rice types that have exhibited resistance against a range of biotic and abiotic stresses. Its consumption has begun as a functional food, i.e. food that naturally or through addition contains one or more compounds considered to possess health benefits owing to its high anthocyanin content which serves as a natural antioxidant (Kristamtini et al., 2014; Pratiwi and Purwestri, 2017). As a monocot, rice has been commonly used as a model organism to study defense responses in cereal crops. An integrated molecular approach combining transcriptomics, proteomics, and metabolomics is needed to study the response of rice plants to environmental changes (Ahuja et al., 2010).

* Corresponding author e-mail: tririni@ugm.ac.id.
Metabolites in the plant are strongly influenced by the genes present and genetic modifications. The environment also has significant effects on metabolic changes (Brunetti et al., 2013). Plants adapt to the changes in the environmental conditions by producing inducible metabolites or by increasing the levels of existing metabolites that may serve as stress signals or defense (Schwachtje et al., 2019).

Plants often apply multi-strategies to defend themselves from both biotic and abiotic attacks. Pigmented rice is preferable due to its high anthocyanin content. Wijaya et al. (2017) suggested that black pigmented rice adjusts its metabolism to produce high anthocyanin content compared to the white and red ones. Accumulative information also showed that pigmented rice tends to have a higher resistance to Xoo infection (Sutrisno et al., 2018) with the support of phenylalanine ammonia lyase (PAL) (Solekha et al., 2020).

Metabolite profiling has been used as a novel tool for the comparative display of gene function. This tool not only has the potential to provide deeper insights into the complex regulatory processes of metabolite production but can also be used for direct determination of the resulting phenotype (Kumar et al., 2017; Pan et al., 2013). In this study, the objective was to observe and evaluate the metabolic changes in pigmented rice following infection by Xoo. This information may provide a better understanding of plant defenses in pigmented and white rice information crucial for improvement in rice production.

2. Materials and Methods

The rice seeds used in this study included two local black rice cultivars ‘Pari Ireng’ and ‘Melik’ obtained from Balai Pengkajian Teknologi Pertanian – BPTP (Institute for Agricultural Technology) Yogyakarta. The white cultivar ‘Java14’ was used as a resistant control (Susanto and Sudir, 2012), whereas ‘IR64’ cultivar was used as a susceptible control. These were obtained from Balai Besar Penelitian Tanaman Padi Sukamandi - BBPadi (Indonesian Center for Rice Research - ICRC), Subang, West Java (Sudir et al., 2013). The Xoo isolate used was pathotype IV with a concentration of 10^8 colony-forming units originally from BBPadi, Subang, West Java. The inoculum was cultured in a peptone sucrose agar medium in Petri dishes. Inoculation of plants with the Xoo via the leaf clipping method was performed in the late afternoon to avoid the time of day experiencing high heat and high evaporation (Sutrisno et al., 2018). The negative treatments, called as mock, were done by clipping the leaves with aquadest only. Both mock and infected plants were cultivated for 4 d in the greenhouse. At the end of the treatment, leaves were harvested for chemical analysis.

2.1. Metabolite profiling using Gas Chromatography–Mass Spectrometer (GC-MS)

For metabolite profiling, rice leaf samples were collected from the plants 4 d following inoculation (Narsai et al., 2013). For each treatment, approximately 50 mg of the leaf material was deep-frozen at −80 °C prior to extraction. The leaf samples were refined using liquid nitrogen and then extracted by adding 1 mL of an extraction buffer (isopropanol: acetonitrile: water, 3:3:2, previously cooled at -20 °C) to the leaf material. The supernatant was stored at -20°C for 30 min to 40 min prior to vacuuming using a cold vacuum pump and then treated by adding 10 μL methoxyamine hydrochloride solution (20 mg mL\(^{-1}\)). The derivatization process was performed by adding 90 μL MSTFA at 37 °C for 30 min (Sana et al., 2010). The samples were allowed to stand at room temperature for 2 hr prior to injection into a GC–MS and stored in a freezer for further analysis.

The analysis was performed using a GC–MS mass selective detector and RXi-5MS capillary column (30 m × 0.25 mm; layer thickness of 0.25 μm). Helium was used as the carrier gas at a constant rate of 1 mL min\(^{-1}\), and 1 μL of the gas was injected (split ratio 10:1). The temperature of the injected gas was set at 310 °C, of the column at 80 °C, and the ion at 250 °C. The temperature regime was initiated from isothermal at 80 °C (5 min), and the temperature increase was set at 10 °C min\(^{-1}\) until the final temperature of 330 °C was reached (43 min). GC–MS was performed on each leaf sample using three replications.

2.2. Sample Preparation for Total Phenolic Concentration (TPC) and Total Flavonoid Concentration (TFC) Quantification

Extracts were prepared by homogenizing 50 mg fresh leaves sample with 4 mL phosphate buffer (pH 6.5; 0.1 M), followed by centrifugation at 10 000 rpm (1 rpm = 1/60 Hz) for 15 min at 2 °C. Next, 2 mL of absolute ethanol was added to 2 mL of supernatant and boiled in water at 98 °C for 30 min. Subsequently, 5 mL of distilled water was added to the sample, and the solution was slowly mixed. The samples were divided into two equal parts to measure TPC and TFC.

2.2.1. Total Phenolic Content (TPC)

Analysis of TPC was conducted by spectrophotometry using the Folin–Ciocalteu method (Everette et al., 2010) with some modifications. Amount 1 mL of a sample was added to 0.5 mL Folin–Ciocalteu reagent (1:1) along with 1 mL Na₂CO₃ (7.5 %) and 2.5 mL of distilled water. The sample was incubated for 1 h prior to measuring the absorbance at 650 nm (Dahima et al., 2014). Gallic acid was used as a standard for the calibration curve at a concentration of 10 μg mL\(^{-1}\) to 160 μg mL\(^{-1}\) in the standard curves with intervals of 20 μg mL\(^{-1}\). TPC was calculated in terms of gallic acid equivalents.

2.2.2. Total Flavonoid Content (TFC)

A colorimetric test with aluminum chloride was used to measure TFC. Amount 1 mL of a sample was added to 0.5 mL of 2 % AlCl₃ and 2.5 mL distilled water. Then, the samples were briefly shuffled and incubated for 10 min at 37 °C prior to measuring the absorbance at 425 nm (Pekal and Pyrnyska, 2014). Quercetin was used as the standard. The quercetin concentration used in the standard curve was ranging from (20 to 100) μM mL\(^{-1}\) [(20, 40, 60, 80 and 100) μM mL\(^{-1}\)]. The determination of TFC was calculated in terms of equivalent quercetin in reference to the standard curve.

2.3. Data and Statistical Analysis

Metabolites were determined based on the spectrum similarity of each sample peak to the examples in the mass spectrometry library (i.e., NIST and WILEY). MS results reflected compounds derivatized using silylation.
Compounds identification was validated by checking all detected metabolites with NIST (webbook.nist.gov). Visualization of the entire area of the metabolite distribution was performed using Heat Map in Microsoft Excel 2010. The statistical analyses for metabolites levels, TPC, and TFC were performed using ANOVA with significance set at the 5% confidence level, followed by post hoc Duncan’s multiple ranges in SPSS Statistics 24 (Adinurani, 2016).

3. Results and Discussion

3.1. Metabolite profiling

GC–MS based metabolomics was used for metabolite profiling of black rice following Xoo infection. Eleven primary metabolites were detected in the metabolite profile of rice leaves. Metabolites found in all cultivars were mostly primary metabolites, including sugars, alcoholic sugars, fatty acids, glycerol, and some organic acids with different concentrations in each cultivar and treatment (Figure 1). These metabolites were previously reported present in the rice leaves detected using GC–MS (Kusano et al., 2015).

In the mock plants, the white cultivars showed higher sucrose levels and gluco-hexodialdose than the black cultivars. The higher mannitol level around 5 to 8 times was only observed on the IR64 cultivars but not the 'Java14'. The rest of the metabolites were comparable among all cultivars. Interesting shifting of metabolites profiles was observed after the plants were treated with Xoo (Figure 1).

The heat map of the metabolite profile revealed that metabolite profiles of all cultivars changed after infection (Figure 2). It can be observed from the change of color of several metabolites such as fructose, palmitic acid, glycerol, ribitol, and xyllose in the heat map. Several responses were different between the white rice (i.e., ‘Java14’ and ‘IR64’) with pigmented rice (i.e. ‘Pari Ireng’ and ‘Melik’). However, a similar pattern was observed in glycerol after infection. In all cultivars, increased glycerol levels were consistently observed. Fructose and gluco-hexodialdose levels were found to be higher in ‘Pari Ireng’ and ‘Melik’ following Xoo infection than those following the mock treatment. In contrast, the levels decreased in the white rice cultivars ‘Java14’ and IR64 compared with the levels in control. Sugars as a resource of carbon were also reported to be depleted in the leaves' surface upon bacterial infection (Bezrutczyk et al., 2018). In addition, alcoholic sugars such as mannitol demonstrated a different pattern.
Mannitol level decreased in ‘IR64’ following the Xoo infection but increased in ‘Java14’, ‘Melik’, and ‘Pari Ireng’. The low content of mannitol in IR64 as the representative of susceptible cultivars suggested the role of this sugar alcohol in defense against disease. The correlation of mannitol to bacterial infection remains unclear. However, it was reported to function as antimicrobials recently (Nguyen et al., 2019).

**Figure 2.** Heat map of metabolite profile on four rice cultivars following Xoo infection. M: Mock, AI: after infection. The red box indicates the different response of pigmented rice cultivars than the white cultivars. The blue box indicates the metabolites changed after infection observed in all cultivars.

The opposite response was observed for palmitic acid. A higher level of palmitic acid was observed in ‘Java14’ and ‘IR64’, while in ‘Pari Ireng’ and ‘Melik’ were lower. A group of sugars was found in all tested cultivars: xylose, glycerol, mannitol, and mannose. Glycerol levels increased across all cultivars following the infection. Remarkably, mannose levels in ‘IR64’, ‘Melik’, and ‘Pari Ireng’ increased following Xoo infection but decreased in ‘Java14’. A decreased concentration of malic acid following the infection was observed only in the black rice cultivars, ‘Melik’ and ‘Pari Ireng’. Malic acid is known to play a role in regulating pH and osmotic homeostasis in plants with pathogen infection (Figure 1.).

Sugars have been recognized as important signaling molecules that affect a variety of physiological responses. They regulate the expression of genes involved in photosynthesis, metabolism, and defense responses (Bolouri-Moghaddam et al., 2010; Morkunas and Ratajczak, 2014). Fructose and gluco-hexodialdose levels increased in the black rice cultivars following Xoo infection but decreased in the white rice cultivars.

**Xoo** infection tends to decrease sugar production and, subsequently, the energy to produce metabolites in defense response. In particular, most plant pathogens actively penetrate the plant cell wall to access the intracellular nutrients, whereas plants subsequently, strengthen cell walls and secrete antimicrobial components into the cell wall in an attempt to stop pathogen invasion as a defensive response (Malinovsky et al., 2014). Several studies have shown that sugar transportation plays an essential role in the rice defense response against pathogens (Chen et al., 2010a, 2010b, 2012; Julius et al., 2017). Accumulation of sucrose and gluco-hexodialdose in plants following Xoo infection triggers the allocation of nutrients and signals for the activation of the defense response. Remarkably, another sugar, xylose, was found in all tested cultivars. Increased xylose level in ‘Java14’ and ‘Pari Ireng’ following Xoo infection may trigger a defensive response against pathogens. Another compound found in the metabolite profile based on the GC–MS analysis seems to play a role against the pathogen. However, the pattern obtained by spectroscopy suggests that the compound is unlikely to be a major compound that serves in the defense mechanism. The roles of the compounds present in plants are listed in Figure 1. These are considered to play a role in the defense mechanism but not as major signaling compounds.

Metabolite profiling of black rice following Xoo infection demonstrated that there were more kinds of sugars than other metabolites. Xoo−infected rice may continue to experience changes in metabolite composition and sugar content that can affect PR protein formation and induce plant defenses (Sun et al., 2013). The result of metabolite profiling can be used to determine the metabolite responses and defense strategies plants use in response to BLB.

### 3.2. TPC following Xoo infection

Phenol, a family of compounds involved in plant defense, is considered important in plant metabolism. The TPC values of four rice cultivars were 0.45 % to 0.98 % (w/w), within the range value commonly available in grain-producing plants. The phenolic compounds in plants are usually associated with the tolerance characters against both biotic and abiotic stress due to the natural antioxidants property of phenolics (Vrancheva et al., 2020), ‘Java 14’ had the highest TPC than the other cultivars in each treatment, followed by the black rice cultivars, and ‘IR64’ (Figure 3). The increase in TPC indicated that there is a plant response that was a defense mechanism in response to the presence of the pathogen. ‘IR64’ had the lowest TPC; thus, this finding supported the fact that ‘IR64’ is highly susceptible to the Xoo pathotype (Khaeruni et al., 2014; Sudir et al., 2013). The role of phenolic compounds in the plant defense against Xoo has been reported by Khan et al. (2014) and FanRei (2017). High TPC was significantly detected in the resistant rice cultivars, i.e. ‘Basmati-385’ and ‘Basmati-2000’ (Khan et al., 2014). More recent study using a library of phenolics compounds showed that 10 out of 45 phenolic compounds had been proven to inhibit the Xanthomonas oryzae pv. oryzae (Xoo) type III. Moreover, these ten compounds can also suppress the hypersensitive response (HR) caused by Xoo in tobacco (Fan et al., 2017).
response in plants.

an increase in the production of flavonoids as a defense

Figure 4. The presence of pathogens can trigger

groups (Figure 4). The presence of pathogens can trigger

observed across all treatments in the white rice cultivars.

in the black rice cultivars. In contrast, low TFC was

in the black rice cultivars. The black rice cultivars also showed increases in TPC

metabolite profile following the

Xoo

infection.

Ireng') showed a different metabolite profile following the

Xoo

infection. BI: before infection, M: Mock, AI: after infection

Xoo

infection was observed

Based on the results, the authors found that ‘Pari Ireng’ has higher TPC and TFC than ‘Melik’, specifying a

stronger defensive response in ‘Pari Ireng’ than in ‘Melik’. Differences in terms of disease intensity observed during

the second week in the black rice cultivars showed that a

new main defense mechanism was activated after a week

following the infection. Thus, within the first week, there

were no differences in terms of the disease intensity values

(data not shown). The combination of relatively high TFC,

TPC, and fatty acid content in ‘Java14’ suggests that these

compounds reduce disease intensity unlike in the other

cultivars. Although TPC of ‘Java14’ was lower than that of

the black rice cultivars, the TPC produced was believed to be more effective against BLB infection. This pattern was

similar in the black rice cultivars.

4. Conclusion

The metabolite profiling of two pigmented rice
cultivars and two white cultivars in response to

Xoo

infection detected primary metabolites including sugars,
sugar alcohols, fatty acids, glycerol, and some organic

acids observed in all cultivars following

Xoo

infection. An increase of glycerol levels was observed in all cultivars

after infection. In pigmented rice, ‘Melik’ and ‘Pari Ireng’,
sugars including fructose and gluco-hexodialdose were higher in concentration following

Xoo

infection. The

infection significantly increased the TPC of all cultivars.

higher in concentration following

Xoo

infection.

The authors thank Ir. Sudir from Balai Besar

Penelitian Tanaman Padi, Sukamandi, Subang, West Java

contract number 863/UN1-P.III/LT/DIT-LIT/2016. This

research is part of a master’s thesis research by Ema Nur

Hidayah. The authors thank Ir. Sudir from Balai Besar Penelitian Tanaman Padi, Sukamandi, Subang, West Java

to YAP Research Grant 2016, The Ministry of Research,

Technology, and Higher Education Indonesia for the valuable suggestions on the

Xoo

pathotype IV

Acknowledgment

This research was supported by PUPIT Competitive

Research Grant 2016, The Ministry of Research,

Technology, and Higher Education Industries to YAP

contract number 863/UN1-P.III/LT/DIT-LIT/2016. This

study is part of a master's thesis research by Ema Nur Hidayah. The authors thank Ir. Sudir from Balai Besar Penelitian Tanaman Padi, Sukamandi, Subang, West Java

for the valuable suggestions on the

Xoo

infection. It can be concluded that pigmented rice cultivars possess a different

in chemical defence strategy from the white ones to respond to

Xoo

infection.

References

Adinurani, P.G. 2016. Design and analysis of agro trial data: Manual and SPSS. Plantaxia, Yogyakarta, Indonesia


Evaluation of Efficiency of *Echinodorus palaefolius* (J.F. Macbr.) Involved in the *Clarias gariepinus* (Burchell, 1822) Culture for Water Quality Recovery and Fish Growth Support

Hany Handajani¹*, Ganjar Adhywisrawan¹, Soni Andriawan¹, Dony Prasetyo¹ and Boy Ronald Mavuso²

¹ Department of Aquaculture, Faculty of Agriculture and Animal Science, University of Muhammadiyah Malang, Jl Raya Tlogomas No. 246, Malang 65144, Indonesia; ² Ministry of Agriculture, P.O Box 162, Mbabane H100, Eswatini, Africa

Received: May, 15, 2021; Revised: Oct, 16, 2021; Accepted Nov, 11, 2021

**ABSTRACT**

Intensive catfish ([*Clarias gariepinus*](Burchell, 1822)) cultivation produces organic waste that decreases water quality. The aquaponics system utilizes fish waste for plant growth to produce useful and economical products. This study aims to analyze and evaluate the best density of Mexican sword plant/water Jasmine (*Echinodorus palaefolius* (J. F. Macbr.)) in reducing waste from intensive catfish aquaculture. The research method used a completely randomized design (CRD) with four treatments with three replications. A plastic tub with a size of 38 cm × 12 cm × 30 cm filled with sand was used for plant media, while for catfish rearing containers, a 70 L tub with a water volume of 40 L was used. The fish used in this experiment was catfish fry with a size of 7 cm ± 0.8 cm, a weight of 5.14 g ± 0.45 g, with a stocking density of one fry per liter. Catfish fry were fed with floating pellet feed of 30 % protein content, and the feeding was done at satiation. The treatments were T1 = without plants, T2 = 150 g m⁻² plants, T3 = 250 g m⁻² plants, and T4 = 350 g m⁻² plants. Furthermore, all data were analyzed through ANOVA (One-way analysis of variance) and the Duncan’s multiple range test to measure significant variations among the treatments using SPSS (version 17, USA). The results revealed that T4 was the best treatment in terms of nutrient removal efficiency of TAN, NO₂⁻, NO₃⁻, and PO₄³⁻ at the rate of 23.80 %, 48.19 %, 52.99 % and 26.11 %, respectively. Moreover, growth performances of fish fry fed diet in T4 also were significantly (*P < 0.05*) higher than other fishes of different treatments. Regarding these findings, *E. palaefolius* could work well to maintain water quality during *C. gariepinus* cultivation and even accelerated *C. gariepinus* growth at the end of the period.

Keywords: Aquaponics technology, Catfish, Economically valuable, Intensive culture, Mexican sword plant, Phytoremediation, Utilization waste, Water Jasmine

1. Introduction

Catfish ([*Clarias gariepinus*](Burchell, 1822)) is a very popular commodity for cultivation in Africa, Indonesia, and several other countries in the world because of its fast growth, disease resistance, and wide geographical spread (Elesho et al., 2021). Consequently, catfish production in Indonesia has increased rapidly, accounting for 55,691 t in 2004 and climbed dramatically in 2014, reached 543,774 t (Zahidah et al., 2018). In addition, catfish production from 2017 to 2018 increased from 841.75 × 10³ t to 1.81 × 10⁶ t (114.82 %) (FAO, 2018).

In intensive fish cultivation, only about 80 % of the feed given is consumed, while the remaining 20 % will be wasted (not eaten), and of the 80 % consumed, only about 25 % will be retained. In comparison, the remaining 10% will be wasted through faeces, and 65 % will be excreted as urine (Bureau and Hua, 2010). According to El-Shafai et al. (2007), in the intensive cultivation system of tilapia, the nutrients released are around 62 % to 73 % of the total nitrogen and 55 % to 70 % of the total phosphorus divided into particles dissolved. Furthermore, N and P waste can affect water quality parameters such as a decrease in the concentration of dissolved oxygen content and an increase in the concentration of carbon dioxide, ammonia, nitrite, and nitrate (Hlordzi et al., 2020). According to Keramat (2011), the resulting waste could increase dissolved and suspended organic matter in the feed residue, faeces and urine, negatively affecting fish growth even at specific toxic doses. Therefore, the deterioration of water quality leads to retard fish growth (Makori et al., 2017). In a review by Yavuzcan et al. (2017), water quality deterioration has a detrimental effect on fish physiology, growth rate, and feed efficiency, resulting in various diseases and even death. Based on those obstacles, it is necessary to find a solution to maintain water quality suitable for *C. gariepinus*, such as applying an aquaponics system.

Aquaponics is the process of maintaining aquatic organisms and plants in symbiosis into one system or several sub-systems (Goddek et al., 2019; Monsees et al., 2017; Pedersen et al., 2012), whereas treated water is circulated freely between aquaculture and hydroponic units in a single loop system (Goddek et al., 2019). The
principle of the aquaponics system is to utilize fish cultivation waste for plant growth and produce useful and economically valuable by-products (Somerville et al., 2014). The advantages of aquaponics technology compared to conventional fish cultivation technologies are to control water quality, high fish growth and production, and additional income from plants. Plants in aquaponics technology absorb nutrients from waste of fish culture system for their development (Goddek et al., 2019).

The types of plants used in the aquaponics system can be vegetable plants, fruit plants, aquatic plants (aquascape), flower plants or other aquatic plants. Ghaly et al. (2005) reported that five types of plants, including Medicago sativa L., Trifolium repens L., Avena sativa L., Secale cereale L. and Hordeum vulgare L. were able to reduce total solids, COD, NO3-N, NO2-N, phosphate and potassium ranging from 54.7 % to 91.0 %, 56.0 % to 91.5 %, 82.9 % to 98.1 %, 95.9 % to 99.5 %, 54.5 % to 93.6 % and 99.6 % to 99.8 %. Handajani et al. (2018) also postulated that Echinodorus palaefolius (J. F. Macbr) could utilize N and P in Anguilla bicolor culture. Water remediation with E. amazonicus and E. palaefolius significantly reduced TAN, NO2, NO3, and PO4 concentrations in effluent of fish culture system. Unfortunately, no one has used E. palaefolius as a phytoremediator agent in the aquaponic system of catfish culture. Thus, that system is expected to improve the performance of fish production.

The purpose of this study was to evaluate the capacity of water Jasmine/Mexican Sword [Echinodorus palaefolius (J. F. Macbr.)] plants as phytoremediation agents in aquaponics systems in reducing waste of catfish culture system.

2. Materials and Methods

2.1. Preparation of containers, fish, and plants

Two types of containers were used in this experiment for catfish fry and E. palaefolius cultivation. Twelve catfish fries were reared in containers filled with 40 L of water, while E. palaefolius was maintained in a tub with volume of 38 cm x 12 cm x 30 cm in length, completed with sand as a planting medium at the bottom of the tub. Meanwhile, this experiment used catfish fries (5.14 g ± 0.45 g) obtained from a group of fish farmers in Malang Regency, with a stocking density of one fish per liter. The placement of fish in the experimental unit was carried out randomly. Before the treatment, catfish was conditioned for 5 d, fed diet of 30 % of protein with a feeding rate of 3 % of the biomass. The frequency of feeding was conducted in the morning (06.00), afternoon (12.00) and evening (18.00) for 30 d. During the conditioning period, the health and vitality of catfish were controlled so that they were still suitable as a sample. Moreover, the aquatic plants obtained from ornamental aquatic plant cultivators were adapted in a fibre bath for 5 d before use.

2.2. Experimental design and data analysis

This study used a completely randomized design with four treatments with three replications. These treatments differed among teach other in the stocking density of E. palaefolius: 0 g m⁻² (T1), 150 g m⁻² (T2), 250 g m⁻² (T3) and 350 g m⁻² (T4). Each treatment was repeated three times. ANOVA and F test used the SPSS version 21 with 95 % confidence level, then further tested using the Duncan’s multiple range test to determine whether significant variation among treatment means the treatment effect on each tested variable (Adinurani, 2016).

2.3. Measurements

Water quality measurements were carried out for 30 d (day) after introducing water plants. Water quality parameters were measured every day including temperature, pH, dissolved oxygen (DO), while total amoniacal nitrogen (TAN), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), phosphate phosphorus (PO4-P), total suspended solids (TSS), once a week (1 wk=7 d) following Enduta et al., 2011. Measurement of TAN, nitrite, nitrate, and orthophosphate was carried out using a spectrophotometer referring to Rice et al. (2017). The following measures were taken: survival rate (SR), total feed consumption, specific growth rate (SGR), absolute length (Al), and feed conversion ratio (FCR) to determine the growth performance of catfish (Liu et al., 2016; Nhan et al., 2019) using Equation (1) to Equation (4):

\[ \text{SGR} \ (\% \ d^{-1}) = \frac{W_{t} - W_{0}}{t} \]

\[ \text{Al} (cm) = L_{t} - L_{0} \]

\[ \text{FCR} = \frac{F}{W_{t} - W_{0}} \]

\[ \text{SR} (\%) = \frac{N_{t}}{N_{0}} \times 100 \]

Note: SGR = Specific growth rate (% d⁻¹); Al = Absolute length (cm); F = Feed consumption during cultivation (kg); W₀ = Initial weight (g); Wₜ = Final weight (g); W₀ = Initial length (cm);

Wₜ = Final length (cm); t = Time (day);

SR (%) = \frac{Nₜ}{N₀} x 100  (4)

Note: SR = Survival rate (%); N₀ = Initial number of fish; Nₜ = Final number of fish

The calculation of nutrient removal was carried out every 7 d, such as TAN, NO₃, NO₂ and PO₄ (Enduta et al., 2011). The water plant parameters, including wet biomass, were measured at the beginning and end of the experiment. At the beginning and end of the investigation, the total N and PO₄-P in plant tissue were analyzed (Amalia et al., 2014).

2.4. Nutrient removal efficiency

During the experiment, there was a loss of nutrients in the water. The amount of nutrient reduction could be calculated by the following Equation (5) (Zhou et al., 2006).

\[ NR = \frac{(C_{a} - C_{b}) \times 100}{C_{a}} \]

Note: NR = nutrient removal (%); Ca = nutrient concentration of influent (mg L⁻¹); Cb = nutrient concentration of effluent (mg L⁻¹)

3. Result and discussion

3.1. Result

3.1.1. Water quality and nutrient removal efficiency

Measurement of water quality parameters, including temperature, pH, dissolved oxygen (DO), total suspended solids (TSS), total ammonia nitrogen (TAN), ammonia (NH₃), ammonium (NH₄), nitrate nitrogen (NO₃-N),
nitrite nitrogen (NO$_2$-N), orthophosphate (PO$_4$-P) were examined for 30 d of catfish rearing (Table 1).

Tabel 1. Water quality in catfish media during 30 d observation

<table>
<thead>
<tr>
<th>Variable</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Optimum Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>26.50 to 29.30</td>
<td>26.30 to 28.70</td>
<td>26.80 to 28.92</td>
<td>26.30 to 27.68</td>
<td>25 to 30 °C (Siqwepu et al., 2020)</td>
</tr>
<tr>
<td>DO (mg L$^{-1}$)</td>
<td>4.75 to 5.13</td>
<td>4.65 to 5.60</td>
<td>4.75 to 5.60</td>
<td>4.27 to 5.53</td>
<td>&gt; 3 mg L$^{-1}$ (Siqwepu et al., 2020)</td>
</tr>
<tr>
<td>pH</td>
<td>7.37 to 7.52</td>
<td>7.90 to 8.10</td>
<td>7.95 to 8.10</td>
<td>7.85 to 8.03</td>
<td>6.5 to 8 (Siqwepu et al., 2020)</td>
</tr>
<tr>
<td>TSS (mg L$^{-1}$)</td>
<td>4.67 to 5.44</td>
<td>4.40 to 4.56</td>
<td>4.06 to 4.45</td>
<td>4.00 to 4.56</td>
<td>&lt; 80 (Siqwepu et al., 2020)</td>
</tr>
<tr>
<td>TAN (mg L$^{-1}$)</td>
<td>0.15 to 0.47</td>
<td>0.15 to 0.27</td>
<td>0.15 to 0.27</td>
<td>0.15 to 0.25</td>
<td>&lt; 0.27 (Elesho et al., 2021)</td>
</tr>
<tr>
<td>NO$_2$-N (mg L$^{-1}$)</td>
<td>0.05 to 0.35</td>
<td>0.05 to 0.31</td>
<td>0.05 to 0.27</td>
<td>0.05 to 0.24</td>
<td>&lt; 0.21 (Elesho et al., 2021)</td>
</tr>
<tr>
<td>NO$_3$-N (mg L$^{-1}$)</td>
<td>14.64 to 49.67</td>
<td>14.64 to 47.60</td>
<td>14.64 to 43.28</td>
<td>14.64 to 45.27</td>
<td>&lt; 53 (Elesho et al., 2021)</td>
</tr>
<tr>
<td>PO$_4$-P (mg L$^{-1}$)</td>
<td>0.65 to 9.96</td>
<td>0.65 to 8.85</td>
<td>0.65 to 8.63</td>
<td>0.65 to 8.51</td>
<td>&lt; 10 (Elesho et al., 2021)</td>
</tr>
</tbody>
</table>

Figure 1 shows the trend of nutrient removal efficiency every 7 d for each treatment. The removal efficiency of NO$_3$ and PO$_4$ in all treatments tended to increase every week, except at T3 (250 g m$^{-2}$) that the removal of phosphate decreased at 2$^{nd}$ wk and nitrate at 4$^{th}$ wk. The TAN removal efficiency for all treatments was almost the same level at week two, and then in the following week, it tended to increase. On the other hand, NO$_2$ removal efficiency fluctuated for all treatments.

3.1.2. Catfish growth performance

The growth performance of catfish fry consisting of survival, specific growth rate, absolute length, total feed consumption, and feed conversion on maintenance for 30 d is presented in Table 2. The statistical analysis of results showed that Treatments, T3 and T4 almost significantly differences between treatments ($P < 0.05$) varied from other treatments, except for survival, which was not significantly different. But only absolute length of fishes of T4, T3 and T2 had significant ($P < 0.05$) difference from that of T1. (E. palaefolius, 350 g m$^{-2}$) showed the
highest value for specific growth and absolute length and the lowest feed conversion rate.

Table 2. Growth performance of catfish cultured under aquaponics system

<table>
<thead>
<tr>
<th>Variable</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific growth rate (%)</td>
<td>2.53±3.74&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3.18±5.54&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.84±4.93&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.00±2.73&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Absolute length (cm)</td>
<td>3.06±0.46&lt;sup&gt;b&lt;/sup&gt;</td>
<td>4.57±0.16&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.66±0.16&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.72±0.15&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Feed consumption (g)</td>
<td>106.53±4.23</td>
<td>173.63±2.63</td>
<td>158.40±6.39</td>
<td>165.83±5.06</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>0.54±0.8&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0.43±0.02&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.39±0.02&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.35±0.01&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Survival rate (%)</td>
<td>100.00±0.00</td>
<td>100.00±0.00</td>
<td>100.00±0.00</td>
<td>100±0.00</td>
</tr>
</tbody>
</table>

The different letters in each row showed significant differences (P < 0.05).

3.1.3. Plant growth performance

The statistical analysis results showed significant differences of plant growth parameters of T4 and T3 had significant (P < 0.05) differences from the same of T1 but not in the case of plant height. The T4 (350 g m<sup>–2</sup>) had the highest biomass gain, daily growth, nitrogen retention and phosphorus retention. Meanwhile, plant height was not significantly different.

Table 3. Plant growth performance (E. palaefolius)

<table>
<thead>
<tr>
<th>Variable</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ymbiomass (g)</td>
<td>84.67±5.25&lt;sup&gt;a&lt;/sup&gt;</td>
<td>109.67±2.60&lt;sup&gt;b&lt;/sup&gt;</td>
<td>112.67±2.89&lt;sup&gt;c&lt;/sup&gt;</td>
<td>110.67±2.60&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Daily growth (g)</td>
<td>2.07±0.07&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.37±0.49&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.97±0.83&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.20±0.83&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td>20.48±3.56</td>
<td>29.25±1.79</td>
<td>48.97±4.53</td>
<td>46.97±4.53</td>
</tr>
<tr>
<td>Nitrogen retention (g)</td>
<td>99.87±4.39&lt;sup&gt;a&lt;/sup&gt;</td>
<td>143.84±7.46&lt;sup&gt;b&lt;/sup&gt;</td>
<td>178.11±6.53&lt;sup&gt;c&lt;/sup&gt;</td>
<td>168.11±6.53&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Phosphorus retention (g)</td>
<td>68.23±3.62&lt;sup&gt;a&lt;/sup&gt;</td>
<td>109.67±2.60&lt;sup&gt;b&lt;/sup&gt;</td>
<td>112.67±2.89&lt;sup&gt;c&lt;/sup&gt;</td>
<td>110.67±2.60&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

The different letters in each row showed significant differences (P < 0.05).

3.2. Discussion

The maintenance of catfish fry by applying aquaponics technology was greatly influenced by environmental factors, including temperature, pH, and dissolved oxygen. The higher the temperature of the media was, the higher the metabolic rate of the fish was so that the fish appetite increased, which means an increase in the toxicity of excreted metabolic waste. The range of temperatures in this study was still in good condition for catfish growth (26.30 °C to 28.92 °C). According to Siqwepu et al. (2018), the water quality in the phytoremediation-based recirculation system was optimal because plants could utilize fish culture waste as nutrients for their growth. According to Effendi et al. (2015), water spinach can reduce TAN by 84.6 %, 34.8 % of NO<sub>3</sub> and 44.4 % of PO<sub>4</sub>. On the other hand, Delis et al. (2015) reported that Vetiver grass [Chrysopogon zizanioides (L.) Roberty] could reduce TAN by 48.36 % and PO<sub>4</sub> by 19.94 %. In this study, the ability of E. palaefolius was the highest in reducing TAN, NO<sub>2</sub>, NO<sub>3</sub>, and PO<sub>4</sub> by of T4. The percentage of removal of TAN, NO<sub>2</sub>, NO<sub>3</sub>, and PO<sub>4</sub> on 28<sup>th</sup> d was 23.80 %; 48.91 %; 52.99 %; and 27.63 %, respectively. Meanwhile, the lowest nutrient removal by of T1, were TAN on 14<sup>th</sup> d was 9.8 %; while NO<sub>2</sub> on 7<sup>th</sup> d was 19.07 %; NO<sub>3</sub> on 7<sup>th</sup> d was 19.97 %, and PO<sub>4</sub> was 11.05 % on 7<sup>th</sup> d. Plants as phytoremediators utilize ammonium and nitrate, where the primary source of inorganic nutrients came through plant roots (Enduta et al., 2011), while it is not toxic for fish. When the water conditions are sufficiently oxidized, ammonia will be converted into an intermediate product, namely nitrite (NO<sub>2</sub>–). Nitrite is a relatively unstable compound because, with sufficient oxygen, it will be easily oxidized to nitrate by Nitrobacter. The nitrite concentration in this research could still be within tolerable levels by fish, although it increased because this compound is unstable. Their changes in the system could be overcome with sufficient oxygen supply so that the eels can still grow well. According to Van Rijn (2013), in the circulating system, the nitrite concentration should not exceed 10 mg L<sup>–1</sup> for an extended period, and in most cases it should remain below 1 mg L<sup>–1</sup>. According to Elesho et al. (2021), nitrite concentration must be < 0.21 mg L<sup>–1</sup> in water media. The Nitrobacter bacteria then oxidizes nitrite (NO<sub>2</sub>) to produce nitrate (NO<sub>3</sub>). Furthermore, nitrate is the end product of the nitrogen cycle and a compound that is not harmful to fish and a source of nutrients for plants other than NH<sub>4</sub>. The nitrate
concentration in this study was still supportive for catfish life because it ranged from 14.64 mg L⁻¹ to 49.67 mg L⁻¹. The research results by Elesho et al. (2021) on the rearing system of catfish, NO₃ was 53 mg L⁻¹, while Jaeger et al. (2019) recommended that the NO₃ concentration not exceed 50 mg L⁻¹ in waters used for fish farming. High concentrations of NO₃ can result in algae blooms which cause a decrease in pH (Ebeling et al., 2006; Nuwansi et al., 2019). Morning glory (Ipomoea aquatica Forssk.) can reduce total ammonia - nitrogen N, nitrite-N, nitrate-N and orthophosphate significantly from 78.32 % to 85.48 %, 82.93 % to 92.22 %, and 79.17 % to 87.10 %, respectively, and 75.36 % to 84.94 %, whereas by using Chinese broccoli (Brassica oleracea var. alboglabra L.), total ammonia nitrogen could be reduced from 75.85 % to 69.0 %, 79.34 % to 72.49 % for nitrite-N, 80.65 % to 66.67 % for nitrate-N and 77.87 % to 66.79 % for orthophosphate (Enduta et al., 2011).

The survival rate in this study was 100 %. This result was higher when compared to the study by Okomoda et al. (2020) where catfish maintained in a settling tank and aerobic tank as filters gave a survival rate of 82.78 %. According to Enduta et al. (2011), the survival rates of African catfish (C. gariepinus) treated with aquaponics technology using kale (Brassica oleracea var. sabellica L.) and caisim (Brassica rapa L. cv. group Caisim) plants were 94.5 % and 94.2 %, respectively. Based on the growth performance data of catfish (Table 2), the density of E. palaefoliusplants as a phytoremediation agent in catfish culture with recirculatory aquaponics affected the growth performance of catfish significantly (P < 0.05). The T4 showed the highest growth performance for catfish, including a specific growth rate of 4.00 %, an absolute length of 4.72 cm, and feed conversion of 0.4. This was due to utilizing nutrients from the highest level of catfish culture waste at T4. Therefore, the water quality conditions for catfish rearing were still in good condition to utilize feed more efficiently. According to Pedersen et al. (2012), recirculation application of recirculatory system with water plants, duck weeds (Lemna gibba L), dropped FCR value, increased protein efficiency ratio, and tilapia growth. The FCR in fish farming must be considered because it would affect the cost of feed. Small changes in FCR would have a big effect on the profitability of cultured fish (Liu et al., 2016).

The success of the aquaponics system was inseparable from the growth of E. palaefolius. During the observation period, the development of aquatic ornamental plants showed a positive response to the aquaponics system. That indicated an increase in biomass growth in all treatments and nitrogen retention in plant tissues (Table 3). Freshwater ornamental plants could utilize waste of catfish cultivation waste as a sources of nutrients for their growth. This was evidenced by an increase in the percentage of nutrient removal by plants every 7 d (Figure 1). The results of biomass growth, daily growth, plant height, nitrogen retention, and phosphorus retention were the highest in T4 with successive values: 112.67 g, 4.97 %, 48.97 cm, 178.11 g, and 149.12 g, respectively.

4. Conclusion

Based on our findings, E. palaefolius has a high potential as a water remediator, proved in C. gariepinus growth performance, nutrient removal capabilities and water quality data. The highest value of those measurements was obtained at 350 g m⁻² density of E. palaefolius. Moreover, the present results indicated that the higher density of E. palaefolius showed a better impact on C. gariepinus development, nutrient removal, and water quality. Hence, further research is still needed for investigating the optimum density of E. palaefolius before it can be used in C. gariepinus culture or other fish commodities.

Acknowledgement

The author would like to thank the Faculty of Agriculture and Animal Science, the University of Muhammadiyah Malang, for the funding given to the Research Blockgrant Program with No SK: E.2.a / 131 / FPP-UMM / II / 2020.

References

Adinurani PG. Design and Analysis of Agro Trial Data: Manual and SPSS. Plantaxia, Yogyakarta, Indonesia

© 2021 Jordan Journal of Biological Sciences. All rights reserved - Volume 14, Number 5


Effect of Bioagent-added Organo-mineral Nitrogen Fertilizer on Total Nitrogen, pH, and Chrome Content in Lowland Paddy

Rija Sudirja1,*, Indra Oktavianus Lubis1, Nadia Nuraniya Kamaluddin1, Santi Rosniawaty2

1Department of Soil Science and Land Resource, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia; 2Department of Crop Science, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia

Received: February 27, 2021; Revised: June 22, 2021; Accepted: October 16, 2021

Abstract

Rice field soil quality in Rancaekek decreases gradually due to textile waste water to irrigation source. One of the heavy metal contaminant is chrome (Cr). As an effort to reduce Cr residue, bioagent-added organomineral nitrogen (abbreviated as BaON) fertilizer consisted of the mixture of urea, zeolite, activated charcoal, and plant compost enriched with bioagent (Bacillus subtilis) was added as a slow release fertilizer. This paper studied the effect of BaON fertilizer formulation towards total nitrogen content, pH and total Cr content in Rancaekek paddy soil. The experiment was designed in Randomized Block Design with six treatments and five replicates, consisted of: 0 (control), 150; 200; 250; 300; and 350 kg ha\(^{-1}\). The result showed that the application of BaON fertilizer increased soil total nitrogen content and pH, and decrease Cr residue in Rancaekek paddy field soils. Application of 350 kg ha\(^{-1}\) of BaON fertilizer gave the highest increase of total nitrogen in 60 days after transplant (0.11%), while 300 kg ha\(^{-1}\) of BaON gave the highest increase in pH (6.18), and the application of 250 kg ha\(^{-1}\) of BaON gave the highest reduction of chrome (16.15 mg kg\(^{-1}\)) in Rancaekek soils. This study suggests that application of Urea-zeolite-activated charcoal and bio-agent inoculated compost application could minimize Cr contaminated waste in the long-run.

Keywords: Bacillus subtilis, heavy metal, soil ameliorant, bioremediation

1. Introduction

The quality of productive agriculture system in Indonesia has been steadily decreasing due to environmental pollution. The pollution source also varies, ranging from agrochemical inputs such as synthetic pesticide, fertilizers, plant growth hormone, to heavy metals used in the manufacturing process of neighboring industrial areas. The discharge became a problem particularly because it was untreated prior to its release to the environment (Yaseen and Scholz, 2019).

Rancaekek was a well-known rice producer in the 1980s (Komarawidjadja, 2017), but after the land use conversion in the area, the quality of soil and water utilized for agricultural irrigation has depleted. Rancaekek experienced massive land use conversion from agriculture production area with rice as a main commodity, into textile production area. This shift has lead copious amount of pollutant to be discharged to the environment. The amounts of documented heavy metals detected in Rancaekek riverbank soil in 2017 were 174.7 mg l\(^{-1}\) of chrome, 92.2 mg l\(^{-1}\) of elemental mercury, and 4.0 mg l\(^{-1}\) of arsenic above the environmental safety level of industrial waste. Cikijing river is one of the polluted rivers used as agricultural irrigation source in four villages in Rancaekek areas: Linggar, Jelegong, Sukumulya, and Bojongloa village (Sutono and Kurnia, 2013). Trace level of heavy metal is present in water and may be essential for living organisms (Benamar and Zitouni, 2013), but high concentration may adversely impact the environment.

One of the heavy metals contained in the polluted wastewater is chrome (Cr). Cr came from fabric dyes (Chavan, 2011) and harmful for human health. Poisoning symptoms includes nausea, abdominal pain, respiratory problems, kidney and liver damage, accumulation of this metal can lead to death. In plants, Cr inhibits the availability of nitrogen, phosphate, potassium, and other primary nutrients. High Cr concentration can decrease the germination percentage of paddy up to 60% (Nagarajan and Ganesh, 2014).

Immobilization is one of the ways to reduce heavy metal availability in the environment. A method that could be used is through the addition of biological and chemical agents to bind or reduce heavy metals availability in the soil. Bio-agent added organomineral nitrogen (BaON) fertilizer is a modification of urea-based nitrogen fertilizer, zeolite, activated charcoal, and compost with a bio-agent that has a role as a slow release fertilizer and heavy metals absorbent. Zeolite addition in nitrogen fertilizer made the ammonium released by the fertilizer entrapped in by zeolite structure (Ippolito, Tarkalson and Lehrsch, 2011) and will be discharged back to the soils when the availability of nitrogen is low. Addition of activated charcoal is known as heavy metals adsorbent, due to the characteristics of charcoal that could selectively adsorb ions (Larasati et al., 2016). Addition of bio-agent on the fertilizer can improve the effectiveness of nutrient supply

* Corresponding author e-mail: rija.sudirja@unpad.ac.id.
and reduce heavy metals in soils. This research aims to find out the effect of BaON in various doses on total nitrogen value, pH value, and degradation of heavy metal Cr on polluted soils.

2. Materials and Methods

Paddy field soil were obtained from Jelegong Village, Rancacék (6°57'41.67"-6°58'52.29"S, 107°46'54.41-107°48'10.13'E). Paddy variety used in this study was Inpara 9 Agritani variety, product of Indonesian Ministry of Agriculture. Urea (Pupuk Kujang, Cikampek, Indonesia), Zeolite, and Technical Grade Activated Charcoal were ground and sieved through 30 mesh pass to obtain 0.6 mm particle size. Compost used were plant compost with 26:1 C/N Ratio and 22% relative humidity level, and were finely ground and sieved through 70 mesh pass to obtain 0.210 mm particle size. Prior to fertilizer formulation, Bacillus subtilis was inoculated in Nutrient Broth (HiMedia, Mumbai, India), and kept under ambient temperature (25-28°C) on 125 rpm rotary shaker for 72 hours and reached 10⁷ cfu population density. Urea, zeolite, activated charcoal, compost, and bioagent inoculant (B. subtilis) were mixed with 50:20:20:10 rations, respectively.

The experiment was conducted from January to July 2019 at Faculty of Agriculture, Universitas Padjadjaran experimental greenhouse, Ciparanje village, Jatinangor (6°54'59.00"S, 107°46'18.2"E). An Inpara 9 seedling were transplanted in a polybag contained 20 kg of Jelegong village paddy field soil and fertilizer were added in accordance to the treatment doses. Paddy soil were watered once daily. The experimental design used was Randomized Block Design, with one control and five doses of treatments; A= 0 (control), B = 150 kg BaON, C = 200 kg BaON, D = 250 kg BaON, E = 300 kg BaON, F = 350 kg BaON, each treatment was replicated five times. At 20, 40, and 60 days after BaON fertilizer treatment, soil quality parameters such as total nitrogen content, soil pH, and chrome content were analyzed. Obtained data were analyzed with Analysis of Variance (ANOVA). Differences detected will be analyzed further by Tukey’s post test with 5% confidence level. Data were processed by SPSS version 22 software.

3. Results and discussions

3.1. Initial Soils Analysis

Jelegong village soil was analyzed to obtain the information of total nitrogen value, pH value, Cation Exchange Capacity (CEC), and heavy metals content. The analysis revealed that total nitrogen content was 0.09% (very low), medium-high CEC (39.89 cmol kg⁻¹) and neutral pH (7.05). Heavy metals analysis showed that the chrome content was 38.84 ppm (polluted), and lead content was below the threshold (17.58 ppm).

3.2. Total Nitrogen

Nitrogen is one of the nutrients needed by plants in a large quantity. Nitrogen in soil is very mobile and could be easily lost by leaching or volatilization. BaON fertilizer application is one of the ways to supply nitrogen in soil continuously. Application of BaON fertilizer notably increased soil total nitrogen and continuously supplied nitrogen up until 60 days after application in the polluted paddy soil (Table 1). At 20 days after transplant (DAT), Treatment C (dosage 200 kg ha⁻¹) gave significant difference compared to Treatment B (dosage 150 kg ha⁻¹) and Treatment E (dosage 300 kg ha⁻¹). There was a significant difference between BaON on treatments compared to the control in 60 days after transplant (DAT).

Table 1. Bio-agent Added Organomineral Nitrogen (BaON) Fertilizer Effect on Total Nitrogen on Soils

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Nitrogen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 DAT*</td>
</tr>
<tr>
<td>A</td>
<td>0.12ab</td>
</tr>
<tr>
<td>B</td>
<td>0.11a</td>
</tr>
<tr>
<td>C</td>
<td>0.14b</td>
</tr>
<tr>
<td>D</td>
<td>0.12ab</td>
</tr>
<tr>
<td>E</td>
<td>0.12a</td>
</tr>
<tr>
<td>F</td>
<td>0.12ab</td>
</tr>
</tbody>
</table>

*DAT: Day after transplant

In Table 1, in 40 DAT observation all treatments show non-significant differences and lower nitrogen content compared to 20 DAT. This could be caused by the slow release trait from the fertilizer, therefore on 40 DAT, the nitrogen was released at lower rate in longer time. At 60 DAT, treatment F (350 kg ha⁻¹) with a total nitrogen of 0.11% displayed the highest ammonium content at the end of vegetative phase. The zeolite addition on fertilizer can minimize nitrogen loss in ammonium form. Zeolite has high absorbency power on ammonium. Released ammonium in soil will be reabsorbed by zeolites and released again in low ammonium conditions, which allows preservation of nitrogen in soils (Larasati et al., 2016). Zeolites and activated charcoal addition on the formulation could provide nitrogen slowly. Zeolites with 75-80% dosage of N could produce rice with the same amount as conventional fertilizer, therefore it could reduce the usage of synthetic fertilizer up to 25% (Jufri and Rosjidi, 2012).

3.3. Soil pH

There was a significant difference between the control and BaON treatments on 20 and 60 days after transplant (Table 2)

Table 2. Bio-agent Added Organomineral Nitrogen (BaON) Fertilizer Effect on pH on Soils

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 DAT*</td>
</tr>
<tr>
<td>A</td>
<td>5.86ab</td>
</tr>
<tr>
<td>B</td>
<td>5.89ab</td>
</tr>
<tr>
<td>C</td>
<td>5.73a</td>
</tr>
<tr>
<td>D</td>
<td>5.71a</td>
</tr>
<tr>
<td>E</td>
<td>5.93b</td>
</tr>
<tr>
<td>F</td>
<td>5.94b</td>
</tr>
</tbody>
</table>

On 20 DAT, Treatment E (300 kg ha⁻¹) and Treatment F (350 kg ha⁻¹) was significantly different to Treatment C (150 kg ha⁻¹) and Treatment D (200 kg ha⁻¹), but was not significantly different to control and Treatment B (150 kg ha⁻¹). The highest value found on Treatment F (dosage 350 kg ha⁻¹) with 5.94 and categorized as slightly acidic.
All treatments were not significantly different to each other at 40 days after transplanting. The highest pH value was found on treatment F with 5.77 and categorized as slightly acidic. All treatments, except treatment D pH decreased at 20 DAT. This is very likely due to the increased nitrification in soil due to the release of hydrogen ions post nitrogen fertilization (Lu et al., 2012). At 60 DAT, soil pH value on BaON treatments gave significant effect compared to control. Treatment D increased pH value at 60 DAT. This allows less application of the fertilizer if the case of soil pH enhancement, as the pH value of Treatment D was not significantly different compared to treatments with higher dose (E and F). BaON contain urea that may trigger nitrification, which produce H+ ions. Soil acidity value is affected by the existence of hydrogen ions (H+). The higher H+ ions on the soils, the higher the acidity of the soils.

Zeolite and activated charcoal addition on the fertilizer can amend soils pH value, as zeolite contains alkaline bases such as K+, Na+, and Mg2+ that could replace H+ in adsorption complex, which led to the rise of pH value. In higher pH, metal ions react spontaneously and form metals-hydroxide bonds (Maulana et al., 2017). BaON application increased and maintained soil pH, which eventually impacted the nutrient availability on soils.

3.4. Heavy Metals Solubility on Soils

Statistical analysis showed BaON treatment reduced Cr availability in soil (Table 3). Treatment C displayed the highest chrome immobilization in soil compared to other treatments. Urea application in soil increases nitrate content, an important product used in the nitrification process (Shetty et al., 2019). Chrome solubility reduced due to the reaction between Cr3+ and NO3⁻.

Table 3. Bio-agent Added Organomineral Nitrogen (BaON) Fertilizer on Cr Reduction

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Heavy Metals Cr (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 DAT</td>
</tr>
<tr>
<td>A</td>
<td>19.61b</td>
</tr>
<tr>
<td>B</td>
<td>13.10a</td>
</tr>
<tr>
<td>C</td>
<td>13.55a</td>
</tr>
<tr>
<td>D</td>
<td>20.15b</td>
</tr>
<tr>
<td>E</td>
<td>15.41ab</td>
</tr>
<tr>
<td>F</td>
<td>17.59ab</td>
</tr>
</tbody>
</table>

Chemical analysis showed BaON treatment significantly reduced Cr availability in soil (Table 3). Treatment C displayed the highest chrome immobilization in soil compared to other treatments. Urea application in soil increases nitrate content, an important product used in the nitrification process (Shetty et al., 2019). Chrome solubility reduced due to the reaction between Cr3+ and NO3⁻.

4. Conclusion

Bioagent-added organo-mineral nitrogen fertilizer application in various concentration has improved the chemical properties of lowland paddy soil. The application improved the total nitrogen, pH, and reduced Cr residue, after 20, 40, and 60 day after treatment. Treatment F was the best treatment to increase total nitrogen, meanwhile treatment D was the best treatment to increase pH value.

References


Atmono, Natalina, and Mukti AD. 2017. Pengaruh arang aktif dan zeolit sebagai media adsorben dalam penurunan kadar logam krom pada air limbah cair penyablonan pakaian J Rekayasa, Teknologi, dan Sains 1(1) 21-8


Syed S and Chinthala P. 2015. Heavy metal detoxification by different Bacillus species isolated from solar salt pans Scientifica 2015 1-8

The Effect of Bathing Length Time to Axillary Temperature and Dry Heat Loss on Newborns; A Comparative Analysis

Hotma Sauhur Hutagaol*
Midwifery Study Program of Padangsidimpuan, Poltekkes Kemenkes Medan, Sigulang, Padangsidimpuan, Indonesia.

Received: February 27, 2021; Revised: June 21, 2021; Accepted: August 24, 2021

Abstract

Hypothermia often occurs at the transition stage of a newborn. Transition stage is a critical stage for newborns to survive. Bathing with improper techniques can cause cold and heat loss even hypothermia in newborns. The purpose of this study was to analyzed the comparison of the length time of first time bathing for normal newborns with axillary temperature and dry heat loss with seven minutes and thirteen minutes respectively. Bathing was held on the six hours postbirth. This study was a quasi-experimental study with a pre and post test group design. Data were analyzed using Mann-Whitney test, and p value <0.05 was considered statistically significant. Sample size were two groups with 24 newborns each. This research showed that the average of axillary temperature of newborn in intervention group A (IGA, 7 Min) was higher than in intervention group B (IGB, 13 Min), and statistically with Mann-whitney test significant with p value < 0.05. The average of dry heat loss (conductive, convective and radiative heat loss) was higher in intervention group A (IGA, 7 Min) than in intervention group B (IGB, 13 Min) but statistically with Mann-whitney test not significant with p value > 0.05.

Keywords: Bathing, Newborn, Temperature, Dry Heat Loss

1. Introduction

Bathing a newborn for the first time with improper length of bath time and techniques can cause cold and heat loss to the newborn, even hypothermia. For this reason, based on WHO recommendations, bathing should be delayed for 24 hours after the newborn is born, or 48 hours for better and effective preserving of the body temperature, and if it is not possible due to cultural reasons or customs in an area, bathing should be delayed until 6 hours after the baby is born, with the condition that the baby's body temperature is normal around 36.5°C -37.5°C. Appropriate clothing to maintain temperature stability in newborns is also recommended, which is 1-2 layers more than adults and wearing a hat. But the literature about the length time of first time bathing newborns is rather limite (OLCHC, 2015; WHO, 2017; Chamberlain et al., 2019; Duygu et al., 2019; Susan et al., 2019).

Hypothermia tends to occur during the transition period in newborns. Adaptation to extra-uterine life is a very critical period for the baby in an effort to survive, newborn babies must adapt the sudden change in thermal homeostasis to life outside the uterus whose temperature is much cooler when compared to temperatures in the mother’s womb that are relatively warmer around 37°C. With a normal room temperature of 25°C – 27°C means there is a decrease of around 10°C. Maintenance of thermal homeostasis is crucial for the success of postnatal transition, even for the aterm and healthy newborn baby. Thus, the control of the core and the surface body temperature needs to be managed carefully to prevent heat loss (WHO, 2013; Morton et al., 2016; Perlman and Kjaer, 2016; Lubkowska et al., 2019).

Newborn lose heat four times more than adults, which results in a decrease in temperature. Newborns can have a temperature drop of 3-4°C in the first 30 minutes of labor. And their skin temperature will drop by about 0.3°C if placed in a room with a temperature of 20-25°C. The decrease in temperature is caused by heat loss (conduction, convection, evaporation and radiation). Loss of heat by conduction, convection and radiation is also called dry heat loss, whereas heat loss by evaporation is also called wet heat loss. With the infant's immature thermoregulation ability to produce heat, the baby is very susceptible to the experience of hypothermia (Kliegman, 2012; Namnabati et al., 2017; Khaled and Mohammed, 2019).

Therefore, essential care is needed in newborns to prevent complications and can save the lives of babies such as drying the newborn's body immediately, breastfeeding and delaying bathing the baby for 6 hours after delivery or after the body temperature of the newborn is normal 36.5°C-37.5°C (Bergstrom et al., 2000; Heining, 2001; Moore et al., 2012; Farhana et al., 2013; WHO, 2013; Lund, 2016).

Association of Women’s Health, Obstetrics and Neonatal Nurses recommends delaying bathing the baby for up to 8 hours of labor because the body temperature of the newborn is stable after 2-4 hours of labor. Delaying bathing the newborn when the body temperature is stable will help the baby go through the transition period, reducing the incidence of hypoglycemia and hypothermia (AWHONN, 2015).
This contradicts the results of research that bathing a newborn in one hour postbirth will maintain newborn body temperature if the newborn has a normal body temperature (Karen and Rita, 2000; Lund, 2014).

World Health Organization recommends bathing babies with a water temperature of 38°C but Puspita in her study obtained a safe bath water temperature for bathing a baby 6 hours of labor was 35°C. She also got the result that bathing a newborn was better done in the afternoon than in the morning (Puspita et al., 2007).

The data above shows that the implementation of bathing a newborn still needs more research to obtain better benefits, so that it can prevent hypothermia and improve the health of newborns, because of the greatly benefits of bathing when done properly.

Previous studies found that after bathing newborns for 7.6 minutes length, at one hour, two hours and 4 hours of labor, there was no difference in axillary temperature on 10, 20, 60 minutes each. But it has not been seen how much heat loss is in newborns after being bathed (Karen and Rita, 2000).

Because the pilot study revealed no significant difference in postbath temperatures between newborns bathed at one hour and two hours of age with the same length time of bath, the purpose of the current study was to see if the length time of bathing could be done even longer to see the difference change of axillary temperature and the dry heat loss of the newborn after bathed at 24 hours of birth. It was hypothesized that there would be a significant difference in postbath temperatures between newborns length time of bath at 7 minutes and 13 minutes; the purpose of the current study was to see if the length time of bath could be done even longer at the transition period in newborns.

Therefore, this study aimed to analyze the comparison of newborns bath length of time to axillary temperature and dry heat loss.

2. Materials and Methods

The Health Research Ethics Committee of Polytechnic Health Ministry of Health Medan Indonesia approved the current study (approval number 367/KEPK POLTEKKES KEMENKES MEDAN/2019). The objectives and methodologies were explained to all participants, and verbal consent had been taken. The research was conducted for six months. The population in this study were all newborns in Padangsidimpuan City Hospital. Sample was all populations that meet the inclusion and exclusion criteria. The sample chosen for the study was newborn who fullfilled inclusion criteria; normal newborn, wearing clothes. The design approach in this study can be described as follows:

1. Newborn Bathing
2. Temperature
3. Newborn Axilla temperature
4. How to measure : Bathing newborns in 7 minutes and 13 minutes respectively.


Measuring results : If the bath duration is 7 minutes then it is given a value of 1, and if the bath duration is 13 minutes then it is given a value of 0.

Measuring scale : nominal

b) Temperature

Definiton : Newborn Axilla temperature

How to measure : measuring axilla temperature before and after bathed

Measuring instrumen : digital thermometer

Measuring results : temperature in °C

Measuring scale : interval

c) Dry Heat Loss

Definiton : Dry heat loss in newborn (convective, radiative and conductive heat loss).

How to measure : using equation (Gabriel, 1996; Celcar, 2013)

Measuring Scale : Equality (Gabriel, 1996, Celcar, 2013)

1) Convective Heat Loss:

\[ J_{q\text{convective}} = 8.3 \cdot V^{0.5} \cdot (T_s - T_a) \]

2) Radiative Heat Loss:

\[ J_{q\text{radiative}} = e \sigma \cdot \frac{A_r}{r} \cdot (T_s^4 - T_w^4) \]

3) Conductive Heat Loss:

\[ J_{q\text{conductive}} = \text{convective heat loss between newborn skin and environment (J)} \]

\[ V = \text{air flow velocity (m/s)} \]

\[ 8.3 = \text{a constant where a person stands facing the blowing air} \]

\[ T_s = \text{skin temperature (°C)} \]

\[ \sigma = \text{Stefan – Boltzmann constant (5,67 \times 10^{-8}W/m^2K^4)} \]

\[ C_s = \text{skin surface emissivity, 0.99 (Alexandra, 2000)} \]

\[ \sigma = \text{Stefan – Boltzmann constant (5,67 \times 10^{-8}W/m^2K^4)} \]

\[ T_w = \text{wall temperature in absolute degree (K)} \]

\[ T_w = \text{wall temperature in absolute degree (K)} \]
The study was conducted in the city of Padangsidimpuan from March 2019 to October 2019. After observing, 48 newborns were found who met the inclusion criteria. 24 newborns will be bathed for seven minutes and will be called the intervention group A (IGA) group and 24 newborns will be bathed for 13 minutes and will be called the intervention group B (IGB). The average room temperature was 30.3 (°C), water temperature was 38.3 (°C) and air flow velocity in the room was 0.1m / s.

The results of this study can be seen in the following table.

<table>
<thead>
<tr>
<th>Table 1: Characteristics of Respondents.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Characteristics of Respondents</strong></td>
</tr>
<tr>
<td><strong>Body Weight (BW) Kg</strong></td>
</tr>
<tr>
<td>Body Surface Area (BSA)</td>
</tr>
<tr>
<td><strong>Axillary Temperature (AT) °C</strong></td>
</tr>
<tr>
<td><strong>Skin Temperature (ST) °C</strong></td>
</tr>
</tbody>
</table>

Source: Primary data, 2019.

Table 1 showed the characteristics of respondents. Based on its characteristics, the mean respondent’s body weight of respondents was 3216 ± 286 gr for IGA and 3100 ± 408 for IGB. The mean respondent’s body surface area (BSA) was 0.21 ± 0.01 for IGA and 0.20 ± 0.01 for IGB. The mean respondent’s systolic was 147.7 ± 9.0 mmHg for intervention group and 153.3 ± 10.1 mmHg for the control group. The mean respondent’s axillary temperature was 36.98 ± 0.42 °C for IGA and 36.99 ± 0.36 °C for IGB. The mean respondent’s skin temperature was 36.72± 0.44 °C for IGA and 37.72± 0.51 °C for IGB. Statistically with the Mann-Whitney technique, there was no significant difference between the two groups with a value of p>0.05.

**Table 2:** The Comparison Between the Length Time of bathing on Average ± SD to Axillary Temperature in Newborn, Difference in Axillary Temperature in Newborn after The Bathing, Dry heat Loss of Newborn and Skin Temperature of Newborn

<table>
<thead>
<tr>
<th><strong>Axillary Temperature</strong></th>
<th><strong>Mean ± SD (°C)</strong></th>
<th><strong>Mean ± SD (°C)</strong></th>
<th><strong>Sig</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Before The Bath</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGA (7 Min)</td>
<td>36.98 ± 0.42</td>
<td>36.32 ± 0.49</td>
<td>0.001</td>
</tr>
<tr>
<td>IGB (13 Min)</td>
<td>36.99 ± 0.36</td>
<td>36.04 ± 0.39</td>
<td></td>
</tr>
<tr>
<td><strong>After The Bath</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGA (7 Min)</td>
<td>0.66 ± 0.30</td>
<td>0.66 ± 0.30</td>
<td>0.001</td>
</tr>
<tr>
<td>IGB (13 Min)</td>
<td>0.95 ± 0.31</td>
<td>0.95 ± 0.31</td>
<td></td>
</tr>
</tbody>
</table>

**Dry Heat Loss in Newborn.**

<table>
<thead>
<tr>
<th><strong>Conductive Heat Loss</strong></th>
<th><strong>Mean ± SD (J)</strong></th>
<th><strong>Sig</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>IGA (7 Min)</td>
<td>11.14 ± 2.48</td>
<td>0.54</td>
</tr>
<tr>
<td>IGB (13 Min)</td>
<td>10.85 ± 2.48</td>
<td></td>
</tr>
</tbody>
</table>

**Skin Temperature in Newborn**

<table>
<thead>
<tr>
<th><strong>Mean ± SD (°C)</strong></th>
<th><strong>Sig</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>IGA (7 Min)</td>
<td>35.01 ± 0.39</td>
</tr>
<tr>
<td>IGB (13 Min)</td>
<td>35.87 ± 0.36</td>
</tr>
</tbody>
</table>

Table 2 showed that the mean axillary temperature after being bathed for seven minutes in IGA decreased by 0.66
Statistically with the Wilcoxon test, there were significant differences with p value <0.05. The mean axillary temperature after bathing for 13 minutes in the IGB decreased by 0.95 ± 0.31. Statistically with the Wilcoxon test there are significant differences with p value <0.05.

Table 2 also showed the mean difference in axillary temperature after being bathed 7 minutes in the IGA lower than in the IGB which was bathed for 13 minutes. The mean difference in axillary temperature in the IGA was 0.66 ± 0.40, and the average axillary temperature in the IGB was 0.95 ± 0.31. Statistically with the Mann-Whitney test, there were significant differences with p value 0.001 (<0.05).

Table 2 also showed that the mean convective heat loss after being bathed for 7 minutes in the IGA was higher than in the IGB which was bathed for 13 minutes. The mean convective heat loss in the IGA was 14.36 ± 3.20, and the mean convective heat loss in the IGB was 14.00 ± 2.56. Statistically with the Mann-Whitney technique, there was no significant difference with p value> 0.05. The mean radiative heat loss after being bathed for 7 minutes in the IGA was higher than in the IGB which was bathed for 13 minutes. The mean radiative heat loss in the IGA was 7.26 ± 1.50, and the mean radiative heat loss in the IGB was 7.17 ± 1.14. Statistically with the Mann-Whitney technique, there was no significant difference with p value> 0.05.

Table 2 also showed that the mean skin temperature of newborns in the IGA after bathing for seven minutes is 36.01 ± 0.39 °C; the mean temperature of newborn skin in the IGB after being bathed for 13 minutes was 35.87 ± 0.36 °C. Statistically, there was no significant difference between Mann Whitney with p value> 0.05.

4. Discussion

This study compared the axillary temperature and dry heat loss of newborns bathed in seven minutes and 13 minutes respectively for the first time. The findings showed significant statistical difference between both bathing length time in axillary temperature. The maximum variation in the pre- and postbath temperature averages were -0.6 and -0.9°C respectively, in the IGA and IGB, indicating that the length of time for the first bath had a significant effect on the decrease in axillary temperature of newborns, but all of them experienced mild hypothermia. This might be due to the direct exposure of a newborn baby to a cold environment such as being put into warm water naked. For that, proper care is recommended after bathing a newborn baby, such as immediately wearing clothes and hats, and immediately handing over to the mother for immediate breastfeeding. On this study, almost all newborns in both intervention groups experienced axillary temperature recovery to be normal again after 15 minutes of breastfeeding by mother.

This study was in line with research that examined the comparison of conventional methods of bathing premature babies with the method of wrapping a baby in a bath or swaddled immersion bath which got the results of both treatment groups experienced a decrease in axillary temperature of the newborn; this study also got results that the axillary temperature of the newborn remains below normal or hypothermia after 20 minutes the baby is bathed. The temperature of new infants is in the range of 36.0 - 36.5°C or mild hypothermia (Alexandra et al., 2000; Freitas et al., 2018).

Gozen (2019) also found that there was significant difference in body temperature in newborns who were bathed at 48 hours. He also found that after 24 hours of delivery, there was a decrease in axillary temperature after bathing on the first day of the newborn, and recommended delaying bathing for up to 48 hours of labor (Gozen et al., 2019).

In line with Gozen's research (2019), it was also found that axillary temperature decreased after bathing on the first day of the baby. The same was obtained by experimental studies in Iran that compared axillary temperature in 50 premature newborns with the usual bathing method and the bathing method by being wrapped. The mean axillary temperature after 10 minutes of bathing with the wrapped method was higher than that of the baby group bathed by the conventional or conventional method (36.42 ° C versus 35.96 ° C). The mean axillary temperature reduction was 0.59 ° C in the wrapped method and 0.08 ° C in infants bathed by conventional methods, whereas in this study the mean decrease in axillary temperature in the IGA bathed for seven minutes was 0.66 ± 0.30 ° C lower when compared to the mean decrease in axillary body temperature in the IGB which was bathed for 13 minutes which was 0.95 ± 0.31 ° C (Edraki et al., 2014).

Clasen found no difference in axillary temperature of newborns who were bathed for 2 hours, 6 hours, 9 hours after delivery, and all newborns who were bathed at these three times experienced a decrease in axillary temperature (Clasen and Kellie, 2019). Decreased axillary temperature in newborns after bathing can be related to the removal of vernix caseosa. The function of vernix caseosa, which prevents heat loss, no longer functions and a decrease in axillary temperature becomes unavoidable (Jhonson and Taylor, 2005; Thilo and Rossenberg, 2011; Sukesi et al., 2016; Turney et al, 2019).

According to this study, it states that newborns who bathed after six hours of labor had an axillary temperature in the mild hypothermia range after a 7 - 13 minutes bath. Therefore, it is recommended that the newborns bathe for less than 7-13 minutes.

Efforts to maintain a constant body temperature are very important in newborns with low thermoregulatory abilities. The use of energy by newborns to produce heat comes from thermoregulation without shivering, one of three adults' ability to produce heat through metabolism, shivering thermoregulation and non-shivering thermoregulation. The heat source of thermoregulation without chills in newborns comes from brown fat tissue that is stored from the age of 26-28 weeks of pregnancy and contributes to 10% of newborn body weight. Brown fat tissue is filled with blood vessels and is located mostly in the shoulder area, armpits, around the waist and adrenal glands. If the baby experiences a cold which will increase the increase in the work of the hormone nor adrenaline which will stimulate the breakdown of brown fat tissue to produce heat, unfortunately this brown fat tissue can no longer form. Body surface area is also one of the causes of babies experiencing heat loss, lack of muscle movement and also the ability to regulate blood flow through the skin.
The lack of optimal circulation and respiratory system development is also a factor in the lack of thermoregulation in newborns. This ability will only develop in the first week of infancy (McHugh, 2008; Fraser and Cooper, 2009; WNHS, 2018; Lubkowska et al., 2019).

Newborns have not been able to maintain their own body temperature without protection from the outside, especially when placed in a cold environment that can reduce the core temperature around 0.2 - 1.0°C per minute and can eventually result in death. World Health Organization recommends maintaining body temperature as a main principle when providing care for newborns (WHO, 2012).

Some research results showed that after 15 minutes of birth the skin temperature of the newborn will drop to 4°C, after the first hour of birth the skin temperature can drop to around 33 °C if placed in a room with a temperature of around 25 °C. After 15 minutes, the skin temperature can decrease around 2.5 - 3 °C, and in the first 15 minutes this attempt to produce heat by shivering does not occur in newborns (Lubkowska et al., 2019).

In this study, the average skin temperature of participants before bathing in the IGA was 36.72 ± 0.44 °C and after bathing the skin temperature decreased by an average of 36.01 ± 0.29 °C while the mean temperature of newborns before bathing in the IGB was 36.72 ± 0.51 °C and after the bath also decreased by an average of 35.87 ± 0.36 °C. After bathing for seven minutes there was a decrease in the average skin temperature of around 0.71 °C in the IGA, whereas in the IGB, there was a decrease in the average skin temperature of 0.9 °C after bathing for 13 minutes. However, this wasn’t statistically significant. If the body temperature changes to 100°C, there will be a change of 10% from the metabolic rate and oxygen consumption. So by measuring the oxygen consumed by the body, we can estimate the energy or heat produced. If the IGA experienced a decrease in skin temperature after being bathed at around 0.71 °C, there would be a change of 7% from the metabolic rate and oxygen consumption. While in the IGB the skin temperature after being bathed was around 0.9 °C, therefore there will be a change of 9% of the metabolic rate and oxygen consumption. This certainly will aggravate the work of newborn metabolism and increase the need for oxygen consumption. If the decrease in body temperature continues without any effort to help prevent heat loss it will have an adverse effect on newborns. They’ll have to depend on unrenewable brown adipose tissue to increase metabolism which will generate heat (Karlsson, 1996; Sherwood, 2012; Girsjesh and Shefali, 2019).

Heat loss in newborns can occur by conduction, convection, radiation called dry heat loss, and evaporation called wet heat loss. In the IGA and IGB groups, there was little difference in dry heat loss. However, IGA showed more signs of heat loss through conducting, convection, and radiation. There was also difference in skin temperature and axillary temperature, IGA showed lower decrease of skin temperature and axillary temperature. This situation may be influenced by several factors such as gender or maternal factors. These factors were not examined in this study, and are a weakness of this study; it is hoped that in the future further research will be conducted that will pay attention to the sex factors of newborns and maternal factors.

After being bathed, clothes and hats were immediately attached and newborns immediately given to mothers for breastfeeding for 15 minutes in both of intervention group in this study. Axillary temperature and skin temperature return to normal after that. Therefore, it was recommended that newborns be breastfed for 15 minutes after bathing.

5. Conclusion

The results indicate that bathing in 7 minutes or 13 minutes significantly differ regarding their effect on axilla temperature and skin temperature of healthy newborns for the first time. Dry heat loss was higher in newborns when bathing in 7 minutes compared to 13 minutes but not statistically significant. However, future studies addressing the suitable length time of bathing newborns are necessary, as well as studies investigating more indicators of the length time of bathing newborns such as the gender factor, the types of labour, and physiological indicators of stability.

Acknowledgment

The authors are grateful to all participants who contributed this study and to Poltekkes Kemenkes Medan who funded this study.

Funding

This study was funded by Poltekkes Kemenkes Medan.

References


AWHONN (Association of Women’s Health, Obstetrics and Neonatal Nurses). 2015. Improving Newborn Clinical Outcomes With Delayed Bathing. AWHON.


Lund C. 2014. Bathing and beyond; new data to guide newborn skin care. UOSF.


OLCHC. 2015. Guideline of bathing an infant. OLCHC.


WHO. 2013. WHO Recommendation on postnatal care of the mother and newborn. WHO.


Identification of Consumers’ Motives in Buying Organic Luwak Coffee in terms of Agri-Tourism

Yosini Deliana1,*, Lucyana Trimo1, Sri Fatimah1, Mai Fernando N1 and Mohamad Djali2

1Department of Agricultural Social Economics, Faculty of Agriculture, Padjadjaran University, Jatinango- 45363 Indonesia; 2 Department of Food Industry Technology, Padjadjaran University, Jatinangor 45363 Indonesia

Received: February 27, 2021; Revised: June 10, 2021; Accepted: October 16, 2021

Abstract.

Cikole luwak (civet) coffee began to be produced in 1990 and is now well-known in about 45 countries. Unfortunately, it is suspected that the civet coffee sold in bulk and retail is just ordinary or plain coffee. The motivation to buy for consumers, the level of consumer interest in civet coffee agrotourism, marketing strategies for loyal consumers to consume civet coffee are the objectives of this study. Questionnaire interviews involving 186 respondents (by means of systematic random sampling) were used as data collection methods in this study. Furthermore, the recorded data were analyzed by Confirmatory Factor Analysis. The results show that the primary factors of Luwak coffee, such as freshness, taste, and aroma, can identify consumer appearance as the dominant factor. The dominant usability factors were habits, leisure; and health; while the dominant promotional factors were website availability, agrotourism, and discounts. The Luwak coffee marketing strategy must be holistic and synergize between government, companies, communities, academics and media.

Keywords: Consumer's motive, luwak coffee, external and internal factors, agrotourism, and confirmatory factor analysis

1. Introduction

One of the countries that produce the largest coffee in the world is Indonesia which ranks fourth (World Bank, 2015). There are several provinces in Indonesia that produce coffee, one of which is West Java province and Bandung Regency is the largest coffee production center, contributing 70% of West Java’s total coffee production (Coffee Production by Province in Indonesia, 2017-2021). Thus, to maintain coffee production, it is necessary to develop the sustainability of coffee farming which is pioneered by young farmers (Nainggolan, et al., 2020). Cikole Village, Lembang sub-district, was chosen as research area because it has a uniqueness in the market of civet coffee. The uniqueness of this agro-tourism is that visitors can see the whole process from civet coffee cultivation, maintenance, harvest, post-harvest, processing, to marketing. In addition, visitors can also see the behavior of ferrets (Paradoxurus hermaphroditus) when choosing ripe coffee cherries. In addition, the location is also supported by beautiful views so that visitors can relax while drinking civet coffee.

Due to the high price of civet coffee, it is categorized as a luxury product or more specifically the specialty coffee category, although not all luxury products are expensive (depending on the perception of each consumer). According to Wiedmann et al. (2009), the four values of luxury are financial (i.e. price), functional (i.e. usability), individual (i.e. materialism) and social such as conspicuous consumption. A brand is created by adding a core product with distinctive value that distinguishes it from other products (Jobber and Fiona, 2019). Meanwhile, Heine (2021) explains that product appearance, promotion and usability are often considered characteristics of luxury brands. Luwak coffee is one of the luxury coffee products because it has many differences with other coffees including the price which is quite expensive. Consumers tend to feel prestigious every time they consume them, so they are often used as gifts for family, friends or business associates. Those who give and receive civet coffee will get their own satisfaction that cannot be valued in money so that it becomes part of the respect. On the other hand, coffee contains an antioxidant compounds, that showed antibacterial and antibiofilm activities against P. aeruginosa and S. Pyogenes (Al Kafaween et al., 2020). The crude methanol extract of A. paniculata leaf and its fractions demonstrated considerable antimicrobial and antioxidant properties (Banji et al., 2018). This is the reason why Luwak Coffee has become a specialty coffee.

Consumers who use luxury products or brands can convey certain social and cultural meanings (Becker et al., 2018). Personal and social relationships in society can be described by certain brands and positions. Promotion is one of the determining factors in the success of a marketing program. A product that consumers have never or rarely heard of and believe to be useless will never be purchased by consumers. One form of marketing communication carried out by a company is promotion.
The activities carried out include disseminating information, influencing and being willing to persuade consumers; the target market must always be reminded to be willing to accept, buy, and be loyal to the products offered (Yuliawati et al., 2017). A consumer will usually buy a product based on the appearance, promotion and usability of the product itself. After determining consumer motives, producers will more easily understand consumers and find strategies to improve product quality and expand markets. There is a tendency for consumers to buy Luwak coffee because of taste, unique aroma, good facilities, unique packaging, low price, habit, leisure, and health. The purpose of this study was to determine consumer motivation in buying civet coffee, consumer interest in civet coffee agrotourism, and the marketing strategy that must be chosen. One of the novelties in this research is to identify consumer motives related to luxury products and agro-tourism using factor analysis.

Research that discusses consumer motivation in buying civet coffee is still rarely found (because civet coffee only exists in Indonesia). So far, the research that has been done has only been limited to discussing the efficiency of the civet coffee business (Niken et al., 2018) and the potential and development strategies of civet coffee (Bayunitri, 2017; Pranoto and Rajamin, 2012; Ribek and Rihayana, 2019; Satim and Puput, 2020).

2. Method

2.1. Data

The primary data recording process was carried out in a cross section through observation and questionnaire instruments based on previous literature reviews. Secondary data were obtained from the Central Bureau of Statistics, Ministry of Agriculture and related agencies. The primary survey was conducted from April – June 2020 in Lembang -West Java Province- Indonesia.

2.2. Sampling

Lembang was chosen as the research location because it is famous for its civet coffee agrotourism. Systematic random sampling technique was used to collect customer data, by taking 200 samples from a population averaging one thousand consumers per month. The sample was taken from 5 percent of the population, and only 186 were matched with the research variables. Respondents are visitors who come to Luwak coffee for recreation, local tourists and foreign tourists for agro-tourism purposes. The research framework is as follows:

![Research Framework Diagram]

**Figure 1. Research Framework**

Note: Endogenous Latent Variable

**Y** = Consumer motivation

**Exogenous Latent Variables**

**X1** = Appearance; **X2** = Promotion; **X3** = Usability

γᵢ = Path coefficient for i-th exogenous latent variables to endogenous latent variable (i=1,2,3); λⱼ = Standardized Loading Factors for j-th k-th manifest variables/indicators (i=1,2,…; j=1,2,3; k=1,2,…); εᵢ = Error term for for j-th k-th manifest variables/indicators (i=1,2,…; j=1,2,3; k=1,2,…)

2.3. Measurement

There are three factors that influence a brand to be luxurious, including appearance, promotion and product usability. The following table shows the value of the standard loading factor and measurement error for the measurement model on a variable using confirmatory
factor analysis (CFA). The validity criteria are said to be good if the load factor value of 1.96 is obtained from the arithmetic value which is greater than t table. Respondents who came to the Luwak coffee area were asked questions by the questioners. Each respondent was given several questions and asked to fill out a form with a choice of a Likert scale, namely the answers strongly agree (5), agree (4), neutral (3) disagree (2) and strongly disagree.

3. Results

3.1. Respondent Profile

Respondents involved in this study consisted of men (54.84%) and women (45.16%). Respondents generally tend to return to buy Kopi Luwak (87.72%) and the rest do not return (12.28%) due to unsuitable taste. The survey results show that those who buy Kopi Luwak are between 20-29 years old, including the millennial generation (Deliana and Rum, 2019). This is in accordance with their work as fresh graduates at the Diploma and Postgraduate levels. What is interesting is that the income of consumers who buy civet coffee is between 5 - 10 million. This is very reasonable since the luwak coffee price is expensive.

Table 1. Respondent Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description (%)</th>
<th>Variable</th>
<th>Description (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 20</td>
<td>9.68</td>
<td>Education</td>
<td>High School</td>
</tr>
<tr>
<td>20 - 29</td>
<td>82.26</td>
<td>Diploma</td>
<td>Graduate</td>
</tr>
<tr>
<td>30 - 39</td>
<td>4.84</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>&gt; 40</td>
<td>3.23</td>
<td>Post</td>
<td>Graduate</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td>Income</td>
<td>&lt; 5 million (IDR/month)</td>
</tr>
<tr>
<td>Private sector</td>
<td>17.74</td>
<td>5 - 10</td>
<td></td>
</tr>
<tr>
<td>Entrepreneur</td>
<td>27.42</td>
<td>11 - 15</td>
<td></td>
</tr>
<tr>
<td>Fresh graduate</td>
<td>33.87</td>
<td>&gt; 15</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>22.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>42.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usually, the X-Generation (39 – 54 years) and Baby Boomer Generation (>55 years) visit the Luwak coffee place just to see the beautiful scenery and recreation. This is because those generations are generally already working, have a large income, and want to enjoy life. Meanwhile, millennials (23-38 years old), especially fresh graduates, tend to visit to enjoy the sensation of drinking Luwak coffee and edu-entertainment.

A Luwak coffee has a special characteristic, namely the natural fermentation process that distinguishes the taste/aroma from other coffees. The fermentation process becomes the selling point of Luwak coffee; besides, the volume of Luwak coffee production is not much due to the limited number of captive civets. A civet produces 600 grams/day or about 12 kg/head/month (Satim and Pupung, 2020). However, for consumers who like to drink coffee, price is not an issue but quality must be reliable (Wróblewsk et al., 2017; Wann et al., 2018).

3.2. The Consumer’s Motive in Buying Luxury Brand of Luwak Coffee

Internal and external factors are indicated as consumer preferences (Y) which are depicted for identification of luwak coffee consumers. Appearance (X1) and usefulness (X2) are internal factors, while promotion (X3) is external factor. The factors such as taste (X11), aroma (X12), and freshness (X14) are the dominant factors of appearance. The dominant factor usability includes Habit (X21), leisure (X34) and Health (X35). The dominant factor promotion is website available (X25), agrotourism (X26) and discount (X36).

![Figure 2. Dominant Factors Influence Consumer Motivation in Buying Luwak Coffee](image)

42. Note: Y = Consumer motivation, X1 = Appearance, X11 = Taste, X12 = Aroma, X14 = Freshness, X2 = Promotion, X25 = Website available, X26 = Agrotourism, X210 = Discount, X35 = Useability, X34 = Habit, X334 = Leisure, X35 = Health

10.4. On consumer expertise and sensory skills, preference for different intrinsic qualities is dependent (Quintao et al., 2017). The taste, aroma, and freshness of this distinctive Luwak coffee is the main attraction for the proliferation of coffee shops. Several factors can affect the success of a coffee shop business, including taste, facilities and speed of service, and others (Humiras et al., 2017). If the assumption of linearity is not modeled, internal factors can be used as predictors of consumer loyalty (Deliana and Rum., 2017). Coffee users expect more satisfaction in their social experience than to pursue a taste and enjoy the service of coffee. To meet the punctuality of drinking coffee, the take-out service can meet the demands of the community, besides that there are also many social coffee drinking places that are made in several areas (Zhengyu et al., 2019).

Some consumers buy coffee for health reasons and concerns for the environment. Consumers have high knowledge, but buying environmentally friendly products is not necessarily good behavior (Deliana et al., 2017). This is the case between consumer subjective norms and purchase intentions, even though consumers believe the product is environmentally friendly, consumers do not necessarily buy (Phuah et al., 2018). Even so, prices remain a consideration for consumers in buying green products (Balathandayutham and Anandanatarajan, 2019; Hashim et al., 2019). If their customers are satisfied...
and it meets their expectations, they are willing to pay more. Consumers’ wants and expectations include communications, products, and marketing promotions that appeal to the heart, attract all senses, stimulate thoughts, and make it into their lifestyle (Kim et al., 2018; Rather, 2020).

3.3. The consumer interest in Luwak coffee agrotourism

This research revealed that agro-tourism is one consumer motivation to buy Luwack coffee in Cikole Lembang. Consumer interest in Luwak coffee was calculated by respondent (n) divided total respondent (186 person). 39.78% consumer who very interested in agrotourism, 31.11% respondents interest, 16.13% respondent ordinary, 11.29% less interested, and 2.68% respondent not very interested. While the reason respondents visited the location of Luwak coffee in Cikole Lembang are 9% enjoying the sensation of drinking Luwack coffee, 34% enjoy the beautiful view of the location, 28% for leisure, 17% buying Luwack coffee for souvenirs and 12% for edo-entertainment to know how the initial process of ripe coffee beans eaten by the civet till the coffee ready for consumption. For the millennial generation this experience is very interesting and memorable. Thus, in general, respondents are interested in visiting Luwak coffee just to see the natural scenery there, not to enjoy the beverage which is luwack coffee. Respondents normally buy the coffee only as a gift for family and friends.

4. Discussions

From the research model, it is stated that the most influential factors on consumer motivation in purchasing luwak coffee were freshness, taste, aroma, discount, website availability, agrotourism, health, habit, and leisure. The experience of drinking coffee involves factors that are important to create a multisensory effect. This can be used to enhance the coffee drinking experience by considering the consumer’s sensory properties (Fabiana and Charles, 2019), including the freshness, taste and aroma. Drinking coffee while looking at the beautiful scenery is a memorable experience for visitors. This is related to experiential marketing, namely sensory experience (sense), affective experience (feel), creative cognitive experience (think), physical experience, behavior and lifestyle (act), and the experience of social identity resulting from relating to a reference group, culture or act, and lifestyle (act), and the experience of social identity resulting from relating to a reference group, culture or act, and lifestyle (act).

The research results by Rauniyar et al. (2020) on coffee agrotourism is the importance of researching the use of information and communication technology. Based on the research, it was revealed that wi-fi facilities are important for visitors. Nowadays, consuming hot coffee outside the home has become a lifestyle (Kanjankanom and Lee, 2017); of course with the availability of wi-fi provided by coffee shops, it has attracted many consumers (Wu, 2017). Free Wi-Fi, low price and the attractiveness of Luwack coffee agrotourism become typical visitor expectations. The research also revealed that the motivation of visitors to choose Luwack coffee was for reasons of health, habit, leisure, eventually becoming a habit and a lifestyle. This is in line with the results of research by Susanty and Kenny (2015) and Samoggia et al. (2018).

Agrotourism is visiting an active agricultural holding (a farm or ranch) for leisure, recreation or even educational programs (Gil Arroyo, Barbieri, & Rozier Rich, 2013; McGehee & Kim, 2004; Tew & Barbieri, 2012). There are several issues and challenges of agrotourism, small size of the farm lands, lack of necessary skills, poor level of product development, and poor publicity and promotion (Putra et al., 2019). The marketing strategy of luwak coffee must be holistic and synergize between government, companies, communities, academician and media. The undevelopment of Agrotourism normally caused by the poor government and planning. (Anbalagan and Brebt, 2021). Hence the government should supervise the monopoly of tour operators, infrastructure development towards Luwak coffee agrotourism, environmental pollution, provide supervision on the cleanliness and comfort of visitors. The government should also create a new-style tourism pattern different from traditional recreational activities and combining ecological conservation, environmental education, and cultural experience (Mike., 2019; Sawe., 2019).

For developing the marketing of civet coffee, a company must adapt the Starbucks marketing strategy by involving customers in all its activities (value co-creation). That is, they should develop new products and product differentiation based on customers’ expectations and suggestions. The step starts with the customer writing down what requests, suggestions, and complaints have been felt so far (Asli Qztopcu., 2017). The strategy that must be considered, the promise strategy, must be right on target and must be honest. In sales promotions carried out by service providers, consumers actually know this information, but are reluctant to participate. So, then, to stay afloat and compete with other brands, sales promotions must be made carefully and transparently so as to make consumers interested and have an influence on purchases. In addition, this can create a sense of trust in consumers (Eleleoboda., 2017).

In terms of the local community, they must be able to introduce the local culture, art and unique products that are related to coffee. The role of academics is to empower and enlighten the community in terms of increasing the added value of civet coffee. Meanwhile, the mass media plays a role in promoting civet coffee business opportunities so that many millennial farmers become interested. Entrepreneurship in the field of agro-tourism can be developed, and this can create added value for the local community (Stanovčić et al., 2018).

5. Conclusion

The results showed that the identification of luwak coffee consumers can be seen from the appearance, promotion, and usability. Freshness, taste and aroma are the main factors of appearance. Discounts, website availability and agro-tourism are the dominant factors in
promotion. Health, habits and leisure are the dominant factors for the usefulness of civet coffee products. Discounts, accessibility and agro-tourism are the dominant factors in promotion. Health, habits and leisure are the dominant factors in the use of civet coffee products. The reason most consumers visit the luwak coffee location is just to see the surrounding natural scenery, not to enjoy the drink of luwak coffee. The luwak coffee marketing strategy must be holistic and synergize between government, companies, communities, academics and media.

Acknowledgement

We would like to thank Padjadjaran University for the research funds provided in the Academic Leadership Program 2020 with contract number 1427 / UN6.3.1 / LT / 2020. Thank you for the anonymous reviewers who provided helpful suggestions.

References


Table 2. Parameter estimates the Loading Factor and t_{hitung} Model measurements on variable Brand

<table>
<thead>
<tr>
<th>Variabel</th>
<th>( \lambda )</th>
<th>( t_{hitung} )</th>
<th>Error</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Appearance (X₁)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₁₁</td>
<td>There is a sweet taste in coffee</td>
<td>0,85</td>
<td>-</td>
<td>0,28</td>
</tr>
<tr>
<td>X₁₂</td>
<td>Aroma</td>
<td>0,84</td>
<td>-</td>
<td>14,06</td>
</tr>
<tr>
<td>X₁₃</td>
<td>Brand of coffee</td>
<td>0,50</td>
<td>-</td>
<td>7,02</td>
</tr>
<tr>
<td>X₁₄</td>
<td>Freshness</td>
<td>0,86</td>
<td>-</td>
<td>14,60</td>
</tr>
<tr>
<td>X₁₅</td>
<td>Color</td>
<td>0,55</td>
<td>-</td>
<td>7,91</td>
</tr>
<tr>
<td>X₁₆</td>
<td>Variety of product</td>
<td>0,77</td>
<td>-</td>
<td>12,41</td>
</tr>
<tr>
<td>X₁₇</td>
<td>Price suitability</td>
<td>-0,1</td>
<td>-</td>
<td>-1,25</td>
</tr>
<tr>
<td>X₁ₘ</td>
<td>Brand trust</td>
<td>0,47</td>
<td>-</td>
<td>6,57</td>
</tr>
<tr>
<td><strong>Promotion (X₂)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₂₁</td>
<td>Unique Packaging</td>
<td>0,28</td>
<td>-</td>
<td>0,92</td>
</tr>
<tr>
<td>X₂₂</td>
<td>Packaging material</td>
<td>0,49</td>
<td>-</td>
<td>3,34</td>
</tr>
<tr>
<td>X₂₃</td>
<td>Tourist Guidance</td>
<td>0,14</td>
<td>-</td>
<td>3,18</td>
</tr>
<tr>
<td>X₂₄</td>
<td>Facility</td>
<td>0,55</td>
<td>-</td>
<td>3,44</td>
</tr>
<tr>
<td>X₂₅</td>
<td>Website available</td>
<td>0,77</td>
<td>-</td>
<td>3,65</td>
</tr>
<tr>
<td>X₂₆</td>
<td>Agrotourism</td>
<td>0,30</td>
<td>-</td>
<td>3,62</td>
</tr>
<tr>
<td>X₂₇</td>
<td>Free Delivery</td>
<td>0,44</td>
<td>-</td>
<td>3,24</td>
</tr>
<tr>
<td>X₂ₘ</td>
<td>Country of Labeling</td>
<td>0,08</td>
<td>-</td>
<td>1,04</td>
</tr>
<tr>
<td>X₂₉</td>
<td>Green packaging</td>
<td>0,65</td>
<td>-</td>
<td>3,56</td>
</tr>
<tr>
<td>X₂₁₀</td>
<td>discount</td>
<td>0,78</td>
<td>-</td>
<td>3,65</td>
</tr>
<tr>
<td>X₂₁₁</td>
<td>Welcome drink</td>
<td>0,68</td>
<td>-</td>
<td>3,58</td>
</tr>
<tr>
<td>X₂₁₂</td>
<td>Product knowledge</td>
<td>0,55</td>
<td>-</td>
<td>3,44</td>
</tr>
<tr>
<td><strong>Usability (X₃)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X₃₁</td>
<td>Concern of environmentally friendly</td>
<td>0,62</td>
<td>-</td>
<td>0,62</td>
</tr>
<tr>
<td>X₃₂</td>
<td>Prestige</td>
<td>0,69</td>
<td>-</td>
<td>7,96</td>
</tr>
<tr>
<td>X₃₃</td>
<td>Habit</td>
<td>0,76</td>
<td>-</td>
<td>8,57</td>
</tr>
<tr>
<td>X₃₄</td>
<td>Leisure</td>
<td>0,71</td>
<td>-</td>
<td>8,12</td>
</tr>
<tr>
<td>X₃₅</td>
<td>Health</td>
<td>0,90</td>
<td>-</td>
<td>9,6</td>
</tr>
<tr>
<td>X₃₆</td>
<td>Experience in watching coffee luwak was produced</td>
<td>0,61</td>
<td>-</td>
<td>7,21</td>
</tr>
<tr>
<td>X₃₇</td>
<td>Sensation</td>
<td>0,58</td>
<td>-</td>
<td>6,91</td>
</tr>
</tbody>
</table>
Combination of Hyaluronic Acid with *Advance*-Platelet Rich Fibrin to Reduce Chronic Inflammation: a study in IL-6 and Granulation Index

Ronald W. Kartika¹, Idrus Alwi², *Mirta Hediyati Reksodiputro*³, Em Yunir², Sarwono Waspadji², Suzanna Immanuel⁴, Todung Silalahi⁵, Saleha Sungkar⁶, Jusuf Rachmat⁷, Saptawati Bardosono⁸, Franciscus D. Suyatna ⁹,*

¹Department of Surgery, Faculty of Medical and Health Science, Krida Wacana Christian University, Jakarta, Indonesia; ²Doctoral Program in Medical Science Faculty of Medicine Universitas Indonesia; ³Department of Internal Medicine, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo Hospital, Jakarta, Indonesia ; ⁴Facial Plastic Reconstructive Division, Department of Otorhinolaryngology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia; ⁵Department of Clinical Pathology, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo Hospital, Jakarta, Indonesia; ⁶Department of Internal Medicine, Krida Wacana Christian University, Jakarta, Indonesia; ⁷Department of Clinical Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; ⁸Department of Thoracic Cardiac and Vascular Surgery, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; ⁹Department of Nutrition, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; ¹⁰Department of Clinical Pharmacology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia (Corresponding author )

Received: March 3, 2021; Revised: May 3, 2021; Accepted: September 21, 2021

Abstract

BACKGROUND: Type-2 Diabetes mellitus patients have risk of diabetic foot ulcers (DFUs) ranging from 15% to 25% with morbidity of 5% in the first 12 months, and the mortality rate at 5 years is around 42%.

AIM: This research was conducted to study the novelty of combining Hyaluronic Acid (HA) with Advance Platelet Rich Fibrin (A-PRF) to reduce inflammation in DFUs healing through raising granulation index.

METHODS: The study used a randomized control trial design, done from July 2019–March 2020 at Gatot Soebroto Army Hospital and Koja District Hospital, Jakarta. Subjects were DFU wound area < 40 cm². At the start of the study all subjects received the same treatment, debridement and standard wound care. Twenty subjects were recruited according to the rule of thumb and were randomly divided into two groups namely topical A-PRF + HA (n = 10) and NaCl 0.9% (control) groups (n = 10). A part of the sample was processed into lysate and stored in -80°C. The rest is applied as a topical therapy in DFU base on intervention (A -PRF+HA or NaCl as a control). We analyzed the inflammation use swab sampling in DFU and analyze use ELISA on day -3 and day -7. We also measured the wound area by a digital photograph and analyzed using ImageJ at the same time.

RESULT: From this research, it was obtained 20 DFU subjects with Wagner 2 classification. We also performed analysis of IL-6 from swab topical DFU. A-PRF+HA group was significantly lower than NaCl (control) from swab DFU on day -3 ( p = 0.049) and day -7 (p = 0.041). In A-PRF+HA group affected on increase epithelialization process/ decrease wound area on day-3 (p = 0.016), day-7 (p = 0.048 ), and day-14 (p= 0.03)

CONCLUSION: With the homogeneous gel formation of A-PRF + HA, it will accelerate the formation of granulation tissue compared to conventional NaCl therapy through reduce inflammation by decrease IL-6 levels. In addition, the combination A-PRF + HA has the effect of accelerating the formation of epithelialization shown by decreasing wound area in intervention group.

Keywords: Diabetic Foot Ulcer- Advanced Platelet Rich Fibrin- Hyaluronic Acid-Granulation

1.1. Background

One of the common complications of Diabetes mellitus has the most common complication in the form of Diabetic Foot Ulcer (DFU) with significant morbidity and mortality and requires intensive care. It is estimated that 19% -34% of diabetic patients have diabetic foot ulcers. According to a report by the International Diabetes Federation, 9.1–26.1 million people with diabetes develop DFU each year (Cho NH,2018). A cohort study in the United States showed that DFU patients increased risk of death by 2.5 times risk of death (Heydar 2009).

DFU treatment options vary widely, so no single dressing is ideal for all types of wounds. The goal of the dressing should be to create a moist environment that supports granulation, autolytic processes, angiogenesis, and faster engineering of epidermal cells at the wound bed. A wide variety of dressings are available from standard treatment to adjuvant therapy. In addition, it requires...
weight bearing loading, vascular assessment, control of infection and blood glucose (Everett E, 2018).

The standard care is described by Caroline C, 2016 as DFU wound care, namely local wound care with sharp debridement, daily care that increase the humidity of the wound environment. In standard practice in DFU care, a wide variety of agents are available and developed as adjuvant therapies. Adjuvant therapies that are developed include negative pressure wound therapy, supplemental oxygen therapy, acellular bioproducts, growth factors, biologically tissue engineered (Grazul-Bilska AT, 2003).

Several growth factors have been developed for the management of DFU, including epidermal growth factors, fibroblast growth factors, endothelial vascular growth factors, granulocyte colony stimulating factors, and platelet-derived growth factors (Doulton AJM, 2018).

There is limited data on the benefits of growth factor on wound healing in DFU, but studies evaluating platelet-derived growth factor may show some benefits. Several products derived from platelets, including autologous platelet-rich plasma (PRP), used for wound healing, have been widely used by using centrifuged blood samples from patients Platelets that are processed into high concentrated suspensions will contain growth factors. Growth factors cannot be released from blood clotting by several techniques, including clotting, clotting, or clotting (Schrä MO, 2015). The 2016 Cochrane Review reviewed 11 RCTs using PRP in patients with chronic wounds, although there are some drawbacks to chronic inflammatory wounds. Another developing platelet product is the leukocyte- and platelet-rich fibrin combination, which can augment growth factor and matrix protein release (Carolline 2014). In control inflammation in DFU, a combination of A-PRF and Hyaluronic Acid is used to control inflammation (Dhurat R, 2014).

Hyaluronic acid (HA) is the main component of the extracellular matrix which plays a role in tissue regeneration (Ilio K, 2016). Specific HA receptor modulation can influence inflammation, cell migration, and angiogenesis, which are the main phases of wound healing. Other studies have revealed that combining HA with platelet-rich plasma exhibits anti-inflammatory properties in cases of knee osteoarthritis. In this review, the authors discuss the role of combined A-PRF + HA in reducing inflammation and regeneration of DFU tissue through the role of the major cellular receptors involved in HA signaling. The role of HA addition to A-PRF for healing DFU is proven by inflammation reduction, angiogenesis process, and the antioxidant properties of HA (Park D 2012).

Hyaluronic acid has anti-inflammatory properties. Likewise, A-PRF also has properties in reducing inflammation. It is hoped that A-PRF + HA can work together to reduce inflammation which is marked by a decrease in IL-6 (Ulcers DF, 2012). During chronic inflammatory process in DFU, preparation of HA can also protect and stabilize the alpha platelet granules membrane from protease enzymes so as might prevent damage to growth factors inside them (Kartika 2021).

Until now there have been no studies comparing the combination of A-PRF + HA with A-PRF alone in reducing inflammation which affects the healing of DFU. Assessment granulation improvement can be done by using image (A. Suarez, 2020).

2. Methods

2.1. Research Design and Sample

This study has been approved by The Ethics Committee of the Faculty of Medicine Universitas Indonesia (ID 0855/UN2.F1/ETIK/2018). This open-label randomized controlled trial was conducted at Koja District Hospital and Gatot Soebroto Hospital from July 2019 to April 2020. DFU patients with wound duration of three months, Wagner-2, and ulcer size < 40 cm² were recruited and randomly assigned into A-PRF + AH and control group. On day-0, day-3 and day-7, samples and photographs were taken. Samples were analyzed with ELISA and photographs were analyzed with ImageJ to calculate wound area (WA). Statistical analysis was performed using SPSS version 20.

2.2. Material and Sample Measurement Techniques

Measurement of IL-6 from wound surface use cotton swabs on days 0, 3 and 7 using the ELISA technique (kit) and obtained numerical data in units of pg / mL. The examination was carried out at the FKUI Integrated Laboratory. The ELISA reagent used was the Human IL-6 / ELISA Kit with the Insert Kit from LifesSpan Biosciences, Inch.Cat:LS-F4604. ELISA was done according to the manufacturer's instruction. In addition, the wounds reduction was recorded with a digital camera (Cannon Camera 48 mega pixel, China) with an accuracy of 0.1% on the 0, 3, 7 and 14 days. The results of the wound photographs were processed using Image-J (Java software program) by evaluating the granulation index.

2.3. Topical A-PRF + HA preparation

To make A-PRF, 20-40 mL of peripheral blood was taken without anticoagulant tube (RegelKit tube), then centrifuged (RegenLab centrifuge, Le Mont, Switzerland) at about 200 G for 8 minutes. Fibrin and buffy coat are separated from erythrocytes. For the A-PRF + HA (intervention group); the process was continued by making A-PRF and HA homogenate with a ratio of 1 cc: 0.6 cc with vortex for 20 seconds. The preparation of A-PRF + HA was repeated on day-3 and day-7 and applied as a DFU topical therapy.

2.4. Application of A-PRF + HA in DFU

Prior to intervention, the wound was cleaned and debrided. Topical therapy was carried out by giving 1 mL of material for an area of 10 cm² according to the group (group 1 A-PRF + AH, group 2 NaCl soaked gauze). The wound is covered with sterile gauze as a secondary dressing to maintain moisture.

2.5. Evaluation of Inflammation Signs in DFU Intervention

To assess changes in inflammation after intervention, an evaluation was carried out by looking at changes in IL-6 levels (swab) on baseline, day-3 and day-7. Meanwhile, for clinical assessment, measurements of reduction of wound area from day-0, day-3, day-7 and day-14 were accompanied by pain response with numeric pain score at the same time.
3. Result

We recruited 20 subjects, consisting of 12 men and 8 women. The median age was 64 years in women and 61 years in men. The subjects were randomly divided into three groups (A-PRF + HA and NaCl) comprised of 10 subjects per group (Table 1)

Table 1. Subjects baseline characteristics

<table>
<thead>
<tr>
<th>Subject Characteristic</th>
<th>A-PRF+AH (n=10)</th>
<th>Control (n=10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>59.8 (SB 12.7)</td>
<td>66 (SB 12.3)</td>
<td>0.626</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>woman</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>28.9 (SD 2.7)</td>
<td>28.4 (SD 2.5)</td>
<td>0.337</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>12.7 (SD 1.2)</td>
<td>12.05 (SD 1.4)</td>
<td>0.224</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>34.1 (SD 4.3)</td>
<td>33.8 (SD 4.5)</td>
<td>0.145</td>
</tr>
<tr>
<td>Leucocyte (10^3/µl)</td>
<td>13.30 (SD 1.08)</td>
<td>9.23 (SD 1.66)</td>
<td>0.985</td>
</tr>
<tr>
<td>Platelet (10^3/µl)</td>
<td>354.9 (SD 167.5)</td>
<td>319.9 (SD 128.4)</td>
<td>0.880</td>
</tr>
<tr>
<td>Random Blood Glucose, mg/dL</td>
<td>286.0 (SD 67.5)</td>
<td>254.7 (SD 58.6)</td>
<td>0.104</td>
</tr>
<tr>
<td>HbA1C (%)</td>
<td>11.34 (SD 1.30)</td>
<td>8.5 (SD 0.72)</td>
<td>0.950</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>214.5 (SD16.9)</td>
<td>202.3 (SD 38.6)</td>
<td>0.096</td>
</tr>
<tr>
<td>Albumin (mg/dL)</td>
<td>3.3 (SD 0.4)</td>
<td>3.2 (SD 0.4)</td>
<td>0.662</td>
</tr>
<tr>
<td>Anti Platelet Medication</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statin Medication</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

*Mean,SD, Independent t test

3.1. Evaluation of IL-6 Swab DFU Receiving Intervention

Level of IL-6 was analyzed to see the pathway of healing DFU through inflammation. The baseline IL-6 levels in the two groups were not significantly different. After two interventions, changes in levels of IL-6 (∆IL-6) in the A-PRF + AH group, there was a significant decrease on day-3 (-10.9 pg/mg protein) and day-7 of (-18.3 pg/mg protein), while ∆IL-6, group NaCl increased on day 3 of 4.3 pg/mg protein and day-7 by 35.6 pg/mg protein. The A-PRF + AH group showed a significant reduction in ∆IL-6 compared to the NaCl (Control) group on day 0−7 (p = 0.015), according to Table 2.

Table 2. IL-6 Levels Swab DFU Based on Intervention

<table>
<thead>
<tr>
<th>Intervention</th>
<th>A-PRF+HA (n = 10)</th>
<th>Control (n = 10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>106.4 (83.1−407.6)</td>
<td>125.3 (20,3−287.0)</td>
<td>0.337</td>
</tr>
<tr>
<td>Day-3</td>
<td>99.5 (76.3-302.2)</td>
<td>131.1 (53−337.5)</td>
<td>0.049</td>
</tr>
<tr>
<td>Day-7</td>
<td>88.7 (44.3−217.9)</td>
<td>167.9 (27.7−156.2)</td>
<td>0.041*</td>
</tr>
<tr>
<td>∆ day-0−3</td>
<td>-10.9 (-105.4−17.7)</td>
<td>4.3 (-47.8−50.5)</td>
<td>0.046</td>
</tr>
<tr>
<td>∆ day-0−7</td>
<td>-18.3 (-189.7−44.6)</td>
<td>35.6 (-160.6−108.4)</td>
<td>0.015</td>
</tr>
</tbody>
</table>

* Median (min-max), Mann Whitney test

Figure 1 show in DFU which use topical A-PRF+HA has decrease of IL-6 swab significantly on day-3 (p =0.049*) and day-7 ( p= 0.041**), significantly

3.2. Evaluation of Wound Area (WA) of DFU in A-PRF + HA Fibrin versus NaCl

To see the correlation between angiogenesis and clinical conditions, an analysis of wound area and granulation tissue growth was performed as measured by ImageJ software. The measurement of increase of epithelialization tissue changes, can be done by evaluating the woundarea (WA). The average wound area was shown in Table 3
Table 3: Evaluation of Wound Area based on Intervention

<table>
<thead>
<tr>
<th>Intervention</th>
<th>A-PRF + HA (n = 10)</th>
<th>Control (n = 10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>7.0 (1.9–31.9)</td>
<td>5.2 (2.0–20.6)</td>
<td>0.848</td>
</tr>
<tr>
<td>Day-3</td>
<td>6.3 (1.4–26.1)</td>
<td>3.2 (1.9–18.4)</td>
<td>0.016</td>
</tr>
<tr>
<td>Day-7</td>
<td>5.5 (1.1–25.4)</td>
<td>2.6 (1.1–17.1)</td>
<td>0.048</td>
</tr>
<tr>
<td>Day-14</td>
<td>5.0 (0.9–18.6)</td>
<td>2.3 (0.3–16.2)</td>
<td>0.030</td>
</tr>
</tbody>
</table>

\[ \Delta \text{ Day-0−3} = -0.5 (-0.1−-5.8) \]
\[ \Delta \text{ Day-0−7} = -1.1 (-0.3−-5.9) \]
\[ \Delta \text{ Day-0−14} = -1.5 (-0.2−-3.9) \]

* median (min-max), Mann Whitney test

Figure 2 shows the measurement, clinical evaluation and clinical photographs taken at baseline, day-3, day-7, and day-14 on different treatment groups. Here, we observed different rates of wound closure and healing, especially at day-14 compared to control group.

3.3. Evaluation of Inflammation Clinical Symptoms DFU Subjects

We analyzed clinical symptoms such as Numeric Pain Score (NPS) and Inflammation sign in DFU. At baseline examination of the two groups in NPS evaluation was 7-8 (severe pain). After the intervention, pain scores decreased in both groups. However, there was a significant decrease of NPS on day-3 and day-7 in the A-PRF + HA group compared to NaCl (contro) groups (Table 4).

Table 4: Different Numeric Pain Score (NPS) in DFU based on Intervention

<table>
<thead>
<tr>
<th>Sign Of Inflammation</th>
<th>A-PRF + HA (n=10)</th>
<th>Control (n=10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redness Day-0</td>
<td>2.9 ± 0.5</td>
<td>2.5 ± 1.1</td>
<td>0.890</td>
</tr>
<tr>
<td>Day-7</td>
<td>0.1 ± 0.03</td>
<td>1.0 ± 0.2</td>
<td>0.028</td>
</tr>
<tr>
<td>Heat Day-0</td>
<td>2.8 ± 0.1</td>
<td>2.4 ± 0.5</td>
<td>0.707</td>
</tr>
<tr>
<td>Day-7</td>
<td>0.3 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>0.032</td>
</tr>
<tr>
<td>Swelling Day-0</td>
<td>2.9 ± 0.2</td>
<td>2.5 ± 0.3</td>
<td>0.179</td>
</tr>
<tr>
<td>Day-7</td>
<td>0.1 ± 0.05</td>
<td>0.7 ± 0.2</td>
<td>0.021</td>
</tr>
<tr>
<td>Pain Day-0</td>
<td>2.9 ± 0.5</td>
<td>2.7 ± 0.6</td>
<td>0.328</td>
</tr>
<tr>
<td>Day-7</td>
<td>0.2 ± 0.4</td>
<td>0.8 ± 0.1</td>
<td>0.032</td>
</tr>
<tr>
<td>Functio Laesa Day-0</td>
<td>2.5 ± 0.3</td>
<td>2.6 ± 0.2</td>
<td>0.978</td>
</tr>
<tr>
<td>Day-7</td>
<td>0.3 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Mean (SD), independent t test 0= none, 1= mild, 2= moderate, 3 = severe

Figure 3 shows an evaluation of NPS in A-PRF + AH group compared with A-PRF group on day-3 (p = 0.021)\(^9\), day-7 (p=0.019)\(^9\), and day-7 (p = 0.047) \(^9\)

4. Discussions

Treatment of diabetic foot ulcer therapy with supplementary growth factor therapy has begun to be developed in the late decades. Growth factors are needed in new cell growth and wound healing.14 change style Treatment of diabetic foot ulcers with growth factors can accelerate ulcer healing characterized by granulation tissue formation. Several growth factors influenced by the healing of DFU i.e. TGF-β1 and β2, IGF, and VEGF, have been used in orthopaedics, maxillofacial, periodontal fields, plastic surgery, and sports medicine because of their anti-inflammatory and antimicrobial properties (Geerlings SE et al., 2019).
In this study, 20 DFU subjects were found with almost homogeneous basic characteristics. The use of A-PRF + HA group compared with NaCl (control), there was significant reduction in delta inflammation in local swabs (Δ IL-6) in DFU on day 0–3 (p = 0.046) and on day 0–7 (0 = 0.015).

In diabetics, there is a prolongation of the inflammatory phase in the wound healing process (Amanulla, 2020).

Several biomarkers play a role in the inflammatory process such as TGF-β which is a pluripotent cytokine of the three isoforms in mammals such as TGF-β 1, TGF-β 2, and TGF-β 3, with TGF-β 1 dominant in tissue healing, including skin. Otherwise, interleuking family also influence in inflammation in wound healing such as IL-6 and IL-1β (Hasan 2019).

Interleukin (IL) -6 is produced by fibroblasts, keratinocytes and macrophages of cells at the site of inflammation. IL-6 biomarkers play a role in acute to chronic inflammation by changing the nature of leucocyte infiltrates (from polymorphonuclear neutrophils to monocytes / macrophages). Additionally, IL-6 stimulates T and B cells, which support a chronic inflammatory response. Strategies that target IL-6 signaling are useful for the prevention and treatment of an effective model of diabetic foot ulcers and other chronic inflammatory diseases. IL-6 has a dual effect; to some extent, it acts as a defense mechanism but in chronic inflammation it acts as a pro-inflammatory (Gabay Cem, 2016).

In assessment the inflammatory status of DFU, it can be both locally and systemically. In this study, a swab of DFU was carried out using a cotton swab to check for a decrease in inflammatory mediators such as IL-6. This examination is a new method that has been done for the first time. Research by Liu et al, 2002a tried to perform an MMP examination of the wound fluid Ref. Other methods used to examine biomarkers in DFU are using invasive techniques such as tissue biopsy or patch skin biopsy Ref. Research by Michael et al, 2017 has used swab examination in cases of DNA abnormalities examination in cerebral palsy cases in infants and cases of Alzheimer's Ref. The cells were obtained by means of swab or smear using a cotton bud or small brush for further analysis using the PCR technique. This method has a fairly good accuracy with a sensitivity of 93%. To increase the sensitivity of the examination of other researchers, replacement of the stick swab with a soft brush is recommended (isohelix DNA / RNA buccal swab). This method can replace DNA examination with PCR of blood or hair materials. Another study at UGM used fine needle biopsy with paraffin block for detection of TGF-β for the evaluation of biomarkers in DFU (Yang P, 2016).

5. The use of Advance PRF in DFU healing

In wound healing, PRF plays a crucial role in the proliferation phase by continuously releasing growth factors at the wound site and inducing viability, proliferation and differentiation of cells. PRF stimulation releases growth factors TGF-β1 and PDGF-AA on day 5 of wound healing. A part from playing a role in accelerating wound healing through the induction of growth factors, PRF also plays an active role in inducing the proliferation and migration of skin cells through increased expression of MMP-1 and MMP-9. Platelet-rich fibrin elicited the anti-inflammatory response of macrophages in in-vitro studies. In addition, PRF has anti-inflammatory activity and shifts the polarization of macrophages from M1 to the M2 phenotype (Massano F, 2016).

Advanced platelet-rich fibrin (A-PRF) was first described in 2014 as a new concept using cell-based tissue engineering by lowering rpm while increasing the standard PRF time Ref. To obtain PRF, venous blood is drawn without adding anticoagulants. The protocol for the standard PRF (S-PRF) utilized a 2700 rpm or 360 x g centrifuge, for 12 minutes. In contrast to standard PRF, the APRF manufacturing technique uses a low-speed centrifuge (1500 rpm or 200 x g for 8 minutes) because centrifugal force in speed and time which affects the distribution of growth factor cells suitable for wound healing and tissue regeneration (Nasirzade, 2020).

Immuno-histochemistry of monocytes, T and B lymphocytes, neutrophil granulocytes, CD34, were detected around the buffy coat. Decreasing rpm while shortening the centrifugation time of A-PRF can increase the neutrophilic granulocytes in platelet fibrin concentrates more in APRF than in standard PRF, whereas in the Standard PRF (S-PRF) group, neutrophils were found on the surface of erythrocytes. Neutrophil granulocytes play a role in the differentiation of monocytes into macrophages so that A-PRF can affect tissue regeneration, especially through monocytes / macrophages and growth factors (Gardiner E, 2014).

6. The use of Hyaluronic Acid in Wound Healing

Isolated glycosaminoglycans has been done from the vitreous humor of a cow's eye as a hyaluronan. Hyaluronic acid is a polysaccharide with extracellular matrix components synthesized in the plasma membrane of fibroblast cells which activates many inflammatory mediators and growth factors (Greco, 1998). Hyaluronic acid recruits macrophages and modulates the inflammatory response (Ilio , 2016).

The mechanism of reducing inflammation of A-PRF + AH is through the pathway of changes in macrophage polarization by accelerating the polarization of M1, which has strong pro-inflammatory properties (IL-1β, IL-6, and TNF-α) to M2 (IL-10, Arginase, TGF-β1, VEGF), which is anti-inflammatory. M1 activation was associated with inflammation, tumor resistance, and graft rejection. Conversely, M2 cell activation results in immune system regulation, cellular matrix deposition and tissue remodeling. Hyaluronic acid through the CD44 receptor in synergy with A-PRF strengthens the shift of macrophage polarization from M1 as a pro-inflammatory) to M2 phenotype as an anti-inflammatory. (Fujisaka, 2009)

Another advantage of HA is that it has antioxidant properties and reduces inflammation so it is widely used to treat osteoarthritis (OA). The structure of Hyaluronic acid which is contain disaccharide polymer, consisting of N-acetyl-D-glucosamine and D-glucuronic acid, linked via β-glycosidic bonds. Hyaluronic acid inhibits the collagenase enzyme, which is the proteolysis enzyme of collagen (Wu, 2016). Hyaluronic acid affects cell migration, cell adhesion and angiogenesis. Fibroblasts play a major role in wound healing by forming extracellular matrix components such as collagen, elastin and proteoglycans.
Fibroblasts also play an essential role in the migration of keratinocytes from the wound edges to achieve wound closure and matrix reconstruction resulting in the maximal wound healing force of contraction (Afat et al, 2017).

7. Combination of HA with A-PRF to Accelerate Epithelialisation

In this study show in intervention group (Topical A-PRF+HA) had decrease of wound area and increase granulation tissue significantly on day-3 and day-7.

Regarding the effect of HA on tissue regeneration, it is related to the interaction of HA with CD44 which drive the maintenance and establishment of collagen synthesis and normal skin function. Hyaluronic acid is present in the extracellular matrix of basal keratinocytes and the structural integrity of dermal collagen fragments and fibroblast penetration. Decreased levels of HA correlate to impaired local inflammatory response and reduced tissue repair due to degeneration of the granular tissue matrix (Fischer 2008). The combination of HA and PRP reduces pro-inflammatory cytokines and increases articular chondrocyte proliferation and chondrogenic differentiation via the HA-dependent Erk1 / 2 pathway and the PRP-dependent Smad 2 / 3 pathway (Ilio, 2016). The clinical application of the combination of PRP and AH is more effective than PRP or HA alone; both are therapeutic options for osteoarthritis and chronic tendinopathy. The combined effect of PRP and AH is more than the sum of its parts; the combination of growth factors and cytokines released by platelets. The addition of HA to PRP can increase the release of growth factor on day 5 (Gardiner, 2014).

Combination of AH with PRF stimulated growth factors such as TGF-β, significantly increasing the proliferation index and collagen deposition (Ilio, 2016).

AH also interacts with the TGF-β1 transformation of PRF thereby protecting growth factors from degradation of trypsin and collagen by protease enzymes (Afat, 2017). Combination of AH with L-PRF reduced edema after oral surgery of the 3rd molar although through HA linking with ICAM, VCAM receptor. This link will reduce vascular leakage of neutrophil and reduce edema. (Fathi, 2012)

Hyaluronic acid affects three main receptors in tissue regeneration's modulation, namely migration, proliferation and activation of keratinocyte cells (CD44). This is done to restore the epidermis, fibroblast migration (RHAMM), control of inflammation and neangiogenesis (ICAM-1), as well as promotion of ECM deposits such as collagen fibers that contribute to wound healing (Park, 2012). Wound healing begins with a complex integration process through cellular, physiological, and biochemical processes, such as inflammation, cell migration, and proliferation. Interleukin-6 is a multifunctional cytokine that regulates the inflammatory response of the wound healing process in a timely manner. Hyaluronic acid is an important component of ECM contributing significantly to cell proliferation and migration. The combination of PRF and AH provides a synergistic effect on wound healing cell migration with ERK (extracellular signal) activation (Wu, 2016).

In this study, A-PRF corresponded to high concentrations of platelets in liquid fibrinogen which contains growth factors required for soft tissue regeneration. The low speed and low time centrifugation protocol (200 G, 8 minutes) lead to enhance the healing of chronic diabetic foot wounds. The addition of HA to A-PRF will further induce the release of growth factors (Kartika RW, 2020).

Here is the proposed mechanism of A-PRF + HA in reducing inflammation and increase granulation in wound healing (Figure 4).

8. Conclusion

The combination of A-PRF and HA increases the granulation and epithelialization in DFU healing by reducing the inflammation state which will induce the angiogenesis process. Clinically, the application of A-PRF and HA combination showed to reduce pain better than the control NaCl in DFU patients.
9. Limitation Study

The subject in this study only 20 patient and the evaluation of inflammation was only the use of Interleukin -6 and clinical inflammation preview. We need more subjects for evaluation with more variants of inflammation biomarker.

Acknowledge

This study was a dissertation of Program Doctoral Medical Science Universitas Indonesia.

Conflict of Interest

This study was funded by Universitas Indonesia, Jakarta.

References


Value Chain Model for Straw Mushroom (Volvariella volvacea) Agribusiness Performance in Karawang, Indonesia

Suhaeni¹*, Winda Rianti² and Yuyun Umaidah³

¹Department of Agribusiness, ²Department of Agrotechnology, ³Department of Information Technology, Universitas Singaperbangsa Karawang, Indonesia

Received: March 3, 2021; Revised: May 31, 2021; Accepted: September 16, 2021

Abstract

Straw mushroom is one of the potential commodities in Indonesia with consumption growth always increasing every year. This commodity has great potential to be developed but must be accompanied by the right value chain performance. In this study, the mapping and value chain performance of straw mushroom quality were analyzed. This research was conducted using a descriptive survey method to 56 respondents through interviews and questionnaires. Data were collected and analyzed using the value chain analysis model and the Analytical Hierarchy Process (AHP). The results showed that there were 6 patterns of the straw mushroom value chain. The actors involved consisted of farmers, traders, wholesalers, retailers, and consumers. The performance element that needs great attention is reliability (37.4%), followed by cost (22.6%), agility (20.1%) and responsiveness (19.9%). The results of this study are then used to facilitate decision making in improving value chain performance.

Keywords: value chain, performance, agribusiness, straw mushroom

1. Introduction

Mushroom production has increased rapidly and is expected to further increase in the future (Grimm & Wösten, 2018a) with its consumption growth always increasing every year (Grimm & Wösten, 2018b). Mushrooms are not only used as a delicious food or flavour but also for health (Pop et al., 2018) as they are enriched with proteins, phenolics, vitamins, antioxidants, and microelements (Kora, 2020). Plants that contain phenolics and antioxidants can be used as medicine (Al-Ghamdi et al., 2020) and treatment goals (Abdel-Mawgoud et al., 2019). So, apart from being food, mushrooms can also be used as a medicine (Ashraf et al., 2020); and they are good for diet because they are low in calories, carbohydrates, fat and cholesterol (Fontes et al., 2019).

Straw mushroom is one of the most widely cultivated food types in tropical and subtropical regions (Liu, 2020). Apart from being a source of food and good for health, this product has an environmentally friendly production process and can be a source of income for the community (Datta, 2019). Straw mushroom cultivation has economic and environmental feasibility (Atila, 2019), but there are still obstacles in the procurement of seeds, limited technical information, and lack of agricultural extension role. In addition, farmers also have constraints in marketing and pest control, climate or weather inconsistencies (Robinson et al., 2019), water quality (Sakinah, 2019), and there is no added value for straw mushrooms.

**Straw mushroom is one of the leading commodities in Karawang Regency, Indonesia with an increase in consumption that always increases every year. Demand per day reaches 4-10 tons, while the supply is only around 4-7 tons. This condition shows that straw mushroom agribusiness has the potential to be developed, but the performance of the value chain (starting from the planning process, procurement of agro-input facilities, production, distribution, to returns) needs to be improved. These activities are very important for the development and competitiveness of the company as well as the company's supply chain management strategy (Florescu et al., 2019). Therefore, this study aims to determine the structure of the value chain and measure the performance of the mushroom value chain. It is important to select performance attributes to improve the mushroom value chain. This study uses the Analytical Hierarchy Process (AHP) methodological approach with its ability to make decisions from various criteria (Bunyan Unel & Yalpir, 2019). This approach is also able to measure supplier performance which can help organizations to optimize costs and quality of functions (Touil et al., 2019). The AHP method developed by Saaty (sauté, 1990) is an effective and easy-to-apply tool to assess criteria that influence intuitive decision-making problems through a multi-level hierarchical structure (Seviç et al., 2018).**

2. Methodology

The method used in this study is a descriptive method by surveying, interviewing, and distributing questionnaires to respondents, namely 40 mushroom farmers by...
purposive sampling and 16 sellers by snowball sampling. Surveys and interviews were conducted to find out the main actors involved in the performance of the value chain and to get an overview of the straw mushroom business process. The research location is in the center of straw mushrooms in Jatisari District, Karawang Regency. The location determination was carried out by purposive sampling, with the consideration that the location of this study was the center of straw mushrooms. This research was conducted from January to August 2020. Furthermore, the measurement data was processed by value chain analysis and the Analytical Hierarchy Process (AHP) method.

2.1. Value Chain Analysis.

Value chain analysis refers to a series of activities required to present a product or service starting from the conceptual stage, the production stage, to delivery to the final consumer and destruction after use. The stages in value chain analysis are as follows:
1. Entry point
   The entry point is to determine the point where the research will begin. The selected entry point is a mushroom farmer, then tracing with snowball sampling to get a sample at the next point to the consumer, as in the cotton industry value chain research (Mapanga et al., 2018).
2. Value chain mapping
   Market mapping is very much needed in value chain mapping analysis. It is used to determine the contribution of the actors involved and the relationship between the actors. Identification of factors that affect value chain performance can be obtained from the interaction information (Muloa et al., 2018).
3. Improve the value chain
   Value chain improvements are carried out to identify possible improvements, by optimizing the performance of the edible mushroom value chain.


The AHP method was developed by Thomas Saaty (Saaty, 1990). This method is used to update the value chain performance by making decisions and determining the best alternative by considering various criteria (Improta, 2018). This method is also used for decision making by making pairwise comparisons of the available criteria options (Lesniah et al., 2018). The AHP model software expert choice 11 can be used to select the performance criteria of the mushroom value chain based on priority. Data to measure performance are obtained from literature studies and in-depth interviews with several experts/actors who are directly involved in the mushroom value chain. AHP working principle stages are as follows (Susanawati & Fauzan, 2019):
1. Problem Identification
   The first step is to identify the problem in depth. The next process is the identification and selection of elements that will be included in the system components, such as goals (target), objectives, criteria, sub-criteria and alternatives in the AHP structure. AHP method is able to break down complex problems into sub-problems, classify these sub-problems based on domination relations, and build an orderly hierarchy (Beiragh, 2020). The hierarchical structure of the mushroom value chain performance is shown in the Figure 1.

![Figure 1. Hierarchy Structure of Value Chain Model for Performance of Straw Mushroom Agribusiness Creating a hierarchical structure](image-url)

The AHP process method involves consideration of a hierarchical structure in the form of goals (targets), criteria, sub criteria and alternatives (Improta, 2018). The goals is to measure the performance of the mushroom commodity value chain, the criteria consist of planning, procurement, production, distribution and return. Sub criteria consist of quality, risk and value-added (Setyabudi, 2018), actors consist of farmers, traders, wholesalers and retailers (Sachan, 2020). While the alternatives are reliability, responsiveness, agility and cost.

2. Assessment of each level of the hierarchy
   The assessment process is carried out to find the elements that most influence the overall objectives. The initial step is to make an assessment of the importance of the two elements at a given level in relation to the higher-level hierarchy. The results of the assessment are presented in a paired matrix of size nxn. Saaty gives a rating of 1 to 9 to assess the comparison of the importance of one element to another (Susanawati & Fauzan, 2019).
Table 1. Comparison Scale.

<table>
<thead>
<tr>
<th>Comparison Scale</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Both elements are equally important</td>
<td>Two elements have the same influence greatly to the goals</td>
</tr>
<tr>
<td>3</td>
<td>Elements of a little more important than other elements</td>
<td>Experience and judgement slightly favor one element compared to other elements</td>
</tr>
<tr>
<td>5</td>
<td>Elements which one is more important than other elements</td>
<td>Experience and strong vote supporting one element compared to the other elements</td>
</tr>
<tr>
<td>7</td>
<td>One element is obviously more important than other elements</td>
<td>One very powerful element supported, and the domain has been in practice</td>
</tr>
<tr>
<td>9</td>
<td>One absolutely essential element than other elements</td>
<td>The evidence that supports one element against another element has the highest possible degree of confirmation strengthens</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>The values between two adjacent values</td>
<td>Values considerations is given when there are two compromises between two options</td>
</tr>
</tbody>
</table>

3. Determination of element priority

Each level of the hierarchy needs to be compared in pairs to determine priority. Paired elements must be compared based on certain standards and considerations. Relationships between elements from each level of the hierarchy are established by comparing them in pairs. This relationship describes the relative influence of an element at a hierarchical level to each element at a higher level. Elements at this higher level function as criteria and are called properties. The result of this differentiation process is the priority vector or the relative importance of an element to each trait. Pairwise comparisons are repeated for each element in each level. Then the next step is to give weight to each vector with its priority properties. The first comparison is performed starting at the top of the hierarchy in the comparison process. The second comparison is performed by comparing the elements at the lower level.

Table 2. Random index Value (RI).

<table>
<thead>
<tr>
<th>Matrix Size</th>
<th>RI</th>
<th>Matrix Size</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>9</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>0.58</td>
<td>11</td>
<td>1.51</td>
</tr>
<tr>
<td>4</td>
<td>0.90</td>
<td>12</td>
<td>1.48</td>
</tr>
<tr>
<td>5</td>
<td>1.12</td>
<td>13</td>
<td>1.56</td>
</tr>
<tr>
<td>6</td>
<td>1.24</td>
<td>14</td>
<td>1.57</td>
</tr>
<tr>
<td>7</td>
<td>1.32</td>
<td>15</td>
<td>1.59</td>
</tr>
<tr>
<td>8</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Logical Consistency

In making decisions, an assessment that has high consistency is needed so that the results are accurate. Authentic results can be obtained by applying an overall consistent assessment by considering a consistency ratio of 10% which is measured using the AHP method in equation (1). If the consistency is > 10% then the assessment must be increased because it is still considered random.

\[
\frac{\lambda_{\text{max}} - n}{n-1} \quad \text{and} \quad CR = \frac{CI}{RI}
\]  

where, CI is consistency index, CR is Ration consistency, RI is random index, and n is size of the matrix.

3. Results and Discussion

3.1. Value Chain Mapping

In the straw mushroom value chain pattern, there are four main components that form the value chain, namely products, actors, activities and inputs (Figure 2). The product referred in the picture is a straw mushroom that is produced to be delivered to consumers. Straw Mushrooms have perishability and low durability while product freshness is a measure of marketing quality. Therefore, the longer the marketing pattern, the lower the freshness quality. The straw mushroom value chain structure consists of six value chain patterns involving five actors, namely farmers, traders, wholesalers, retailers and consumers. These services/institutions are supporting actors of the straw mushroom value chain.

Explanation of the functions and roles of actors in the value chain of hay mushroom commodities, namely:

1. Farmers or producers

Farmers are the parties who carry out the cultivation of the straw mushrooms. The productivity of the mushrooms in one crop averages 200-250 kg per mushroom house. The process of cultivating straw mushrooms to harvest takes 23 days, with details: the composting process about 7 days, the planting period until ready to harvest about 9 days and the length of harvest from beginning to end about 12 days. Straw mushrooms produced are sold to traders, wholesalers, or retailers.

2. Traders

Traders play a role in buying crops from farmers and also carry out collection, packaging, and delivery to wholesalers and retailers as well as selling directly to consumers. The trader purchases straw mushrooms in one growing season as much as 100-1,000 kg depending on the capital and availability of the mushrooms. Next, the merchant will sell the product to wholesalers and retailers.

3. Wholesaler

Wholesaler play a role in buying straw mushrooms from traders and farmers in a large volumes. The average purchase is normally in about 2,000-3,000 kg in one harvest season. Wholesalers usually market this product also to retailers in local markets and outside Karawang, for example Jakarta, Bogor, Tangerang and other cities.

4. Retailers

Retailers play a role in buying straw mushrooms from traders, wholesalers or directly from farmers to be sold to local consumers for small volume sizes of around 20-30 kg per one harvest season.

Among the actors in the value chain pattern, usually traders are the most influential parties. This is because traders have a big role in marketing and providing capital. In marketing straw mushrooms, farmers rely heavily on traders. More than 50% of farmers sell their crops to traders. The selling price of straw mushrooms tends to be around 20-30 percent cheaper than other middlemen. Even in the procurement of capital, farmers are still very dependent on traders. This is because the majority of farmers do not have sufficient capital, so they are forced to
borrow from traders to get raw materials whose prices are around 20-30% higher than the cash price.

Activities carried out by value chain actors along the marketing pattern include production, collection, sorting, packaging, transportation, and sales. Input is an instrument needed to carry out every activity in the value chain pattern, from product manufacturing to distribution to final consumers. Some of these inputs include labor, information, skills, knowledge, and capital. The quantity and quality of products, performance of actors, activities and value chain inputs are influenced by business processes, from planning, procurement, production (processing), distribution and returns. Based on field observations, business processes need to be improved in line with value chain performance.

![Figure 2. The Straw Mushroom Value Chain Pattern.](image)

3.2. Performance Measurement of the Straw Mushroom Value Chain

The measurement of the performance of the straw mushroom value chain consists of objectives, criteria, sub-criteria, actors and alternatives. The aim is to measure the performance of the hay mushroom value chain as shown in Figure 1. The criteria contained in the hierarchical structure are the hay mushroom business processes, which consist of planning, procurement, production, distribution and returns, while the sub-criteria are performance parameters in the form of quality, risk and added value. The actors directly involved in the performance of the straw mushroom value chain are farmers (producers), traders, wholesalers and retailers.

![Figure 3. Comparison of Inter-Criteria Pairings](image)

Based on the comparison of pairs between criteria, the measurement results show that the production business process with a value of 0.386 is the most important process compared to other business processes (Figure 3). This is because the production process is the main process in determining the success of the straw mushroom business. Things that can affect the production process or straw mushroom cultivation are weather, water quality, seed quality, pests and diseases and flooding. So far, farmers get mushroom seeds directly from nurseries outside the city, or through seed stalls in the city. Farmers have not been able to cultivate straw mushrooms independently; this is due to the lack of farmers’ abilities. In addition to production, the next business process is procurement, distribution, planning and returns.
added value, and the last element is quality. An important element in the distribution business process is quality, followed by value added and finally risk. Meanwhile, in the return business process, the most important element is risk, followed by quality and added value. In general, quality performance parameters are considered as the most important element when compared to other performance parameter elements; this is because quality greatly affects the quality of mushroom products that will be distributed to consumers and can be a measure of consumer confidence.

Table 3. Pairwise Comparisons Between Criteria in Value Chain Performance Measurement.

<table>
<thead>
<tr>
<th>Performance Parameters</th>
<th>Planning</th>
<th>Procurement</th>
<th>Production</th>
<th>Distribution</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>0,493</td>
<td>0,540</td>
<td>0,196</td>
<td>0,594</td>
<td>0,311</td>
</tr>
<tr>
<td>Risk</td>
<td>0,196</td>
<td>0,297</td>
<td>0,493</td>
<td>0,157</td>
<td>0,493</td>
</tr>
<tr>
<td>Value-Added</td>
<td>0,311</td>
<td>0,163</td>
<td>0,311</td>
<td>0,249</td>
<td>0,196</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Table 4. Pairwise Comparisons Between Sub Criteria in Value Chain Performance Measurement

<table>
<thead>
<tr>
<th>Value Chain Actor</th>
<th>Quality</th>
<th>Risk</th>
<th>Value Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0,124</td>
<td>0,276</td>
<td>0,138</td>
</tr>
<tr>
<td>Trader</td>
<td>0,389</td>
<td>0,195</td>
<td>0,276</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>0,299</td>
<td>0,391</td>
<td>0,391</td>
</tr>
<tr>
<td>Retailer</td>
<td>0,188</td>
<td>0,138</td>
<td>0,138</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Procurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0,276</td>
<td>0,391</td>
<td>0,138</td>
</tr>
<tr>
<td>Trader</td>
<td>0,195</td>
<td>0,276</td>
<td>0,276</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>0,391</td>
<td>0,195</td>
<td>0,391</td>
</tr>
<tr>
<td>Retailer</td>
<td>0,138</td>
<td>0,138</td>
<td>0,195</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0,391</td>
<td>0,461</td>
<td>0,391</td>
</tr>
<tr>
<td>Trader</td>
<td>0,276</td>
<td>0,236</td>
<td>0,195</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>0,195</td>
<td>0,168</td>
<td>0,276</td>
</tr>
<tr>
<td>Retailer</td>
<td>0,138</td>
<td>0,135</td>
<td>0,138</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,08</td>
<td>0,05</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0,138</td>
<td>0,124</td>
<td>0,107</td>
</tr>
<tr>
<td>Trader</td>
<td>0,276</td>
<td>0,299</td>
<td>0,293</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>0,391</td>
<td>0,389</td>
<td>0,415</td>
</tr>
<tr>
<td>Retailer</td>
<td>0,195</td>
<td>0,188</td>
<td>0,185</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,05</td>
<td>0,03</td>
</tr>
<tr>
<td>Return</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0,391</td>
<td>0,395</td>
<td>0,395</td>
</tr>
<tr>
<td>Trader</td>
<td>0,276</td>
<td>0,278</td>
<td>0,239</td>
</tr>
<tr>
<td>Wholesaler</td>
<td>0,195</td>
<td>0,163</td>
<td>0,198</td>
</tr>
<tr>
<td>Retailer</td>
<td>0,138</td>
<td>0,163</td>
<td>0,168</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0,05</td>
<td>0,02</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Assessment of performance parameters based on value chain actors can be seen in Table 4. Farmers are very interested parties in the production and return process, both in terms of quality, risk and value-added parameters. Meanwhile, traders are very interested in quality parameters in the procurement process. This is because quality is closely related to the quality of the final product that will be distributed to consumers and becomes a measure of consumer confidence. Wholesalers have a strong interest in the parameters of quality, risk and value-added in the distribution process. In the product procurement process, wholesalers have a strong interest in quality and value-added. This is because the quality of the product and the value-added of the product are the benchmarks in the success of the mushroom business. Moreover, large traders usually buy products in large quantities and distribute them to other regions. In addition, straw mushroom is a product that is not durable and easily damaged. Product durability is only up to 1-2 days. It is very necessary to handle efficiently and effectively in the distribution process. Thus, the parameters of quality, risk and value-added are very important. Based on research conducted by Sakinah (2020), the straw mushroom can last up to 6 days if stored with PVC film packaging at the temperature of 15 degrees Celsius. Therefore, it might reduce business losses. Meanwhile, retailers are a party that has less interest than other value chain actors. Retailers are the value chain actors with the lowest risk compared to other actors. Moreover, the number of product purchases is not as many as other intermediary traders and product marketing is only carried out in traditional markets, which do not demand high quality. The consistency index value of all assessments between sub criteria is below 10%, so it is consistent.
In alternative elements, the performance attribute shows the reliability value which is considered the most important element compared to other elements. This shows that the level of consumer trust in the mushroom value chain actors in meeting consumer demand on time and in perfect condition needs to be carefully considered. This is because reliability is necessary to ensure successful sustainable value chain performance. The value chain performance assessment can be seen in Table 5.

The combined assessment of the edible mushroom value chain performance measurement is shown in Figure 4. The most important performance attribute was reliability (37.4%), followed by cost (22.6%), agility (20.1%) and lastly responsiveness (19.9%). Reliability should receive greater attention where the delivery of ordered products must be delivered in full, delivery accuracy and products delivered must be perfect both in quality and quantity.

In cost performance, it is necessary to pay attention to all expenses such as production and labor costs. In agility performance, what needs to be considered is the response to changes, including the fulfillment of production capacity and product stock inventory. Meanwhile, on responsiveness performance, things that need to be considered are the cycle time to obtain seeds and other input facilities, as well as the production cycle time.

Table 5. Performance Assessment of Straw Mushroom Value Chain in Karawang Regency.

<table>
<thead>
<tr>
<th>Performance Attributes</th>
<th>Planning</th>
<th>Procurement</th>
<th>Production</th>
<th>Distribution</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>0.397</td>
<td>0.392</td>
<td>0.357</td>
<td>0.402</td>
<td>0.319</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>0.195</td>
<td>0.224</td>
<td>0.201</td>
<td>0.188</td>
<td>0.143</td>
</tr>
<tr>
<td>Agility</td>
<td>0.182</td>
<td>0.179</td>
<td>0.197</td>
<td>0.251</td>
<td>0.216</td>
</tr>
<tr>
<td>Cost</td>
<td>0.226</td>
<td>0.205</td>
<td>0.245</td>
<td>0.158</td>
<td>0.322</td>
</tr>
<tr>
<td>Consistency Index</td>
<td>0.005</td>
<td>0.04</td>
<td>0.06</td>
<td>0.05</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Figure 4. Combined Measurement of Straw Mushroom Value Chain Performance.

4. Conclusion

The actors of the straw mushroom value chain in Karawang consist of 5 actors, namely farmers, traders, wholesalers, retailers and consumers. The pairwise comparison results show that the production process (0.386) was the most important business process compared to procurement (0.246), distribution (0.161), planning (0.122) and return (0.085). From the results of measuring the performance of the mushroom value chain, the attributes that need great attention are reliability performance attributes (37.4%), followed by cost (22.6%), agility (20.1%) and responsiveness (19.9%). The essential things that must be considered in the performance of the reliability element are the delivery of product orders that must be sent as the consumer's demand, the accuracy of delivery, and the delivery of the product must be in perfect condition, both in quality and quantity.

Acknowledgments

The author would like to thank the Faculty of Agriculture, Computer Science and Research & Community Service (LPPM) Universitas Singaperbangsa Karawang, West Java, Indonesia, for their support for the implementation of this research.

References


Integrative survey for ant diversity: exhaustive deployment of several ant collection methods in Biological Education and Research Forest of Universitas Andalas, Indonesia

Henny Herwina1,* , Rijal Satria2, Yaherwandi3, Yositaka Sakamaki4, Mairawita1, Diyona Putri5, Ahmad Efendi1, Yusuke Kusuha4, Muhammad N. Janra2

1Animal Taxonomy Laboratory, Biology Department, Faculty of Mathematics and Sciences, Universitas Andalas, Indonesia; 2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang 25131, West Sumatra, Indonesia; 3Department of Pests and Plant Diseases, Faculty of Agriculture, Universitas Andalas, 25163 West Sumatra, Indonesia; 4Entomological Laboratory, Faculty of Agriculture, Kagoshima University, Korimoto 1-12-24 Kagoshima, 890-0065, Japan; 5Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan

Received: March 8, 2021; Revised: June 21, 2021; Accepted: September 16, 2021

Abstract

A long period of ant sampling has been conducted in Biological Education and Research Forest (BERF), Universitas Andalas, West Sumatra, Indonesia by deploying several methods i.e. direct hand collection in rotten logs, at flowering plants and at bird nests, Quadra Protocol for sampling diurnal and nocturnal ground ants and subterranean trap for soil ants. A total of 100 ant species which taxonomically grouped into 41 genera, 15 tribes and eight subfamilies resulted from this study. Myrmicinae became subfamily with the most species recorded (46 species), after the Formicinae with 28 species and Ponerinae with 11 species. On the other hand, the rest subfamilies were represented with less species e.g. Dolichoderinae (6 species), Dorylinae (3 species), Pseudomyrmicinae (3 species), Ectatommine (2 species) and Amblyponinae (1 species). Pheidole was genus with the most species recorded (17 species) followed by Crematogaster (7 species) and Polyrhachis (6 species). Quadra Protocol became the most effective method to record ant species in this study (42 species), subsequently followed by purposive hand collection method (40 species), subterranean trap (10 species), direct collection in rotten logs (8 species), observation at flowering plants (8 species) or collection from within bird nests (4 species). Despite the robustness of inventory produced from this study, it is indicated that BERF area still holds more ant species that are not recorded by research done so far.

Keywords: Ant diversity, Biology Education and Research Forest, ground ants, subterranean ants, arboreal ants

1. Introduction

Ants are estimated to comprise around 30% of terrestrial faunal biomass in the world (Hölldobler and Wilson, 1990). Ants are essential ecological components as they have direct interaction with plants (Putri et al. 2016), soil organisms (Meer, 2012) and other organisms in the most of trophic levels. Their roles usually relate to seed consumption (Andersen, 1990; Majer, 1990) and dispersal (Majer, 1990). Acting as predators for pest insects (Choate and Drummond, 2011), ants retain equal value with other predators such as lady beetles, lacewings and mantis (Saleh et al., 2010; Sanda and Sunusi, 2014).

Ants have been recognized as a useful ecological indicator as similar as with bees, as they exist in abundant numbers and ubiquitously, even at a disturbed area (Andersen, 1990; Schreven at al., 2018; Munyuli, 2012). Ants are very sensitive to environmental disturbances, hence they rapidly respond to any change in their habitat (Van Der Woude et al., 1997; Andersen, 1990). On the other hand, ants build stationary nests with limited foraging range, which helps with avoiding competition among species and colonies (Agosti et al., 2000).

Ants have become long-standing research objects. They are reported to have high diversity in tropical rainforest of Southeast Asia (Yamane, 1996; Chung and Maryati, 1996; Brühl et al., 1998; Idris et al., 2002). In Indonesia, ant diversity was studied from various locations in Java, such as at Bogor Botanical Garden, West Java, where 216 ant species inventoried (Ito et al., (2001); 48 species were recorded from conservation area in Kepulauan Seribu, Jakarta (Rizali et al., 2008); 37 species were reported from around Mount Krakatou in Sunda Strait (Asfiya et al., 2010. Meanwhile in Sumatra, 76 ant species were recorded from oil palm plantation in West Sumatra and Riau (Herwina et al., 2020), 27 ant species were collectively observed across altitudinal gradients in Mt. Talang, West Sumatra (Herwina et al., 2020), in addition to 18 species...
that were found associated with white germ in potato plantation of highland agricultural area (Herwina, 2020).

Universitas Andalas is located in Limau Manis, Pauh Subdistrict, approximately 15 km from the downtown of Padang City, West Sumatra Province. Universitas Andalas covers 500-hectare area, where its forested surrounding is considerably representative to hold various topics of field research, including those in entomology. The prominent forested area is situated within the Biological Education and Research Forest of approximate 150-hectare area. The BERF site harbors lowland tropical rainforest connected with the Bukit Barisan Range (Rizaldi et al., 2018). It has been the ground for ant research since more than two decades ago (Herwina et al., 2018). This study aimed to trackback the progress of works on ants in Universitas Andalas campus complex, as well as to analyze the ecological aspects of ants, such as species diversity and composition.

2. Materials and Methods

2.1. Study area and sampling methods

The data used in this study was synthesized from published and unpublished works mainly conducted within Biological Education and Research Forest (hereinafter BERF), Universitas Andalas, Indonesia (GPS coordinates 1°00’S, 100°30’E; Figure 1). The samplings were undertaken at ten sites established between 250 to 450 m elevation in BERF, with measured temperature between 28 to 32°C. Sampling sites can be detailed as Site 1 (permanent plots for plant ecological study, dominated by secondary vegetation and medium trees), Site 2 (water dam 1, located at forest edge with early successive vegetation), Site 3 (camping ground with grasses and tall trees), Site 4 (water dam 2 inside forested area of BERF), Site 5 (bushy area in the border of BERF), Site 6 (Puncak Ixora, a peak of small hill with big trees and other primary vegetation), and Site 7 (bushy area in adjacent to Site 1). Site 8 to 11 are located on the borderline between BERF and campus area, separated by concrete road and each marked with field station or research lodge. Methodology applied in preceding and recent works conducted at those sites can be summarized as follow (also see Table 1): at Site 1 to 6, quadra protocol for ant collection (Hashimoto et al., 2001), which repeated between 2013 to 2016 (unpublished); Site 7, subterranean trap and probe (Herwina et al., 2018); Site 8, rotten log ant collection (unpublished); Site 9, ant collection in bird nests (Herwina et al., 2021); Site 10, hand collection method (ongoing since 2010; unpublished); and Site 11, hand collection and recording ant visitation at flowering plants (2019, unpublished). The exact position of sampling sites in BERF can be seen in Figure 1 below.

![Figure 1. Sampling sites for ant collection at Biological Education and Research Forest (BERF), Universitas Andalas. No 1-11 = sites numbers.](image)

2.2. Species Identification

Sampled ants were sorted to morphospecies and genus level before prepared according to the standard preparation for ant specimen. Identification process was guided by appropriate literatures (Hashimoto, 2003; Jaitrong, 2011; Bolton, 2014) in addition to being compared with specimen housed at the Animal Taxonomy Laboratory of Biology Department, Universitas Andalas. Any specimen resulted from the works listed here was also stored in this place.

2.3. Data Analysis

Ants were grouped into their taxonomic orders as follows; species, genus and subfamily. Individual and species number were counted and tabulated. The Shannon-Wiener formula (Magurran, 2004) was used to calculate species diversity, while Estimate S Veers. 9.0 was for calculating the rarefaction curves of observed and estimated number of ant species. The formula for species diversity is below:

\[ H' = -\sum_{i=1}^{n} pi \ln pi \]

\( H' \) = Species diversity index
\( pi \) = Total proportion of sample from the ith species
3. Results and Discussion

This study recorded a total of 100 ant species from 43 genera and eight subfamilies. They were identified from overall sampling efforts within BERF that spanned from 2010 to 2019 (Table 1, Appendix 1). The subfamily Myrmicinae was observed with the highest species number (46 species), followed by 28 species of Formicinae, 11 species of Ponerinae, 3 species each for Dorylinae and Pseudomirmicinae, two species of Ectatomminae and one species of Amblyoponinae (Appendix 1). Myrmicinae was frequently reported as family with the highest species number observed in many previous studies (such as Shattuck, 1999; Herwina et al., 2013). Pheidole was genus with the most species recorded (17 species) in this study, followed by Crematogaster (7 species) and Polyrhachis (6 species). Pheidole was reported as genus with the highest species number in previous studies, including among subterranean ants (Herwina et al., 2018), within the species inventory from conservation forest and oil palm plantation in West Sumatra (Herwina et al., 2020) or from the protected forest in Riau (Putri et al., 2021). Crematogaster and Polyrhachis were also previously recorded as genera with high species number (Herwina et al., 2020).

Table 1. Sampling times, sites, methods, total number of species (S), total number of individuals (N), species increment (SI), and species accumulation (SA) synthesized from works on ants in BERF, Universitas Andalas

<table>
<thead>
<tr>
<th>Site #</th>
<th>Time</th>
<th>Site remark</th>
<th>Methodology</th>
<th>S</th>
<th>N</th>
<th>SI</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013</td>
<td>Permanent plots inside primary forest</td>
<td>Quadra protocol</td>
<td>25</td>
<td>336</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>2014</td>
<td>Water dam 1, secondary forest</td>
<td>Quadra protocol</td>
<td>34</td>
<td>1289</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>Camping ground, open grassland with trees</td>
<td>Quadra protocol</td>
<td>35</td>
<td>1510</td>
<td>12</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>2014</td>
<td>Water dam 2, secondary forest</td>
<td>Quadra protocol</td>
<td>19</td>
<td>1121</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>2016</td>
<td>Bushes</td>
<td>Quadra protocol</td>
<td>32</td>
<td>931</td>
<td>13</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>2016</td>
<td>Hilly forested area</td>
<td>Quadra protocol</td>
<td>42</td>
<td>2316</td>
<td>16</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>Bushes and thickets</td>
<td>Subterranean ant collection</td>
<td>10</td>
<td>369</td>
<td>3</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>2018</td>
<td>Primary forest interior</td>
<td>Rotten log ant collection</td>
<td>8</td>
<td>62</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>2018</td>
<td>Forest edge</td>
<td>Collection from bird nests</td>
<td>4</td>
<td>19</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>2010, 2012, 2018</td>
<td>Primary forest interior</td>
<td>Hand collection applied purposively</td>
<td>40</td>
<td>14</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2019</td>
<td>Forest edge</td>
<td>Hand collection, photography documentation</td>
<td>8</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

The inventory of ant species and subfamilies recorded in this study exceeded any previous study from other locations in West Sumatra, which included natural reserves, agricultural and household area. The BERF, in overall, can be considered as good habitat for ants, as high species diversity observed in this study (H’=3.25, Table 1). The ants recorded here were more diverse than those observed at white germ and potato plantation in Sumatran highland agricultural area (Herwina et al., 2020c), at oil-palm plantations and its conservation forest in Solok Selatan, West Sumatra (Herwina et al., 2020d), at some altitudes of Mount Talang, West Sumatra (Herwina et al., 2020e), or at several islands offshore of Sulawesi (Asfiya et al., 2010).

Site six contributed the highest among other sites, in terms of collecting 2,316 ant individuals that identified into 42 species recorded and increased 16 new records into the species accumulation record (Table 1). Site 3 (1,510 individuals, 35 total species, 12 new records), Site 2 (1,280 individuals, 34 total species, 12 new records) and Site 5 (931 individuals, 32 total species, 13 new records) were also significantly increasing species inventory to BERF area. The works on Site 10 and 11 were majority based on sporadic rapid assessment on ant species without paying much attention on collecting individual, hence no exact number provided for collected individual. The work on Site 10, however, recorded total 40 species with additional 14 new records to the BERF’s ant species inventory. In addition to sampling efforts and methodology applied in collecting ants, physical-ecological factors were also thought to play role in having high sampling result. Sites with high individual number, total species and/or species increment (Site 2, 3, 4, 5, 6 and 10) were with denser secondary or primary cover, thicker leaf litter coverage on ground surface and more organic resources needed by ants than the other sites. The abundance of organic materials within the tropical vegetated area are useful for food, nesting site or other purposes for ants; hence the high ant diversity and population found in this type of habitat (Rizali et al., 2008; Sabu et al., 2008; Souza-Campana et al., 2017).

Figure 2. Accumulation curve of ant species collected by using quadra protocol at BERF

When counting the result method-wise, there was difference observed on the number of species resulted from each sampling method. Quadra protocol singly and remarkably accumulated a total of 78 ant species from six sites within the BERF area (Figure 2). Moreover, the...
computerized calculation performed using the data from quadra protocol provided estimation curve that predicted the possibility of actual number of 85-100 ant species could be recorded at BERF if this method continuously applied. Quadra protocol involved thorough sampling procedure by simultaneously applying four collection techniques (hand collection, leaf litter sifting, soil core sampling and honey bait trap) within three sections of a 180 m transect. Hence, the techniques can be complimentary in collecting various ants with different life habits, instead of single technique or method that focus on one specific life habit. Given the species increasing trend that showed in Figure 2, indicated that further sampling efforts will potentially enrich the inventory of ant species in BERF.

*Lophomyrmex bedoti* was frequently collected in BERF (82%), along with *Pheidole aristotelis* and *Pheidole* sp 3. of HH (73% each), tailed by *Diacamma holosericum* and *Acanthomyrmex ferox* (64%). *Lophomyrmex* was reported as generalist foragers and tropical climate specialist, which explain their successfulness in adapting to various habitats (Brown, 2000). Genus *Pheidole* was recorded with many species in this study, while *D. holosericum* and *A. ferox* were the two species with prominent frequency. All of these taxa were collected using quadra protocol, which may emphasize the effectiveness of this sampling method to detect common and abundant ant species.

Figure 3. Abundant ant species in BERF (lateral and anterior-rostral aspect). A,b = *Lophomyrmex bedoti*. C,d = *Pheidole aristotelis*, e,f = *Diacamma holosericum*, g,h = *Acanthomyrmex ferox*.

*Diacamma* ants were observed to prefer the secondary portion of BERF, similarly with *A. ferox*. It is thought to be related with their feeding habit and in connection to the resource available in such secondary habitat. The first taxon mainly consists of predatory species, while the later more of seed harvester (Brown, 2000). Some species were infrequently observed at one or a few sites with a handful individuals collected. These included *Dolichoderus* spp., *Aenictus* spp., *Gnamptogenys coxalis*, *Camponatus* spp., *Odontomachus minangkabau*, *O. rioxox*, *Carebara* cf. *affinis*, *Meranoplus mucronatus*, *Crematogaster medigmiani*, *Paratrechina* sp. 1 or *Anoplolepis gracilipes* (Appendix 1).

The current study also recognized the existence of alien, tramp and invasive ant species from sites in BERF, i.e. *Tapinoma melanocephalum*, *Anoplolepis gracilipes*, and *Paratrechina longicornis*. These categories are attached to species that extend their distribution outside their original range by adapting and invading new territory (Pfeiffer et al., 2008). The presence of alien, tramp and invasive ant species in BERF gave strong indication of interference incurred from high human activities, which in many cases, negatively impacts the habitat for wildlife. The movement and distribution of alien, tramp and invasive species have been thought to be mediated by human activities (Pfeiffer et al., 2008; Wetterer 2009, 2010). Since these alien, tramp and invasive species have good adaptability to new or disturbed habitats, they can also negatively influence the native communities (Pfeiffer et al., 2008). Hence, from the ecological standpoint of ants, this study can provide further recommendation to reduce human interference within the BERF area in order to maintain better habitats therein.

4. Conclusion

Combining some collection methods for sampling ant show significant species number can be recorded at Biological Education and Research Forest of Universitas Andalas. The total species number accumulated in this study was the highest among other studies reported from Sumatra. Quadra Protocol, a standardized method for rapid assessment of ants, collected prominent number of species among other methods listed in this study as well as effective to detect frequent and abundant ant species. The analysis on the procured data indicates the possibility to record more ant species given the field exploration continued. Alien, tramp and invasive ant species were also observed during the study, indicated existing interference incurred from human activities within BERF.

Acknowledgements

We would like to express our gratitude to Seiki Yamane (Kagoshima University) for his valuable assistance in identifying ant specimens. This research was
fundied by Universitas Andalas’ Research Funding Scheme with contract number T/16.UN.16.17/PP.OK-KRP2GB/LPPM/2019 on behalf Henny Herwina.

References


Schreven SH, Perlett ED, Jarrett BJM, Marchanti NC, Harsanto FA, Purwanto A, Sykora KV and Harrison ME. 2018. Forest gaps, edge and interior support different ant communities in a tropical peat-swamp forest in Borneo, Asian Myrmecology, 10: 1-14


Souza-Campana DR, Silva RR, Fernandes TT, Silva OGM, Saad LP and Morini MSC. 2017. Twigs in the litter as ant habitats in different vegetation habitats in Southeastern Brazil. Tropical Conserv, 10: 1-12.


Appendix 1. List of Subfamily, Tribe and Species of ants collected by using several methods in HPPB Universitas Andalas.

Sampling sites along with collection method as follows: site 1 = Permanent Plot inside BERF in 2014 (daytime Quadra Protocol), site 2 = Water Dam site point 1 in 2014 (daytime Quadra Protocol), site 3 = Camping ground, on 2014 (daytime Quadra Protocol), site 4 = Water Dam site point 2, in 2014 (Night Quadra Protocol), site 5 = bushy area, in 2016 (daytime Quadra Protocol), site 6 = Puncak Ixora, in 2017 (daytime Quadra Protocol), site 7 = bushy area and permanent plot, in 2017 (subterranean ant collection), site 8 = BERF area, purposive sampling, in 2018 (rotten log ant collection), site 9 = BERF area, purposive sampling, in 2018 (bird nest ant collection), site 10 = BERF area, purposive sampling, between 2010-2018 (hand collection), site 11 = BERF area (ants as pollinator); T = total, F = ant frequency at sampling sites. asterisk (*) indicate individual number for that species unavailable.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sp Code</th>
<th>Subfamily</th>
<th>Species</th>
<th>Total number of individuals at each Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>421</td>
<td>Amblyponinae</td>
<td>Mysytium camillae Emery, 1889</td>
<td>1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>219</td>
<td>Dolichoderinae</td>
<td>Dolichoderus sp. 1 of HH</td>
<td>2 2 1</td>
</tr>
<tr>
<td>3</td>
<td>346</td>
<td>Dolichoderinae</td>
<td>Dolichoderus sp. 2 of HH</td>
<td>1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>Dolichoderinae</td>
<td>Dolichoderus thoracicus (F. Smith, 1860)</td>
<td>17 1 18 2</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>Dolichoderinae</td>
<td>Tapinoma melanoccephalum (Fabricius, 1793)</td>
<td>3 6 9 2</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>Dolichoderinae</td>
<td>Technomyrmex horni Forel, 1912</td>
<td>15 3 19 37 3</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>Dolichoderinae</td>
<td>Technomyrmex kraepelini Forel, 1905</td>
<td>11 397 27 1 436 4</td>
</tr>
<tr>
<td>8</td>
<td>424</td>
<td>Dorylinae</td>
<td>Aenictus gracilis Emery, 1893</td>
<td>1 1 1</td>
</tr>
<tr>
<td>9</td>
<td>437</td>
<td>Ectatomminae</td>
<td>Aenictus laeviceps (F. Smith, 1857)</td>
<td>1 1 1</td>
</tr>
<tr>
<td>10</td>
<td>251</td>
<td>Ectatomminae</td>
<td>Iridomyrmex anceps (Roger, 1863)</td>
<td>1 1 1</td>
</tr>
<tr>
<td>11</td>
<td>425</td>
<td>Formicinae</td>
<td>Gnamptogenys coxalis (Roger, 1860)</td>
<td>1 1 1</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>Formicinae</td>
<td>Gnamptogenys menadenis (Mayr, 1887)</td>
<td>16 7 18 1 42 4</td>
</tr>
<tr>
<td>13</td>
<td>46</td>
<td>Formicinae</td>
<td>Camponotus (Tanaemyrmex) arrogans (F. Smith, 1858)</td>
<td>10 43 9 1 63 4</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>Formicinae</td>
<td>Colobopsis leonardii Emery, 1889</td>
<td>1 1 1</td>
</tr>
<tr>
<td>15</td>
<td>153</td>
<td>Formicinae</td>
<td>Colobopsis cf. saundersi Emery, 1889</td>
<td>2 2 1</td>
</tr>
<tr>
<td>16</td>
<td>426</td>
<td>Formicinae</td>
<td>Dinomyrmex gigas (Latreille, 1802)</td>
<td>5 5 1</td>
</tr>
<tr>
<td>17</td>
<td>101</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) hasei Donisthorpe, 1942</td>
<td>1 1 2 2</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) cf. vinder F. Smith, 1857</td>
<td>1 1 7 2</td>
</tr>
<tr>
<td>19</td>
<td>39</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) josei Donithorpe, 1942</td>
<td>1 1 1 4 4</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) josei Donithorpe, 1942</td>
<td>2 2 4 2</td>
</tr>
<tr>
<td>21</td>
<td>196</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) cf. vinder F. Smith, 1857</td>
<td>3 3 1</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrma) phalerata Menozzi, 1926</td>
<td>4 3 7 2</td>
</tr>
<tr>
<td>23</td>
<td>201</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrmylopus) armata (Le Guillou, 1842)</td>
<td>1 1 1</td>
</tr>
<tr>
<td>24</td>
<td>158</td>
<td>Formicinae</td>
<td>Polyrhachis (Myrmylopus) armata (Le Guillou, 1842)</td>
<td>5 5 1</td>
</tr>
<tr>
<td>No.</td>
<td>Sp Code</td>
<td>Subfamily</td>
<td>Species</td>
<td>Total number of individuals at each Sites</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td></td>
<td>Polyrhachis (Polyrhachis) olybria Forel, 1912</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>427</td>
<td></td>
<td>Myrmoteras bakeri Wheeler, 1919</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>55</td>
<td></td>
<td>Myrmoteras sp. 1 of HH</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>51</td>
<td></td>
<td>Myrmoteras sp. 2 of HH</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>57</td>
<td></td>
<td>Oechophylla smaragdina (Fabricius, 1775)</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td></td>
<td>Anoplolepis gracilipes (F. Smith, 1857)</td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td></td>
<td>Euprenelepis procera (Emery, 1900)</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>410</td>
<td></td>
<td>Nylanderia obscura (Mayr, 1862)</td>
<td>16</td>
</tr>
<tr>
<td>33</td>
<td>43</td>
<td></td>
<td>Nylanderia sp. 1 of HH</td>
<td>10</td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td></td>
<td>Nylanderia sp. 2 of HH</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>44</td>
<td></td>
<td>Nylanderia sp. 3 of HH</td>
<td>8</td>
</tr>
<tr>
<td>36</td>
<td>421</td>
<td></td>
<td>Paraparatrechina butteli (Forel, 1913)</td>
<td>16</td>
</tr>
<tr>
<td>37</td>
<td>26</td>
<td></td>
<td>Paraparatrechina sp. 1 of HH</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td></td>
<td>Paraparatrechina sp. 2 of HH</td>
<td>4</td>
</tr>
<tr>
<td>39</td>
<td>198</td>
<td></td>
<td>Paratrechina longicornis (Latreille, 1802)</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td></td>
<td>Pseudolasius sp. 1 of HH</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>428</td>
<td>Myrmicinae</td>
<td>Pheidole acantha Eguchi, 2001</td>
<td>12</td>
</tr>
<tr>
<td>42</td>
<td>16</td>
<td></td>
<td>Pheidole aristotelis Forel, 1911</td>
<td>8</td>
</tr>
<tr>
<td>43</td>
<td>12</td>
<td></td>
<td>Pheidole longipes (Latreille, 1802)</td>
<td>52</td>
</tr>
<tr>
<td>44</td>
<td>103</td>
<td></td>
<td>Pheidole plagaria Smith, 1860</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>307</td>
<td></td>
<td>Pheidole quadrensis Forel, 1900</td>
<td>59</td>
</tr>
<tr>
<td>46</td>
<td>429</td>
<td></td>
<td>Pheidole cf. sauberi Forel, 1905</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>7</td>
<td></td>
<td>Pheidole sp. 1 of HH</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>14</td>
<td></td>
<td>Pheidole sp. 2 of HH</td>
<td>78</td>
</tr>
<tr>
<td>49</td>
<td>29</td>
<td></td>
<td>Pheidole sp. 3 of HH</td>
<td>22</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td></td>
<td>Pheidole sp. 4 (major worker) of HH</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>197</td>
<td></td>
<td>Pheidole sp. 5 of HH</td>
<td>39</td>
</tr>
<tr>
<td>52</td>
<td>171</td>
<td></td>
<td>Pheidole sp. 8 of HH</td>
<td>264</td>
</tr>
<tr>
<td>53</td>
<td>174</td>
<td></td>
<td>Pheidole sp. 11 of HH</td>
<td>4</td>
</tr>
<tr>
<td>54</td>
<td>192</td>
<td></td>
<td>Pheidole sp. 12 of HH</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>193</td>
<td></td>
<td>Pheidole sp. 13 of HH</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>240</td>
<td></td>
<td>Pheidole sp. 14 of HH</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>396</td>
<td></td>
<td>Pheidole sp. 17 of HH</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>430</td>
<td></td>
<td>Strumigenys chimaera Bolton, 2000</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>21</td>
<td></td>
<td>Strumigenys koningsbergeri Forel, 1905</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>275</td>
<td></td>
<td>Strumigenys sp. 2 of HH</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>17</td>
<td></td>
<td>Acanthomyrmex ferox Emery, 1893</td>
<td>16</td>
</tr>
<tr>
<td>No.</td>
<td>Sp Code</td>
<td>Subfamily</td>
<td>Species</td>
<td>Total number of individuals at each Sites</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>168</td>
<td></td>
<td>Acanthomyrmex padanensis Terayama, Ito &amp; Gobin, 1998</td>
<td>3</td>
</tr>
<tr>
<td>63</td>
<td>23</td>
<td></td>
<td>Carebara cf. affinis (Jerdon, 1851)</td>
<td>26</td>
</tr>
<tr>
<td>64</td>
<td>314</td>
<td></td>
<td>Carebara cf. pygmaea (Emery, 1887)</td>
<td>11</td>
</tr>
<tr>
<td>65</td>
<td>291</td>
<td></td>
<td>Cataulacus horridus F. Smith, 1857</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>253</td>
<td></td>
<td>(Crematogaster) cf. rogenhoferi Mayr, 1879</td>
<td>13</td>
</tr>
<tr>
<td>67</td>
<td>22</td>
<td></td>
<td>Crematogaster (Decacrema) borneensis Andre, 1896</td>
<td>8</td>
</tr>
<tr>
<td>68</td>
<td>252</td>
<td></td>
<td>Crematogaster (Orthocrema) longipilosa Forel, 1907</td>
<td>34</td>
</tr>
<tr>
<td>69</td>
<td>409</td>
<td></td>
<td>Crematogaster (Paracrema) coriaria Mayr, 1872</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>24</td>
<td></td>
<td>Crematogaster (Paracrema) modiglianii Emery, 1900</td>
<td>33</td>
</tr>
<tr>
<td>71</td>
<td>431</td>
<td></td>
<td>Crematogaster (Physocrema) inflata F. Smith, 1857</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>228</td>
<td></td>
<td>Crematogaster (Physocrema) sewardi Forel, 1901</td>
<td>6</td>
</tr>
<tr>
<td>73</td>
<td>5</td>
<td></td>
<td>Lophomyrmex bedoti Emery, 1893</td>
<td>55</td>
</tr>
<tr>
<td>74</td>
<td>122</td>
<td></td>
<td>Lordomyrma sp. queen of HH</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td></td>
<td>Meranoplus mucronatus F. Smith, 1857</td>
<td>30</td>
</tr>
<tr>
<td>76</td>
<td>423</td>
<td></td>
<td>Pristomyrmex bicolor Emery, 1900</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>175</td>
<td></td>
<td>Recurvidris browni Bolton, 1992</td>
<td>26</td>
</tr>
<tr>
<td>78</td>
<td>27</td>
<td></td>
<td>Tetramorium kheperra (Bolton, 1976)</td>
<td>6</td>
</tr>
<tr>
<td>79</td>
<td>177</td>
<td></td>
<td>Tetramorium pacificum Mayr, 1870</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>420</td>
<td></td>
<td>Tetramorium smithi Mayr, 1879</td>
<td>6</td>
</tr>
<tr>
<td>81</td>
<td>432</td>
<td></td>
<td>Tetramorium sp. 2 of HH</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>33</td>
<td></td>
<td>Aphaenogaster (Deromyrma) cf. feae Emery, 1889</td>
<td>2</td>
</tr>
<tr>
<td>83</td>
<td>195</td>
<td></td>
<td>Monomorium cf. chinense (Santchi, 1925)</td>
<td>17</td>
</tr>
<tr>
<td>84</td>
<td>37</td>
<td></td>
<td>Monomorium floricola (Jerdon, 1851)</td>
<td>23</td>
</tr>
<tr>
<td>85</td>
<td>45</td>
<td></td>
<td>Monomorium sp. of HH</td>
<td>99</td>
</tr>
<tr>
<td>86</td>
<td>54</td>
<td></td>
<td>Solenopsis geminata (Fabricius, 1804)</td>
<td>2</td>
</tr>
<tr>
<td>87</td>
<td>230</td>
<td></td>
<td>Anochetus rugosus Donisthorpe, 1941</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>34</td>
<td></td>
<td>Brachyponera sp. 28 of SKY</td>
<td>46</td>
</tr>
<tr>
<td>89</td>
<td>3</td>
<td></td>
<td>Diacamma kolossericum (Roger, 1860)</td>
<td>25</td>
</tr>
<tr>
<td>90</td>
<td>422</td>
<td></td>
<td>Hypoponera truncata (Smith, F. 1860)</td>
<td>8</td>
</tr>
<tr>
<td>No.</td>
<td>Sp Code</td>
<td>Subfamily</td>
<td>Species</td>
<td>Total number of individuals at each Sites</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----------</td>
<td>----------------------------------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>91</td>
<td>434</td>
<td></td>
<td>Hypoponera sp. 5 of HH</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>231</td>
<td></td>
<td>Leptogenys parvula</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>185</td>
<td></td>
<td>Odontomachus minangkabau Satria et al., 2015</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>20</td>
<td></td>
<td>Odontomachus rixosus F. Smith, 1857</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>191</td>
<td></td>
<td>Odontoponera denticulata (F. Smith, 1858)</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>1</td>
<td></td>
<td>Odontoponera transversa (F. Smith, 1857)</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>435</td>
<td></td>
<td>Pseudoneoponera tridentata F. Smith, 1858</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>113</td>
<td>Pseudomyrmecinae</td>
<td>Tetraponera attenuata F. Smith, 1887</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>436</td>
<td></td>
<td>Tetraponera crassiuscula (Emery, 1900)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>437</td>
<td></td>
<td>Tetraponera allaborans (Walker, 1859)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total number of individual</th>
<th>33</th>
<th>128</th>
<th>151</th>
<th>112</th>
<th>931</th>
<th>231</th>
<th>36</th>
<th>92</th>
<th>19</th>
<th>40</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of species</td>
<td>25</td>
<td>34</td>
<td>35</td>
<td>19</td>
<td>32</td>
<td>42</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>40</td>
<td>8</td>
</tr>
</tbody>
</table>
Combined Test of Jatropha Biodiesel Based on Altitude Towards Arbuscular Mycorrhizal Fungi (AMF) Combination with Cultivars and Cytokinins

R. Budiasih1,*, Kovertina Rakhmi Indriana1,2,*, Reni Nurhayatini1, Roni Assafaat Hadi1, Noertjahyani1, Karyana K.S.3

1Department of Agriculture, Winaya Mukti University, Jl. Raya Bandung – Sumedang Km.29 Tanjungsari 45362, Sumedang Regency, West Java, Indonesia; 2Department of Agriculture, Padjadjaran University, Jl. Raya Bandung – Sumedang Km.21 Jatinangor 45363, Sumedang Regency, West Java, Indonesia; 3Department of Agribusiness, Winaya Mukti University, Jl. Raya Bandung – Sumedang Km.29 Tanjungsari 45362, Sumedang Regency, West Java, Indonesia

Abstract

The increase in Government policy from B20 to B30 towards Jatropha biodiesel tends to increase every year but the current condition is constrained by low yields both in quality and quantity, so that improvement efforts are needed to increase the yield of Jatropha biodiesel. The dosing of Arbuscular Mycorrhizal Fungi (AMF) with Jatropha cultivar and cytokinin concentrations is expected to increase the yield of Jatropha biodiesel in two different locations based on altitude, where the research was verified. The experiment starts from January to August 2019 at an altitude of 0-50 masl (lowland) and an altitude of 750-850 masl (medium land). The combination trial evaluated the Jatropha cultivar and the best AMF dosage and cytokinin concentrations that were repeated 3 times. The results of the experiment showed that there was an effect of the best interaction between AMF, cultivars, and cytokinin concentrations on the increased yield of fruit per plant (55.33 g), number of seeds per plant (124.17 g), fruit fresh weight per plant (208.55 g), Fresh weight of 100 seeds (70.22 g), seed fresh weight per plant (39.28 g) and biodiesel oil yield that was increased in Cirebon (42.66% - 47.50%) compared to Jatinangor (35.44% -44.10%).

Keywords: Combined test, Jatropha biodiesel, Arbuscular Mycorrhizal Fungi, Cytokinins.

1. Introduction

One of the government programs in 2016 is the declaration of the use of B20 (a substitute for diesel with a composition of 20% biodiesel and 80% diesel). There are 2 types of viable development opportunities for biofuels, namely biodiesel and bioethanol. Specifically to make biodiesel, Jatropha can be chosen because this plant does not compete with food-producing plants, as it is toxic, environmentally friendly, easy to adapt in tropical and subtropical climates in marginal and non-marginal areas, even though the environmental conditions are not good, but showed better crop performance and productivity. This plant has the advantage of fast growth and ease of propagation (Meher, et al., 2013). Jatropha biodiesel has competitive economic value because it is an alternative energy material from fossil fuels, where the price is relatively cheaper, environmentally friendly and renewable. The availability of fertile land decreases due to the higher land use change to settlement, along with the increasing number of people. Therefore, marginal land use is one of the important solutions to do. One type of marginal soil is the order inceptisol, with limiting factors for low soil chemical fertility, especially elemental phosphate (P). Elemental P can become available to plants with the help of arbuscular mycorrhizal fungi (AMF) because AMF is able to extract phosphate from its bonds with Al³⁺, Fe²⁺, Ca⁺, and Mg²⁺ by removing organic acids and phosphatase enzymes where the activity of the enzymes formed depends on the activity of the enzymes that interact with them, active microbial cells (AMF) (Nannipieri et. al., 2002). The benefits of AMF can also play a role in nutrient cycling, improve soil structure and transfer carbohydrates from plant roots to other soil organisms (Novriani and Madjid, 2010).

In some plants such as jatropha, stem tip growth often dominates the growth of other parts so that the formation of lateral branches is inhibited. This phenomenon is referred to as apical dominance. The addition of 6-benzyl aminopurine (BAP) further enhances the regeneration of leaf branches where the differential response of the genotype is influenced by cytokinins (Singh, 2017). In plants, especially jatropha, there are lateral shoots which then form lateral branches. The addition of cytokinins is one of the cultivation techniques that can be employed to enhance the growing branches aiming to obtain the maximum number of branches, so that the maximum fruit is produced. The symbiosis of arbuscular mycorrhizal fungi (CMA) with terrestrial plants is regulated by plant
hormones, stimulation of cytokinins (CK) plays a role in the development of symbiosis of CMA with peanut plants; and confirm the effect of CMA inoculation on plant CK homeostasis. Most of these hormones have a role in this interrelationship; however, there are still reported contradictions for the hormone cytokinin (CK) (Dane M. Goh, et al., 2019).

The elements of climate and altitude greatly influence the plant growth process (Hasibuan, et al., 2017). The altitude of different places will vary with the physiological processes of plants. This difference will affect plant growth. Biodiesel grown in lowland areas has a higher quantity of biofuel oil than that grown in mediumland areas, but the quality of biodiesel produced is not better than that grown in midland areas, so the two locations have different oil yields, with biotic and abiotic environmental conditions that affect the ecophysiological process of plants.

2. Materials and Methods

The materials used in this experiment were Jatropha seed cultivar IP-3P (Improve Population 3 Pakuwon), IP-3A (Improve Population 3 Asembagus), IP-3M (Improve Population 3 Muktiharjo), AMF Consortium (Glomus sp., Gigaspora sp., Acaulospora sp.) (Cucu Suherman, 2011), manure, chemical fertilizers used are Urea (45% N), SP-36 (36% P2O5), KCl (60% K2O), and Dithane fungicide M-45. Experiments were carried out in the lowlands of Cirebon (0-50 m asl) and in the medium plains of Jatinangor (800-859 m asl), having an incipient soil order and rainfall types including C (Schmidt and Gomez, 1995). The trial period starts from January to June 2019.

The experimental design used was a factorial randomized block design (RBD) consisting of two factors, namely the first factor, three levels of dose combination of AMF with cultivar IP-3P : 5 g, IP-3A : 5 g, IP-3M : 10 g for lowland location; IP-3P : 10 g, IP-3A : 5 g, IP-3M : 10 g for medium land locations and the second factor is five levels of cytokinin concentrations, namely 0 mg L-1, 100 g for medium and locations and the second factor is five levels of cytokinin concentrations, namely 0 mg L-1, 100 mg L-1, 200 mg L-1, 300 mg L-1, 400 mg L-1. The number of treatment combinations was repeated 3 times, so the number of plots in this experiment was 45. Placement of the treatments in each replication was done randomly. Yield data (number of fruits per plant, number of seeds per plant, fresh weight of fruit per plant, fresh weight of 100 seeds, and fresh weight of seeds per plant) were calculated manually and weighed using digital scales and oil yield was obtained by the transesterification method using the Soxlet tool then all test data were analyzed statistically to determine the level of variance homogenity, by using the Bartlet test.

3. Results and Discussion

Before testing the combining power of the two experimental locations, it is necessary to first test the homogeneity of the variance. The level of data homogeneity between the two locations was tested using the Bartlet Test. Johnson and Winchern (2007) explain that the Bartlet test is used to test the homogeneity of the data in different populations. Test data on different populations can be analyzed in a combined manner if it has homogeneous data variance. The Bartlet test formula according to Sudjana (2005) is as follows:

\[ \chi^2_{\text{Bartlet}} = (n-1) \times \left( 1 - \frac{1}{6} \left( \frac{p}{5} + \frac{1}{2} \right) \right) \times | \hat{\rho} | \]

Information : \( n = \) number of samples; \( p = \) number of variables; \( | \hat{\rho} | = \) the determinant value of the correlation matrix of each variable.

Data in different populations are declared homogeneous if the count \( \chi^2 \) is greater than \( \chi^2 \) Table at the 5% level, it is necessary to test the combining power of the two locations (Gomez and Gomez, 1995) (Table 1).

Table 1. Results of the Bartlet Character Test for Character Component Results and Results

<table>
<thead>
<tr>
<th>Character</th>
<th>Location</th>
<th>db</th>
<th>( \chi ) Count</th>
<th>( \chi ) Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fruits in Plant</td>
<td>2</td>
<td>1</td>
<td>40.89 *</td>
<td>3.84 *</td>
</tr>
<tr>
<td>Number of seeds in Plant</td>
<td>2</td>
<td>1</td>
<td>19.88 *</td>
<td>3.84 *</td>
</tr>
<tr>
<td>Fresh Fruit Weight in Plants</td>
<td>2</td>
<td>1</td>
<td>8.92 *</td>
<td>3.84 *</td>
</tr>
<tr>
<td>Fresh Seed Weight in Plants</td>
<td>2</td>
<td>1</td>
<td>23.09 *</td>
<td>3.84 *</td>
</tr>
<tr>
<td>Fresh Seed Weight in Plants</td>
<td>2</td>
<td>1</td>
<td>27.60 *</td>
<td>3.84 *</td>
</tr>
<tr>
<td>Oil Yield</td>
<td>2</td>
<td>1</td>
<td>13.94 *</td>
<td>3.84 *</td>
</tr>
</tbody>
</table>

Combined linear model analysis of two locations was carried out using the Freeman and Perkins analysis model as described by Singh and Chaudhary (1979) as follows:

\[ Y_{ijr} = m + d_i + e_j + g_{ij} + \epsilon_{ijr} \]

Information : \( Y_{ijr} = \) the result of observing a variable in the \( i \)th result, the \( j \)th location, the \( r \) repeat; \( m = \) general average value; \( d_i = \) the effect of the first treatment; \( e_j = \) effect of \( j \)th location; \( g_{ij} = \) the effect of the interaction of the \( i \)-th treatment and \( j \)-th location; \( \epsilon_{ijr} = \) the combined effect of other factors in the \( i \)-th, \( j \)-th place, and \( r \)-th test results.

3.1. Number of Fruits in Plants

For the variable number of fruits per plant, the coefficient of diversity (kk) on the variable number of fruits per plant, number of seeds per plant, fresh weight of fruit per plant, fresh weight of seeds per plant ranged from 23.21% -29.74% while for the variable fresh weight 100 seeds (0.95 %) and oil yield (5.21%). According to Gomez and Gomez (1995), a good kk value is below 20%, although there are exceptions for quantitative characters such as outcome variables which are highly influenced by the environment (Baihaki and Wicaksana, 2005).

The number of fruits is influenced by the pollination process. Jatropha has fewer female flowers than male flowers, which will affect fruit formation. The ratio of male and female flowers is 1: 29 to 1: 13 (Pan and Zeng, 2010), so the possibility of pollination does not exist.
<table>
<thead>
<tr>
<th>Cytokinin ns</th>
<th>Cirebon</th>
<th>Average</th>
<th>Jatinangor</th>
<th>Average</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>Cyto x1</td>
<td>Cyto x2</td>
</tr>
<tr>
<td>s0</td>
<td>3.67</td>
<td>9.00</td>
<td>4.67</td>
<td>5.78 f</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>6.33</td>
<td>3</td>
<td>4.67</td>
<td>8.11 ef</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>0</td>
<td>3</td>
<td>8.67</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>37.6</td>
<td>45.0</td>
<td>25.6</td>
<td>36.11</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>45.3</td>
<td>36.11</td>
<td>25.6</td>
<td>36.11</td>
<td>53.0</td>
</tr>
</tbody>
</table>

Two Locations Combined

<table>
<thead>
<tr>
<th></th>
<th>5.17</th>
<th>11.8</th>
<th>8.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td></td>
<td>ghi</td>
<td>i</td>
</tr>
<tr>
<td>s1</td>
<td></td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td></td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the results of the combined test of the two treatment locations, the concentration of cytokinin S4 showed the best performance in the variable number of fruits per plant (46.61). The test results showed an interaction between cytokinin concentration and location. The variable appearance of the number of fruits per plant at the Jatinangor location was the highest based on the tuckey further test (57,11). In addition, there was also an interaction between cytokinin concentrations and the application of Jatropha cultivar with the best AMF dose. Further test results showed that the treatment of cytokinin S4 concentration (400 mg L^-1) in the Jatropha cultivar application with a dose of AMF X2 (IP-3A + dose of AMF 5 grams) had the highest average number of fruits per plant (55.33), which is also influenced by the presence of AMF which is useful for increasing nutrient uptake, especially P phosphate (Nur Fitriani et al., 2019).

The slow fruit formation in Jatinangor can be caused by a slower metabolic process than in Cirebon. This slow excess metabolism can increase oil yield, because less photosynthate is used for respiration. Mengel and Kirkby (2001) suggest that 80% of photosynthate is transferred to

seeds in wheat plants, so it can be assumed that even in jatropha most of the photosynthate is transferred to seeds.

3.2. Number of seeds in plant

In the variable number of seeds per plant, the results of further tests showed that the treatment of cytokinin S4 concentration had the best performance (109.06) compared to other cytokinin hormone treatments. The test results showed that there was no interaction between cytokinin concentrations and location, although there was an interaction between cytokinin concentrations and Jatropha cultivar application with the best AMF dose. This is due to the fact that the size of the seeds is more influenced by genetic factors and there are striking environmental changes. The large flow of photosynthate from the source to the reproductive organs does not increase the capacity of the container, but is used for the process of seed growth, so that the number of seeds that reach normal size can be increased. Seeds that have been able to pass the critical limit of the seed filling period will effectively be able to reach the perfect size. The seeds that are harvested must meet the requirements of one of the agronomic characters, namely seeds that have reached normal size.
Further test results showed that the treatment of cytokinin S4 concentration with Jatropha cultivar application with the best AMF dose X1 had the highest number of seeds per plant (124.17). The interaction between cytokinins and AMF with low levels of cytokinins affects the rate of plant development so that it stimulates the growth of AMF hyphae in the roots to continue to grow (Marco cosme and Susane Wurst, 2013) which in turn increases the number of fruits. According to Bago et al. (2003), plants that have a high rate of photosynthesis will have high food reserves and are stored in seeds in the form of fatty acids.

Fresh weight of fruit per plant, fresh weight of 100 seeds, fresh weight of seeds per plant, and oil yield on fresh fruit weight per plant there was no interaction between cytokinin concentrations and location; cytokinin concentrations and applications of Jatropha cultivar with the best AMF dose; and cytokinin concentrations, application of Jatropha cultivar with the best AMF dose and location.

### Table 3. Average Number of Seeds in Plant (Fruit) of Each Treatment Planted in Different Regions Based on Altitude at Different Places

<table>
<thead>
<tr>
<th>Cytokinins</th>
<th>Cirebon x1</th>
<th></th>
<th>Jatinangor x1</th>
<th></th>
<th>Average Cytokinins (Location 1)</th>
<th>Jatinangor x2</th>
<th></th>
<th>Average Cytokinins (Location 2)</th>
<th></th>
<th>Average Cytokinins (M1+M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>16.3</td>
<td>30.6</td>
<td>21.6</td>
<td>22.89</td>
<td>26.33</td>
<td>40.67</td>
<td>31.6</td>
<td>32.89</td>
<td>27.89</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>41.22</td>
<td>34.00</td>
<td>67.67</td>
<td>51.6</td>
<td>51.11</td>
<td>46.17</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>50.44</td>
<td>65.00</td>
<td>70.67</td>
<td>49.6</td>
<td>61.78</td>
<td>56.11</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>81.33</td>
<td>97.33</td>
<td>113.3</td>
<td>74.3</td>
<td>95.00</td>
<td>88.17b</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>101.5</td>
<td>114.6</td>
<td>136.6</td>
<td>101.0</td>
<td>116.5</td>
<td>109.0</td>
<td></td>
</tr>
</tbody>
</table>

Two Locations Combined

<table>
<thead>
<tr>
<th>Cytokinins</th>
<th>Cirebon x1</th>
<th></th>
<th>Jatinangor x2</th>
<th></th>
<th>Average Cytokinins (M1+M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>21.3</td>
<td>35.6</td>
<td>26.6</td>
<td>28.67</td>
<td>46.8</td>
</tr>
<tr>
<td>S1</td>
<td>def</td>
<td>def</td>
<td>def</td>
<td>59.67</td>
<td>43.8</td>
</tr>
<tr>
<td>S2</td>
<td>cdef</td>
<td>cdef</td>
<td>cdef</td>
<td>90.00</td>
<td>68.1</td>
</tr>
<tr>
<td>S3</td>
<td>abc</td>
<td>124.1</td>
<td>93.8</td>
<td>124.1</td>
<td>93.8</td>
</tr>
<tr>
<td>S4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>103.0</td>
<td>109.0</td>
</tr>
</tbody>
</table>

In the variable fruit fresh weight per plant, the test results showed that there was a significant difference in the application of cytokinin concentrations as a whole. The results of further tests using the tuckey test showed that the S4 application had the highest fruit fresh weight per plant reaching 208.55 grams. From Table 4, it can be concluded that the amount of photosynthate allocation in the seeds is in line with the plant biomass due to the ZPT application.

Variable fresh fruit weight per plant (Table 4) there was no interaction between cytokinin concentrations and location; cytokinin concentrations and applications of Jatropha cultivar with the best AMF dose; as well as cytokinin concentrations, Jatropha cultivar application with the best AMF dose, and location. The test results using the tuckey test showed that there was a significant difference in the application of the overall cytokinin concentration. Further test results showed that the S4 application with the best AMF dose in each location had the highest fresh weight of 100 seeds reaching 70.22 grams. It is thought that AMF can help absorb water and nutrients, including P nutrient which plays an important role in seed formation. Musfal (2008) states that the increase in dry shelled yield of maize is closely related to the increase in P uptake byplants.

Variable seed fresh weight per plant (Table 4) did not have an interaction between cytokinin concentration and location; BAP cytokinin concentration and Jatropha cultivar application with the best AMF dose; as well as cytokinin concentrations, Jatropha cultivar application with the best AMF dose, and location. Further analysis using the tuckey test showed that there were significant differences in the application of the overall cytokinin
The results of further tests showed that the S4 application with the best AMF dosage in each location had the highest seed fresh weight per plant, reaching 75.54 grams. According to Selamet and Suyatmo (2000), during their growth from germination to production, plants have needs that must be fulfilled such as solar radiation, CO2 for photosynthesis, O2 for respiration, water, and nutrients in certain amounts in order to grow normally to reach their potential results. The two different locations are thought to have different effects on each individual plant so that the variations that occur are quite large. Plants with mycorrhizal are more efficient in water use, then water is translocated to the top of the plant which supports the opening of the stomata, and plays a role in the process of foosynthesis which in turn will increase the production of dry matter that will be used for seed formation, so that the number of seeds formed is greater (Nuraini, 2002). The increase due to AMF administration is possible because the P-available and P from mycorrhizal secretion play a role in the preparation of phospholipids, cell nuclei and protein and increase the percentage of flower formation into fruit and seeds. P is also a constituent component of ATP, as an energy source for metabolic processes in plants. In plants deficient in P, P in the cytoplasm decreases and to compensate for this so that P in the cytoplasm remains constant, transfer is required from the vacuole via the P-aseenzyme.

Oil yield is the ratio of the amount (quantity) of oil produced from the extraction of aromatic plants. The higher the yield value, the more oil is produced. Increasing the yield or comparison of the amount of oil produced can be done with two approaches, namely the cultivation process and the oil-making process. From the results of the analysis showed that, treatment with additional plant AMF doses could increase the oil content significantly compared to without the addition of AMF, the more spores applied, the higher the oil content detected. The results of photosynthesis, NADPH2 and ATP can also be obtained from cellular respiration with the pentose phosphate pathway (Taiz & Zeiger, 2006). Both of these energies are highly dependent on inorganic phosphate compounds, especially pyrophosphoric acid. Pyrophosphate is a form of inorganic phosphate molecule that can be absorbed directly by plants from the soil. According to Schacmat et al. (1998), the association between plant roots and AMF will increase pyrophosphate molecules in the soil and can increase the intensity of pyrophosphate absorption by plant roots. Thus, the more pyrophosphate compounds that plants can absorb, the more NADPH2 and ATP molecules that plants can form for fatty acid synthesis.

The basic ingredient in the formation of jatropha oil biodiesel is in the form of triglycerides which are produced from the seeds. Triglycerides are synthesized from fatty acids, glucose and glycerol. Fatty acids are derived from acetyl CoA, which occurs in the endoplasmic reticulum. Glucose is produced from photosynthesis and glycerol is produced from fructolysis. Fatty acids are important in the synthesis of triglycerides. This fatty acid formation occurs in the cytoplasm. The main basic ingredient of fatty acids is acetyl CoA which is derived from pyruvic acid in mitochondria (Salisbury and Ross, 1995). Dihydroxy acetone P is synthesized from glucose which occurs in the glycolysis process. Dihydroxy acetone P can also be obtained from the fructolysis reaction. Dihydroxy acetone P can be converted into 3 P glycerol with the help of the enigmglycero 1 3 dehydrogenase. The 3 P glycerol will then react with fatty acids to form triglycerides. Fatty acids react with ATP and enzymes to form enzyme-acyl-enzyme complexes. The ATP molecules in this reaction are converted into acyl-AMP and pyroP. Then acyl-AMP reacts with coenzyme A to form acetyl CoA. This acetyl CoA will react with glycerol P to form speech acid. Furthermore, the picid acid is hydrolyzed to produce 1.2 diglycerides. The assimilation reaction in 1.2 diglycerides, namely the acetyl CoA molecule will bond to the C number 3 atom to form triglycerides. Each process of the triglyceride synthesis sequence always requires energy and enzymes involving P elements, therefore giving AMF will ultimately increase the yield of castor oil seed oil. In this study it was detected that there was an increase in phosphate, presumably this element caused the oil content in the seeds of the AMF inoculated plants to increase. This study is in accordance with the study by Bago et al. (2003), who reported that Canola plants inoculated with AMF showed a higher fatty acid content than non-inoculatedplants.

The oil yield in Cirebon (42.66% - 47.50%) was higher than that in Jatinangor (35.44% - 44.10%), because the lipid / oil formation process in Cirebon is more perfect, without being divided for respiration (Rosniawaty, 2011). Fat formation requires a lot of energy, because almost 2 pairs of electrons (2 NADPH) and one ATP are needed for each acetyl group present (Salisbury and Ross, 1995), here is a summary of fatty acid synthesis with the example of palmitic acid (as an ester of co-enzyme A):

\[
8 \text{asetil CoA} + 7 \text{ATP}^3 + 14 \text{NADPH} + 14\text{H}^+ \rightarrow \text{palmitil CoA} + 7 \text{CoA} + 7 \text{ADP}^2 + 7 \text{H}_2\text{PO}_4^- + 14 \text{NADP}^+ + 7 \text{H}_2\text{O}
\]

4. Conclusion

The results showed that there was an effect of the best AMF interaction with cultivars and cytokinin concentrations, where the best combination of AMF and cultivar and the best concentration of 400 mg L-1 cytokinins was able to increase the yield of fruit number per plant (55.33 g), number of seeds per plant (124, 17 g), fresh weight of fruit per plant (208.55 g), fresh weight of 100 seeds (70.22 g), fresh weight of seeds per plant (39.28 g) and increased yield of biodiesel oil in Cirebon (42.66%) - 47.50%)) higher than in Jatinangor (35.44% - 44.10%).

Acknowledgments

LPDP (Education Fund Management Institute) which has provided an opportunity for writers to obtain a 2016 BUDI – DN doctoral education scholarship and has provided a Dissertation Research Fund; Faculty of Agriculture, Padjadjaran University (UNPAD), which has facilitated this research; and the Academic Community of Winaya Muki University who has supported the author to continue her studies.
References


Mengel, K. and E. Kirkby. 2001. Principles of Plant Nutrition. International Potash Institute, Switzerland. 4-655 hal.


Novriani and Madjid. 2010. Role and Prospects of Mycorrhizae. Sriwijaya University, Palembang.


Effect of Mangosteen Peel Extract (Garcinia mangostana l.) with Supplemental Zinc and Copper on Performance and Egg Quality of Sentul Laying Chicken

Tuti Widjastuti1,*, Lovita Adriani2, Indrawati Yuda Asmara1, Iwan Setiawan1, Abun2, Leni Nurlaeni2

1 Departemen of Production, Faculty of Animal Husbandry, Universitas Padjadjaran, 45363, Indonesia, 2Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, 45363, Indonesia

Received: March 12, 2021; Revised: May 17, 2021; Accepted: September 21, 2021

Abstract

Mangosteen peel extract is a medicinal plant that can be used as an herbal supplement, containing xanthone compounds that function as antioxidants and antimicrobials. The research was conducted to determine the effect of Mangosteen Peel Extract with mineral (MPEm) as a feed supplement to the production and egg quality of Sentul Chicken. Sentul Chicken is a local chicken of west java which have potential as dual-purpose chickens. This study used 40 female chickens. The method used was a completely random design with five treatments namely, P0 (basal ration), P1 (basal ration with 60 mg/kg MPEm), P2 (basal ration with 120 mg/kg MPEm), P3 (basal ration with 180 mg/kg MPEm), P4 (basal ration with 240 mg/kg MPEm) and repeated four times. The result showed that the use of MPEm in the ration was significant (p<0.05) on conversion ration, hen-day, egg weight, egg cholesterol, the color of egg yolk, and the thickness of eggshell but not significant on consumption ration, haugh unit, and yolk index score. It can be concluded that MPEm can be used as a feed supplement until 180 ml/kg ration to give the best on performance production and eggs quality of Sentul chicken.

Keywords: Mangosteen peel extract with mineral, performance production, egg quality, Sentul chicken

1. Introduction

Sentul chicken is a local Indonesian chicken family that has been cultivated from generation to generation, and so it becomes a wealth of genetic resources of local Indonesian livestock. Sentul chicken is a dual-use chicken that has relatively fast growth and high egg production compared to ordinary local chickens. Sentul chickens can lay eggs around 150 eggs/year (Baktiningsih et al., 2013). The spur production, farmers usually add synthetic antibiotics. Currently, synthetic antibiotics have been banned because they can cause meat and eggs produced to be unsafe for consumption. Therefore, the use of synthetic antibiotics needs to be replaced with natural ingredients which can simultaneously improve performance such as mangosteen peel. Mangosteen is an annual plant whose life span reaches tens of years. The mangosteen tree is evergreen with a height of 6-20 meters. Mangosteen Peel contains 68 types of xanthone compounds Aizat et al., (2019) which have many pharmacological functions, especially as natural antioxidants (S Melia, et al., 2019), antibacterial (A Saepudin et al., 2018) and antihyperlipidemic (Alkilany, 2017). Mangosteen Peel contains xanthone compounds at 107.76 mg per 100 g (Fabiola Gutierrez-Orozco and Mark L Failla,, 2013). Besides, mangosteen functions as an antitumoral, anti-inflammatory, antiallergic, antibacterial, antifungal, and antiviral agent. Xantone has many pharmacological functions such as antioxidant, anti-inflammatory and antibacterial, antihyperlipidemic (Alkilany, 2017), and is able to improve blood lipid profile. Xantone compounds can be isolated and taken advantage of by the appropriate extraction methods (Do. Q. D., et al., 2014), one of which is maceration. Mangosteen peel extracted using the maceration method produced total xanton levels of 27.7% (Andayani et al., 2015).

However, Mangosteen Peel Extract (MPE) contains unsaturated organic acid compounds that have short-chain bonds and have characteristics that are unstable, sensitive, easy to react, and oxidized (Boots AW. Et al., 2008). The way to stabilize it is by supplementing minerals that function as metal catalysts. Supplementation of Cu and Zn minerals in the form of CuCl2.2H2O and ZnO mineral salts is intended for two purposes, first for the function of the Mangosteen Peel Extract itself, which is to stabilize its active compounds which are easily ionized and the second purpose of supplementation of Cu and Zn minerals as inorganic minerals can form bonding with a protein or carbohydrate group, where minerals can be bound to become organic minerals in the form of Cu proteinate and Zn proteinate so that they are easily absorbed by the small intestine, besides, Zn supplementation can also increase the activity of protease enzymes that are regulated by the pancreas (Supriyati, et al., 1999).
Mangosteen peel extract can be implemented as a feed supplement and then formulated into the ration as a feed supplement in Sentul chicken rations. Xanthone active compounds in MPEm function as antioxidants can change free radical compounds into more stable compounds and can prevent chain reactions from damage caused by free radicals that will have an impact on chicken production (Zaboli, et al., 2013). Besides, xanthones in MPEm can assist in the digestion process by improving the structure of the small intestine villi in the process of absorption of nutrients and suppress the growth of bacteria pathogens inside the intestines (Vemurugan, and Citarasu, 2010). This condition causes the surface area of the intestinal villi to become wider so that the absorption of nutrients can be more and can increase egg production. MPEm also contains flavonoids, anthocyanins, which are water-soluble color pigments. The color produced by anthocyanins ranges from red, blue, to purple, including yellow. Besides that, in mangosteen peel also contains minerals including magnesium 3.3%, copper 0.7%, manganese 1.3%, calcium 1.1 mg, Phosphorus 1.7 mg, and iron 0.09 mg (Setiawan, D. et al., 2011).

Agung (2014) that MPE administration with a level of 120 mg/kg body weight/day in broiler chicken rations was able to improve growth performance and increase feed efficiency and carcass percentage. While Widjastuti et al., (2020) the addition of 133 ml/kg ration MPE without minerals gave a positive response to the production of Sentul chicken eggs. Therefore, the research aims to determine the use of MPE (Garcinia mangostana l) with supplement mineral Zinc and Copper on performance production and eggs quality of sentul chicken.

2. Material and Methode

2.1. Experiment Chicken

Chicken used in the experiment were 40 Sentul chickens, kept in cages for 12 weeks. Chickens were divided into five treatments and repeated times, each replication containing 2 chickens. The average body weight was 1244.1 grams, with the coefficient of variation in body weight 7.03 %.

2.2. Cage

Cages used were cage system cages of bamboo as many as 40 units, each unit measuring 40 cm x 21 cm x 30 cm for one chicken.

2.3. Experiment ration

The ration was arranged based on the needs of sentul chicken for the phase layer, namely protein and metabolic energy, 17% protein and 2750 kcal/kg (Widjastuti T., 1996). The treatment consisted of the use of extract of mangosteen peel (MPEm), namely: P0 = 0 mg MPEm/kg ration; P1 = 60 mg MPEm/kg ration; P2 = 120 mgMPEm/kg ration; P3 = 180 mg MPEm/kg ration and P4 240 mg MPEm/kg. Mangosteen extraction obtained by maceration (Rismana et al., 2014). The macerate (maceration result) of mangosteen peel obtained was temporarily filtered and concentrated using a rotary evaporator to obtain a thick extract. Furthermore, the thick extract of mangosteen peel was dried using a spray and freeze dryer to obtain mangosteen peel extract powder. The addition of 5 ppm CuSO4 and 40 ppm ZnO was carried out with a ratio of mangosteen fruit extract and catalyst, respectively 1:10.

2.4. Experiment Design and Data Analysis

The study was conducted experimentally with 5 ration treatments containing MPEm with 4 replications. The data were analyzed statistically using a completely randomized design and if there were differences, it was tested by the Duncan test.

2.5. Observed variables and how they are measured

- Feed intake was recorded in each 7-day interval.
- Hen day was calculated by dividing number of eggs produced weekly by number of birds and multiplying by 100%.
- Feed conversion is obtained by dividing the amount of feed consumption by weekly total weight of eggs.
- The egg weight produced is weighed and recorded
- Egg Yolk color, as a measure of egg quality, was determined using a Roche colorimetric fan, with scores varying between 1 and 15.
- Eggshell thickness was measured in three points at the egg equator using a pachymeter and calculating the average among the three points.
- Haugh units were calculated based on the height of the albumen and egg weight. Haugh unit= 100 log HA+7.57-1.7WE 0.37 Where, HA = albumen height, and WE = egg weight
- Yolk index was calculated by dividing the yolk height by the yolk weight.
- Cholesterol levels of meat were analyzed using the Enzymatic Photometric Test method

3. Result and discussions

3.1. Effect of MPEm treatment in ration on sentul chicken production performance

The effect of MPEm addition in the ration on Sentul chicken production performance was seen in Table 2.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow corn</td>
<td>51.85</td>
</tr>
<tr>
<td>Rice bran</td>
<td>18.52</td>
</tr>
<tr>
<td>fish meal</td>
<td>6.48</td>
</tr>
<tr>
<td>soybean meal</td>
<td>13.89</td>
</tr>
<tr>
<td>bone meal</td>
<td>5.56</td>
</tr>
<tr>
<td>Ca CO3</td>
<td>3.70</td>
</tr>
</tbody>
</table>

Chemical composition (Calculated)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein (%)</td>
<td>15.63</td>
</tr>
<tr>
<td>Crude Fat (%)</td>
<td>5.14</td>
</tr>
<tr>
<td>Crude Fiber (%)</td>
<td>4.16</td>
</tr>
<tr>
<td>Calcium (%)</td>
<td>3.28</td>
</tr>
<tr>
<td>Phosphorus (%)</td>
<td>1.39</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>1.06</td>
</tr>
<tr>
<td>Methionine (%)</td>
<td>0.35</td>
</tr>
<tr>
<td>Metabolizable energy, kcal/kg</td>
<td>2757</td>
</tr>
</tbody>
</table>
Table 2. Average the Ration on Sentul Chicken of Laying Phase

<table>
<thead>
<tr>
<th>Variable</th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption ration (g)</td>
<td>78.85 ± 3.35a</td>
<td>78.06 ± 3.05a</td>
<td>77.34 ± 2.98a</td>
<td>77.05 ± 3.07a</td>
<td>77.00 ± 3.02a</td>
</tr>
<tr>
<td>Hen-day (%)</td>
<td>45.13 ± 4.03b</td>
<td>50.85 ± 4.09a</td>
<td>55.38 ± 5.09a</td>
<td>51.78 ± 5.08b</td>
<td>47.37 ± 4.9ab</td>
</tr>
<tr>
<td>Conversion ration</td>
<td>5.32 ± 0.07 b</td>
<td>4.41 ± 0.09b</td>
<td>3.63 ± 0.13c</td>
<td>3.66 ± 0.08c</td>
<td>3.96 ± 0.07c</td>
</tr>
</tbody>
</table>

Description: The same letter in the direction of the rows shows no significant difference (P>0.05)

*Duncan test, P0 = without MPEm ; P1 = 60 mg MPEm/kg ration ; P2 = 120 mg MPEm/kg ration; P3 = 180 mg MPEm/kg ration; P4 =240 MPEm/kg ration

Table 1. shows the average ration consumption in various treatments has decreased from the control treatment (P0) until P4. The decrease in feed consumption from each treatment was due to the mangosteen peel extract having a distinctive odor that can affect the delicacy of the chicken. Table 1. and Figure 1. shows that the addition of MPEm does not affect feed consumption. These results that feed consumption in each treatment are in the same range. And this gives an idea that the use of MPEm until level 240 mg/kg, did not give a negative effect on the consumption of ration. The mangosteen peel contains a fairly high tannin and can affect the palatability rate of the ration (Ngamsaeng et al., 2006). But in this study the addition of MPEm did not reduce palatability, which could be due to the extraction process with ethanol solvents which could reduce tannin levels to reduce the bitter taste and odor that is typical of mangosteen peel.

Figure 1. The effect of MPEm addition in the ration on Sentul chicken production performance

The average egg production (Hen-Day) in various treatments has increased, the addition of MPEm in the ration gives a positive response to egg production. Due to the active substance in the MPEm in the form of xanthones functioning as an antioxidant. These antioxidants can prevent free radicals that can cause a decrease in the immune system. Kusumasari et al., (2013) state that antioxidants have an important role to prevent damage caused by free radicals. Xanthones are considered capable of improving the structure of the intestinal villi in the process of absorption of nutrients and suppress the growth of bacteria pathogens inside the intestines. The more xanthones in the body, the more nutrients are absorbed in the body, so that production needs can be met. According Sreedam Chandra Das (2012) that xanthone derivatives like mangostin, isomangostin and mangostin triacetate are known to possess significant anti-inflammatory activities. However, MPE contains methyl esters of unsaturated organic acids that are easily oxidized. Therefore, Cu and Zn supplementation will play a role in activating bioactive compounds contained in MPE which is reactive, thus making the ionization in the digestive tract higher and can be utilized optimally resulting in egg production.

The average value of feed conversion with the addition of MPEm has decreased. FCR values in the MPEm treatment ranged from 3.63 to 4.41 lower than the control ration without the addition of MPEm. The addition of MPEm at doses of 120-240 mg indicates a better and more efficient quality of ration which is indicated by the lower FCR value. Xanthone compounds can inhibit the growth of pathogenic microbes that cause disease so that the digestive system of Sentul chickens can work optimally and the utilization of rations will be more efficient. According Toghyani (2010) the addition of bioactive compounds to herbs can increase appetite stimulation and food intake, increase endogenous digestive enzymes, immune response activities, anti-oxidants, and antimicrobials. With this role, the nutrients can be utilized to produce eggs more effectively. Xanthone compounds in MPEm at optimal doses have an effective role in improving the structure of intestinal villi in the absorption of feed nutrients (Adriani et al., 2018). Increased absorption of nutrients by intestinal villi increases egg production and decreases the value of feed conversion.

3.2. Effect of MPEm treatment in ration on Sentul Chicken egg quality

Data on the effect of adding MPEm in the ration to the variables of the quality sentul chicken eggs can be seen in Table 3.
variables of the quality sentul chicken eggs

Table 3. Effect MPEm in the Ration on Egg Quality

<table>
<thead>
<tr>
<th>Variable</th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg weight (g)</td>
<td>40.87 ± 9.08 a</td>
<td>43.89 ± 9.08 b</td>
<td>44.00 ± 10.04 b</td>
<td>44.37 ± 9.07 b</td>
<td>44.23 ± 9.04 b</td>
</tr>
<tr>
<td>Shell thickness (mm)</td>
<td>0.26 ± 0.09 a</td>
<td>0.31 ± 0.1b</td>
<td>0.32 ± 0.12b</td>
<td>0.32 ± 0.19b</td>
<td>0.30 ± 0.09 b</td>
</tr>
<tr>
<td>Haugh Unit Value</td>
<td>78.47 ± 10.08 a</td>
<td>78.65 ± 9.08 a</td>
<td>78.88 ± 0.99 a</td>
<td>79.73 ± 7.09 a</td>
<td>79.22 ± 8.09 a</td>
</tr>
<tr>
<td>Yolk index</td>
<td>0.44 ± 0.12a</td>
<td>0.41 ± 0.14a</td>
<td>0.41 ± 0.18a</td>
<td>0.44 ± 0.19a</td>
<td>0.42 ± 0.19a</td>
</tr>
<tr>
<td>Color Yolk score</td>
<td>9 ± 2.8 a</td>
<td>10 ± 2.9 a</td>
<td>11 ± 2.4 b</td>
<td>11 ± 3.0 b</td>
<td>11 ± 2.9 b</td>
</tr>
<tr>
<td>Egg yolk cholesterol (mg/100g)</td>
<td>122.25 ± 10.9a</td>
<td>125.62 ± 11.9a</td>
<td>109.49 ± 11b</td>
<td>102.46 ± 12.06b</td>
<td>102.24 ± 11.03b</td>
</tr>
</tbody>
</table>

Description: The same letter in the direction of the rows shows no significant difference (P>0.05)

*Duncan test, P0 = without MPEm; P1 = 60 mg MPEm/kg ration; P2 = 120 mg MPEm/kg ration; P3 = 180 mg MPEm/kg ration; P4 = 240 mg MPEm/kg ration

Egg quality measurements are summarized in Table 3 after 4 weeks of treatment. Analysis of variance showed that MPEm in real ration increased the egg weight compared to control. These results indicate that a higher dose of MPEm can increase egg weight. This is due to mangosteen peel containing xanthones, 6.45% protein, and 3.02% fat. Xanthones function as an antibacterial that can suppress the growth of pathogenic bacteria in the intestine, and can improve the structure of intestinal villi in the process of absorption of nutrients (Vemurugan and Citarasu, 2010). Thus, the presence of xanthones makes the condition of the digestive tract better and the process of absorption of nutrients in feed, especially protein and fat, which are the most important food factors that affect egg weight more optimally. This was supported by Argo and Mangisah, (2013) that egg weight was influenced by protein, fat, and essential amino acids contained in the ration. Another factor that leads to increased egg weight is the presence of antioxidants contained in the MPE. Antioxidants can capture free radicals in the body so that the presence of an antioxidant can suppress the emergence of free radicals. In line with Kusumastuti et al., (2013) that free radical damage can be prevented by antioxidants. Increased free radicals cause the body's defense ability to decrease so that it can trigger stress on livestock that has an impact on decreasing egg production, especially egg weight. This condition shows that the xanthone compound at optimal dosage has the potential as a natural antibiotic in poultry through antibacterial and antioxidant mechanisms so that it will improve the immune system of Sentul chickens, eventually the maximum nutrient intake and an increase in egg weight.

The average range of shell thickness is 0.26 – 0.32. The range is in the range of chicken eggshell thickness in general. MPEm administration up to 240 mg/kg in the diet significantly (P <0.05) on the shell thickness. This can be caused by mangosteen extract containing 11 mg Ca minerals, and 17 mg Phosphorus, with the supplementation of Cu and Zn minerals in the form of CuCl₂·2H₂O and ZnO mineral salts, will play a role to activate the bioactive contained in the mangosteen peel extract which is reactive, so that makes ionization in the digestive tract higher and can be optimally utilized right on target, and will increase the thickness of Sentul.

The average value of HU is between 78.47 – 79.22 and the average yolk index is 0.41 – 0.44. The effect of adding MPEm on the ration did not significantly affect the HU value and egg yolk index. Yolk index and albumen are influenced by protein content in feed. Based on the research results, levels of protein (15%) in feed and feed intake (unpublished data) were not significantly different between treatments. So, the protein consumption for each treatment is the same, which causes the amino acid content in the egg to be the same, which in turn produces an egg with the same freshness. This condition will produce egg yolk index and haugh unit value, relatively the same between treatments. Following the opinion of Lengkey et al., (2012) that the Yolk Index and Haught Unit values are used to determine the freshness of eggs.

Figure 2. Effect of Adding MPEm in the Ration to the

Variables of the Quality Sentul Chicken Eggs

Table 3 and Figure 2. shows that results of the Kruskal-Wallis test showed that MPEm in the ration significantly improved color of the yolk of Sentul chicken. The content of xanthones and xanthophyll contained in the feed able to improve the structure of the intestinal villi in the process of absorption of nutrients (Vemurugan and Citarasu, 2010). Thus, the existence of xanthones will make the digestive tract conditions better and the process of absorption of nutrients in the feed, especially xanthophyll which is a colorant in egg yolks, becomes more optimal. The color pigment will be absorbed by the small intestine digestive organs and transported in the blood circulation and then circulated to the target that needs, namely the egg yolk. Color pigments will be absorbed by the digestive organs of the small intestine and transported.

The current study shows that MPEm reduced the level of yolk egg cholesterol. Following Mangisah (2003) that normal chicken egg cholesterol levels range from 125-200 mg/dL. The process of cholesterol synthesis. The process of cholesterol synthesis starts from acetyl CoA which is the result of carbohydrate or fat metabolism. Xanthones in MPEm work through the mechanism of inhibiting the
activity of HMG CoA reductase enzymes, which can cause inhibition of cholesterol biosynthesis (Botham et al., 2015). Among phenolic compounds found in MPEm are flavonoids which have been studied extensively because of their capability to moderate some metabolic process such as carbohydrate and lipid metabolism. Mohamed et al (2019) that phenolic compounds could be a major determinant of antioxidant potentials of foods and could, therefore, be a natural source of antioxidants.

Flavonoids are antioxidants that can reduce blood cholesterol levels, the mechanism by which flavonoids inhibit cholesterol synthesis through HMG CoA reductase inhibitors (Metwally, 2009). In addition to xanthones, MPEm also contains lipophilic saponins that can dissolve fats and emulsions that can reduce blood cholesterol levels due to hypercholesterolemia (Francis et al., 2002 ; Adriani et al., 2018).

4. Conclusions

It can be concluded that:

1. The use of MPEm in ration was significant (p<0.05) on conversion ration, hen-day, egg weight, the thickness of eggshell, the color of egg yolk and egg cholesterol but not significant on yolk index score, consumption ration and haugh unit.

2. MPEm can be used as a feed supplement until 180 mg/kg ration to give the best on performance production and egg quality of Sentul chicken.

Acknowledgements

This research was funded by the Grand Research Academic Leadership project from Universitas Padjadjaran to Tuti Widjastuti. I would like to thank Lovita Adriani, Indrawati Yudha Asmara, Iwan Setiawan, Abun, Leni Nurlaelni who helped write this paper.

References


Improving Blood Protein and Albumin Level Using Dried Probiotic Yogurt in Broiler Chicken

Lovita Adriani¹*, Andi Mushawwir¹, Chitra Kumalasari¹, Leni Nurlaeni¹ Ronny Lesmana², Urip Rosani¹

¹Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, 45363, Indonesia; 
²Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, 45363, Indonesia

Received: March 12, 2021; Revised: May 17, 2021; Accepted: September 28, 2021

Abstract

Dried probiotics have a good effect on the digestive tract in inhibiting the growth of pathogenic bacteria and increasing the blood protein content. This study aims to identify the effect of dry probiotics on protein and blood albumin levels in broiler chickens. In the experiment, a Completely Randomized Design (CRD) consisting of five treatments and 4 replications was applied. The probiotic treatments included T0: basal ration (BR); T1: basal ration with dry probiotic A (100% fermented cow's milk/FCM); T2: basal ration with dry probiotic B (fermented cow's milk/FCM and fermented mung bean milk/FMBM, with a composition of 75% : 25%), T3: basal ration with dry probiotic C (fermented cow's milk/FCM and fermented soy milk/FSM, with a composition of 75% and 24%); and T4: basal ration with dry probiotic D (consisting of fermented cow's milk/FCM, fermented mung bean milk/FMBM and fermented soy milk/FSM, with compositions: 50%, 25% and 25%, respectively). The results showed that the difference in blood protein and albumin levels (P>0.05) was not significant. Dried probiotics tend to increase blood protein and albumin and have the potential to correlate with protein anabolism and broiler performance.

Keywords: dried probiotic, oven-dry, blood protein, albumin, broiler chicken

1. Introduction

Broilers in the form of poultry are used as meat producers and are widely consumed. The quality and consumer expectations of good broiler meat are weight and muscle contours. Weight gain is influenced by the amount of protein contained in the ration (high protein content plays a role in weight gain) (Saleh and Dwi, 2005). Broiler chicken feed must pay attention to the balance of energy and protein contained in the ration. Broiler chicken ration is an additional feed to optimize shelf life and increase efficiency during rearing. However, the side effects of feed additives can bring some health problems. Thus, probiotics are alternative feed additives that can improve livestock health, especially improving the digestive tract ecosystem through microflora balance. Administration of probiotics from an early period improves the balance of intestinal microbes (Adriani et al., 2019).

Blood proteins in plasma are albumin, globulin, and fibrinogen (Ganong, 2000). Total protein examination serves as an examination of health status by looking at changes in protein levels that occur. The protein profile in blood serum shows protein deposition, because if protein and albumin are high, the probability of protein deposition in meat is higher. Albumin is the main protein contained in blood plasma which is responsible for osmotic pressure and as a transport agent for various small molecules in the blood such as fatty acids and bile pigments (Mushawwir and Latipudin, 2011). Probiotics increase ration efficiency, egg production, and lower egg cholesterol and serum cholesterol levels. In addition, probiotics are also able to reduce non-protein nitrogen in the blood, concentrations of uric acid, ammonia and urea in the blood (Rusmana, and Adriani, 2020).

The experiment in this study was conducted to assess the impact of dry probiotics on several blood biochemical parameters, including blood protein and broiler albumin. The use of probiotics in combination with mung bean milk, FCM, and FSM has not been widely reported by previous researchers; therefore, this study studied the biochemical profile of broiler blood given dry probiotics. Previous studies have shown that the phenol content and antioxidant activity of fermented products appear to increase. This phenomenon is caused by the mobilization of the phenolic conjugate form during the fermentation activity (Xiao et al., 2015). Another study reported that microbes belonging to the lactate group were able to produce enzymes. One type of enzyme that is synthesized during the fermentation process is an enzyme that breaks down carbohydrates. This phenomenon is characterized by the release of phenolic compounds (Razak et al., 2015). In addition, it can reduce anti-nutrition (Susi, 2012).

Some researchers use liquid or dry yogurt with the dry fries method. However, in this study, drying was carried out using a simple technology at a very low cost to reduce...
feed prices. The result of drying probiotics produces low microbiota than liquid form. However, dried probiotics have beneficial because produce high lactic acid, bacteriocin, and several compounds from soybeans and mung beans (Lengkey and Adriani, 2009; Adriani et al., 2015).

2. Materials and Methods

2.1. Materials

The materials used in this study consisted of Cow’s milk (CM), soybean, mung bean, and the starter contains several types of bacteria, namely Streptococcus thermophilus, Lactobacillus bulgaricus, Bifidobacterium bifidum, Lactobacillus acidophilus, maltodextrin DE 10-12, spectrophotometer, and several blood biochemical kits. (Biolabo, Bandung).

2.2. Methods

2.2.1. Experiment method

A total of 100 broiler DOC, 5 days old used in this investigation. This feeding treatment was carried out for 30 days study, accompanied by the physical recording of the environment and blood sampling. Giving dry probiotics was done by adding them to the ration. The dose of dry probiotics mixed into the ration was 2% of the total basal ration. A completely randomized design was used in this experiment, consisting of four treatments and five replications. The treatments include T0: BR; T1: BR with dried probiotic A (100% FCM); T2: BR with dried probiotic B (FCM and FMBM, with composition 75%: 25%); T3: BR with dried probiotic C (FCM and FSM, with composition 75% and 24%); and T4: BR with dried probiotics D (consisting of FCM, FMBM and FSM, with a composition, each: 50%; 25% and 25%).

2.2.2. Processing of probiotics

The basic ingredients used for fermentation in this experiment have been soy milk, CM, and green bean milk. The microbes that have been added to this fermentation process are Streptococcus thermophilus, Lactobacillus bulgaricus, Bifidobacterium bifidum and Lactobacillus acidophilus. Fermented milk mixed with 10-12.5% DE maltodextrin, serves as a nutritional supplement for microorganisms. Furthermore, probiotics were dried for 25 hours using an oven (simple method) at a temperature of 40°C.

2.2.3. Detection Method

Blood sampling through the external pectoralis vein using a 5 mL EDTA tube was performed randomly on 20 broilers (consisting of 5 birds per replication, and treatment of 4 birds per replication). Blood plasma samples were analyzed according to the kit protocol (Biolabo, France). The absorbance of the sample was determined using a spectrophotometer at the Laboratory of Animal Physiology and Biochemistry, University of Padjadjaran. The blood biochemistry observed included total protein and albumin in blood plasma. Blood samples were taken when the chickens were 2 and 4 weeks old as much as 3 ml. using a syringe containing EDTA, then the plasma is separated for further analysis. Analysis of total protein and albumin used a spectrophotometer.

2.2.4. Data Statistical analysis

The data of plasma protein and albumin were analyzed using the variance of one-way analysis method. The significant difference between feed treatments was determined by Tukey’s analysis with the degree of significant difference at P <0.05. As a basis for statistical analysis, the hypothesis has been established that dry probiotic levels can increase blood protein and albumin levels in broiler chickens.

3. Results and Discussion

The data of plasma protein and albumin were analyzed using the variance of one-way analysis method. The significant difference between feed treatments was determined by Tukey’s analysis with the degree of significant difference at P <0.05. As a basis for statistical analysis, the hypothesis has been established that dry probiotic levels can increase blood protein and albumin levels in broiler chickens.

Table 1. Effect Dried Probiotic on Blood Protein and Albumin Broiler Chicken

<table>
<thead>
<tr>
<th>Variable</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood (g/dl)</td>
<td>2.52 ± 0.66</td>
<td>2.59 ± 0.74</td>
<td>3.22 ± 0.74</td>
<td>2.60 ± 0.74</td>
<td>2.81 ± 0.74</td>
</tr>
<tr>
<td>Protein (g/dl)</td>
<td>0.20 ± 0.36</td>
<td>0.85 ± 0.36</td>
<td>0.47 ± 0.36</td>
<td>2.02 ± 0.36</td>
<td>1.32 ± 0.36</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>1.30 ± 0.36</td>
<td>1.36 ± 0.36</td>
<td>1.44 ± 0.36</td>
<td>1.32 ± 0.36</td>
<td>1.38 ± 0.36</td>
</tr>
</tbody>
</table>

The results showed that the administration of dry probiotics had no significant effect on increasing blood protein and albumin (P=0.05). Although there was no significant difference, blood protein and albumin levels increased by 21.74% and 10.77% at T2 (FCM + FMBM dry probiotic mixture, with a ratio of 75%: 25%). Sugiharto et al. (2017) showed that the normal range of blood protein ranges from 2.14 to 3.12 g/dl. Analysis of variance showed that dry probiotic feeding showed no significant difference (P=0.05). The results of the current investigation seem to agree with the findings of Djouvinov et al. (2005), and Aluwong et al. (2012) who found that probiotic supplementation did not affect protein and total albumin levels in chickens. Although not significantly different, there is a tendency to increase protein levels in the blood. Based on previous research, Arslan and Saatci (2004) and El-Rahman et al. (2012) showed an increase in plasma protein concentration with the addition of probiotics in the diet. The high protein content in the blood indicates that the protein deposition in the meat is also high; on the contrary, the low protein value in the blood or below the standard indicates that the chicken lacks nutrition. Optimal liver function will be followed by an increase in plasma protein because most plasma proteins are synthesized in the liver (Widhyari., et al. 2014). Previous studies have also shown that plasma protein can be a valid indicator in determining the status of tissue function (Mushawwir, A et al, 2020; Tanuwiria and Mushawhir, 2020. This is related to the function of liver tissue as a producer of albumin protein. It is known that 75% of plasma protein blood is albumin.
Figure 1. Effect Dried Probiotic on Blood Protein and Albumin Broiler Chicken

The average albumin for each treatment (Table 1) ranges from 1.30-1.44 g/dl. Blood albumin levels from lowest to highest include T0: 1.30 g/dl, T3: 1.32 g/dl, T2: 1.36 g/dl, T4: 1.38 g/dl, and T2: 1.44 g/dl. Blood albumin in the study is in the normal range about 1.06 - 1.39 g/dl (Owo Sibo et al., 2013). The variance analysis results showed that supplementation of dry probiotics did not show a significant difference (P> 0.05). However, there is a tendency to increase blood albumin levels.

Albumin and blood protein plays a major role in the deposition of protein into the meat. In accordance with Liu et al. (2015) which states that albumin affects the growth rate of broiler chicken. It means low albumin will have an effect on total protein. Consumption of less protein causes reduced blood albumin so that protein deposition into the meat will also decrease. Parmentier et al. (2009) and Savary-Auzeloux et al., (2010) reported that blood albumin produced in the liver forms the majority of all plasma proteins (consisting of 60% albumin). The content of blood protein values is normally used for weight gain (Saleh and Dwi, 2005). Blood protein and albumin were highest in T2 with dry probiotics combined with 75% FCM and 25% FSM. Probiotics in the ration increase the content of lysine analogue and aminoethyl cysteine in the digestive tract which is converted to amino acid lysine and cysteine so as to increase the retention of proteins that play a role in meat formation (Candrasih and Bidura, 2001; Farhana et al., 2012; Saikat et al., 2017).

One of the causes of weight gain in living things is the activity of probiotic bacteria. Previous researchers reported that the increase in digestibility efficiency is caused by the use of nutrients and absorption of nutrients by absorptive cells (Lengkey and Adriani, 2011; Sheval et al., 2020). The results of previous studies showed that an increase in digestive enzyme activity and an increase in the morphometric surface of intestinal villi occurred due to the presence of probiotic bacteria (Muhammad et al., 2019). This physiological condition also has an impact on increasing digestibility, absorption of nutrients, as well as the formation and increase in the size of new tissues (Lengkey and Adriani, 2011; Priastoto et al., 2016; Adriani et al., 2019). The results of the same study have also been reported by other researchers (Hernawan et al., 2017; Mushawwir et al., 2018; Adriani and Mushawwir, 2020). An increase in the number and width of the jejunal villi from feed plus probiotics that affect the final body weight of broilers has also been reported by Adriani et al. (2019). In addition, several researchers, including Toghyani et al., (2015), Astuti (2015), Jin et al., (2000) emphasized that increasing the population of microbes that are beneficial to livestock will prevent the development of pathogenic microbes in the digestive tract of food.

4. Conclusion

Dried probiotics can increase protein in the blood by 27.77%, and albumin by 10.76% compared to control, in the FCM + FMBM mixture treatment by 75% and 25%, respectively. Although all treatments were able to increase blood protein and albumin, the results of increasing levels were not significantly different in broiler chickens. Interestingly, the increase in plasma protein and albumin may be a valid indication of increased protein anabolism and overall broiler performance.

5. Significant statement

This study found that the application of FCM, FMBM and FSM as probiotics added to broiler feed was beneficial for increasing blood protein and albumin in plasma. The results of this study have helped researchers to explore more deeply the effect of various combinations of FCM, FSM, and FMBM as probiotics to increase protein metabolism in supporting the immune and performance of broiler chickens. Thus, the new theory about the application technique and the impact of using FCM, FMBM and FSM in broiler rations can be accepted.

Acknowledgments

This work is supported by the PTUPT project from the Ministry of RISTEK-DIKTI Grant 2020, as well as the Academic Leadership Grant from Padjadjaran University for Lovita Adriani (2020). Therefore, we give the award to both parties.

References


Ganong WF. 2000. Medical Physiology, Medical Book Publisher EGC, Jakarta.


Lengkey HAW and Adriani L. 2011. The Effect of Lactobacillus bulgaricus and Streptococcus thermophilus as Ration Supplementation on Broiler Carcass Weight, Carcass Fat Content and The Serum Cholesterol Carcass Content. Int Sem Biotechnol.


Widhyari SD, Esfandiari A, dan Herlina. 2014. Profile of Total Protein, Albumin, and Globulin on Broiler were Given Turmeric, Garlic, and Zn. Indonesian Agr Sci J, 10(3):179-184.

Physiological Analysis of Orchid Chlorophyll against *Odontoglossum ringspot virus* Infection

Mahfut\(^1\)*, Irni Yuni Minarni\(^2\), Sri Wahyuningsih\(^1\), Tundjung Tripeni Handayani\(^1\)

\(^1\)Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia; \(^2\)Undergraduate Student, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia

Abstract

Orchids (Orchidaceae) are one of the most popular ornamental plants having diverse flower shapes and colors. They are vastly applied as cut flowers, potted plants, and garden elements. Infectious diseases are still a major obstacle in the cultivation of orchids in Indonesia. *Odontoglossum ringspot virus* (ORSV) is one of the most widely reported viruses that infect orchids worldwide, including Indonesia. This research was done by mechanically injecting the virus on *Phalaenopsis amabilis* and *Dendrobium* Salaya Fancy. This study aimed to determine the symptoms of the disease, plant resistance, and chlorophyll content. The results showed that each orchid had severe disease symptoms, the incidence of both orchids was 80%, and *Phalaenopsis amabilis* reaction was more susceptible than *Dendrobium* Salaya Fancy that showed tolerant response to ORSV. Physiological response analysis also showed that the content of chlorophyll A, B, and total chlorophyll per plant of *Phalaenopsis amabilis* was higher (0.35 ± 0.02; 0.29 ± 0.05; 0.63 ± 0.05) than *Phalaenopsis amabilis* (0.18 ± 0.0; 0.31 ± 0.06; 0.48 ± 0.04) respectively, after viral infection. This proves that *Phalaenopsis* is the most susceptible type of orchid virus compared to *Dendrobium*.

Keywords: selection of resistance; analysis of chlorophyll; orchid; ORSV

1. Introduction

Orchidaceae are ornamental plants that have a high aesthetic value (Mose et al., 2020), because they have a variety of colors and flower shapes. For that, high demands of markets on orchids have been raised in the form of cut flowers and potted plants (Mahfut et al., 2016). One of the obstacles in cultivating orchids is infectious diseases that affect flower quality. Orchids can be infected with 50 types of viruses (He et al., 2019), including *Odontoglossum ringspot virus* (ORSV) (Pai et al., 2019). The virus is an important type that attacks orchids and is popular in the world.

ORSV, also known as *Tobacco mosaic virus* orchid strain (TMV-O), belongs to the genus *Tobamovirus* and the family Virgaviridae (Forterre et al., 2017). There is very little information about ORSV infection in Indonesia. The virus is reported to be able to infect *Phalaenopsis* and *Dendrobium* orchids in West Java, Central Java, East Java, Banten, Yogyakarta, and Bali (Mahfut et al., 2016). ORSV infection causes damage to chlorophyll and affects the growth and development of orchids.

Efforts to protect orchids against viral infections need to be carried out to reduce the spread and preserve orchids in Indonesia. The initial stage of protection is considered through observing symptoms to determine the type and nature of a disease (He et al., 2017; Ko et al., 2020). This data is then used in determining plant resistance. In addition, chlorophyll analysis was also carried out, and so the physiological response of plants due to viral infection was collected.

This study was conducted to distinguish plant responses in the form of disease symptoms, plant resistance, and chlorophyll content between *Phalaenopsis amabilis* and *Dendrobium* Salaya Fancy against ORSV infection. The results of this study are expected to provide information about the response and level of resistance of orchids to ORSV infection, and it could be used as a reference for the right type of orchid to be cultivated in disease endemic areas or there has been a history of previous ORSV infection.

2. Materials and Methods

2.1. Plantlet Acclimatization

This study used two orchid species, *Phalaenopsis amabilis* and *Dendrobium* Salaya Fancy on six replicates. Plantlets were immersed in a fungicide Benlate solution, with active ingredient Benomyl (2 grams/l water) for 20 minutes and then planted in plastic pots containing sterile of moss media (Mahfut et al., 2021). Orchids were well cared for before treatment in a green house.

2.2. Virus Inoculation

The inoculum used was prepared from inoculation of the Magelang isolate virus on tobacco plants that had been previously analyzed (Mahfut et al., 2016). The inoculum was then mechanically inoculated. The initial stage of inoculation is to weigh 1 gram of viral inoculum, then
grind in a sterile mortar by adding 10 ml of 0.01 M phosphate buffer solution (pH 7) (w : v = 1 : 10). Before being inoculated, 100 mess of carborundum powder was sprinkled on the upper surface of the leaves, then the virus was applied to the two youngest leaf surfaces that were fully opened. After the virus sap dries, the carborundum that remains attached to the leaf surface of the test plant was cleaned by spraying sterile water (Mahfut et al., 2016).

2.3. Observation of Infection Symptoms

The results of the inoculation test on plants were noted for variations in symptoms and incubation time. Observations were made every three days for one month to determine the response among host plants that were more quickly infected with symptoms of the disease. ORSV inoculation on each host plant was carried out at different times depending on the fast or slow growth of the plant and indicated whether or not the number of leaves was sufficient.

2.4. Plant Resistance

Determination of disease resistance criteria for various types of plants against ORSV infection was based on several factors, including symptoms of viral infection and the percentage of disease incidence. Analysis of plant resistance was used to determine the development of the observed disease, namely disease incidence. The incidence of disease is carried out by calculating the scale of damage (%) of the disease that appears on the host plant. Plant resistance was grouped into very resistant, resistant, moderately resistant, tolerant, susceptible, and very susceptible, following the method of Dwipa et al. (2018).

2.5. Chlorophyll Content Test

This test was carried out following Sedjati et al. (2020) using a spectrophotometer. For measuring chlorophyll content, the sample was applied an orchid leaf that had been identified as infected with ORSV. In the first step, 1 gram of treated orchid leaves were weighed, the leaves had been removed, then crushed with a mortar and added 10 ml of ethanol. The solution was filtered with Whatman paper no. 1 and put into a flakon, then tightly closed. Sample solution and standard solution (ethanol) 1 ml were put into different cuvettes. Furthermore, absorption readings were carried out with a UV spectrophotometer at wavelengths (λ) 648 nm and 664 nm, the measurements were carried out three times for sample replication.

3. Results

3.1. Observation of Infection Symptoms

The response of plants after virus inoculation showed that ORSV could infect all types of host plants with variations in symptoms and different incubation times. The results showed that in general the response began to appear about 2-3 weeks after inoculation. The symptoms showed necrotic *Phalaenopsis amabilis*, while *Dendrobium Salaya Fancy* showed necrotic and mosaic symptoms. Variations in response to symptoms of viral infection in both host plants are shown on (Figure 1).

![Figure 1. Symptoms of virus infection on (A) Phalaenopsis amabilis and (B) Dendrobium Salaya Fancy. Bar= 1cm](image)

3.2. Plant Resistance Analysis

The results of the analysis of plant resistance to ORSV infection were based on variations in symptoms, incubation times, and disease incidence. The results of the analysis showed that the level of resistance is very susceptible to symptoms of very severe infection. Meanwhile, *Dendrobium Salaya Fancy* showed a level of resistance that was tolerant to a fairly severe variety of symptoms, but not as severe as the symptoms of infection in *Phalaenopsis amabilis*.

3.3. Chlorophyll Content Test

The results of the physiological response analysis showed that the chlorophyll A, chlorophyll B, and chlorophyll total content of *Dendrobium Salaya Fancy* was higher than *Phalaenopsis amabilis* after being infected with the virus. The complete test results for the content of chlorophyll on both types of host plants for 30 days after ORSV inoculation are shown in Table 1.
Table 1. Tukey's test of chlorophyll A, B, total content of two types of host plants 30 days after inoculation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Type of Chlorophyll</th>
<th>Species of Host Plant</th>
<th>Phalaenopsis amabilis</th>
<th>Dendrobium Salaya Fancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chlorophyll A</td>
<td>0.17 ± 0.00</td>
<td>0.37 ± 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll B</td>
<td>0.24 ± 0.01</td>
<td>0.28 ± 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll Total</td>
<td>0.41 ± 0.01</td>
<td>13.9 ± 13.27</td>
<td></td>
</tr>
<tr>
<td>Virus Inoculated</td>
<td>Chlorophyll A</td>
<td>0.18 ± 0.01</td>
<td>0.35 ± 0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll B</td>
<td>0.31 ± 0.06</td>
<td>0.29 ± 0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll Total</td>
<td>0.48 ± 0.04</td>
<td>0.63 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Total of Average</td>
<td>Chlorophyll A</td>
<td>0.18a ± 0.05</td>
<td>0.36b ± 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll B</td>
<td>0.28 ± 0.04</td>
<td>0.29 ± 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorophyll Total</td>
<td>0.45 ± 0.025</td>
<td>7.27 ± 6.66</td>
<td></td>
</tr>
</tbody>
</table>

Note: The values followed by the same letter are not significantly different at the 5% level. Chlorophyll A: HSD Cell [0.05] = 0.05. HSD Columns [0.05] = 0.02. Chlorophyll B: Values followed by the same letter are not significantly different at the 5% level. HSD Cell [0.05] = 0.12. HSD Columns [0.05] = 0.06. Total Chlorophyll: HSD Cell [0.05] = 26.86. HSD Columns [0.05] = 14.5

The homogeneity of Levene's test variance at 5% significance level showed that the variance of the samples of the two host plants was homogeneous (P=0.201>0.05). Analysis of variance at 5% level of significance showed that the virus treatment had no significant effect on the chlorophyll a content of the host plant (P=1>0.05), but the type of plant had a significant effect on the chlorophyll a content (P<0.0001). Thus, the interaction between virus inoculation and plant species did not significantly affect the chlorophyll a content (P=1>0.05).

4. Discussion

The symptomatic response of ORSV in host plants shows a wide range of symptoms on the examined host plants Phalaenopsis amabilis and Dendrobium Salaya Fancy. Based on the results of the virus inoculation on the two orchids did not show symptoms until the 30th day, so reinoculation was necessary. Then, reinoculation is performed and observed again until symptoms can be seen. Phalaenopsis amabilis showed necrotic symptoms on the 18th day. Observations continued until day 30 and showed worsening necrotic symptoms. In a previous study of Mahfaz et al. (2020), it was also known that ORSV infection in Phalaenopsis sp. showed necrotic symptoms on 23rd day.

Dendrobium Salaya Fancy also showed necrotic symptoms on the 15th day. Necrotic symptoms in Dendrobium were shown more rapidly than Phalaenopsis. Based on the observation of symptoms up to day 25, necrotic symptoms turned into a mosaic indicating that...
ORSV infection in *Dendrobium* was getting worse. In previous studies, it was known that ORSV infection in *Dendrobium* sp. also appeared necrotic and mosaic symptoms on 15<sup>th</sup> and 23<sup>rd</sup> day (Mahfut, 2020; Mahfut et al., 2020<sup>a</sup>; Mahfut et al., 2020<sup>b</sup>; Mahfut et al., 2021<sup>a</sup>). The results of disease incidence analysis showed that each host plant had the same response that the disease incidence was > 40% and disease infection was found. This proves that the inoculation of ORSV on the whole host plant was successful. In previous research (Mahfut, 2020), it is also known that ORSV inoculation in *Phalaenopsis* sp. and *Dendrobium* sp. showed an incidence of disease > 40% and found the presence of disease infection.

Based on the results of the study, it is known that the host plant *Phalaenopsis amabilis* which shows a very susceptible level of resistance with very severe symptoms of infection. Meanwhile, *Dendrobium* Salaya Fancy orchid showed a tolerant level of resistance with a fairly severe variation of symptoms, but not as severe as the symptoms of infection in *Phalaenopsis amabilis*. This means that *Phalaenopsis amabilis* orchids are more susceptible to ORSV than *Dendrobium* Salaya Fancy.

Previous research (Mahfut, 2020) reported that *Phalaenopsis* is a highly susceptible host orchid plant and most susceptible to ORSV. In other research (Mahfut et al., 2020<sup>a</sup>; Mahfut et al., 2020<sup>b</sup>; Mahfut et al., 2021<sup>a</sup>), it was also known that the plants *Phalaenopsis amabilis*, *P. small Red White Lips* x, *D. nindii*, *D. kyosimori*, *D. liniae*, *D. schuleri* had a response, i.e. are susceptible to ORSV.

Chlorophyll content analysis aims to determine the chlorophyll content in the host plant (Jaclani et al., 2016; Alananbeh et al., 2018; Saeed, 2019). Result of Tukey’s test at the 5% significance level showed that two host plants, namely *Phalaenopsis amabilis* and *Dendrobium* Salaya Fancy, had a significant effect only on plant species but had no significant influence on viral treatment on chlorophyll A. The content of chlorophyll B in the leaves of *Dendrobium* Salaya Fancy was not much different from the content of chlorophyll B on *Phalaenopsis amabilis* leaves. This shows that the plants *Dendrobium* Salaya Fancy and *Phalaenopsis amabilis* have the same level of resistance, which is very susceptible to diseases not only caused by ORSV virus but can be caused by other factors such as fungi, bacteria, nutrients found in the media.

Total chlorophyll content in *Dendrobium* Salaya Fancy orchid leaves is relatively higher than the total chlorophyll content in *Phalaenopsis amabilis* orchid leaves. This indicates that the *Dendrobium* Salaya Fancy orchid is more resistant than the *Phalaenopsis amabilis* orchid to disease. Chlorophyll is a green pigment found in chloroplasts. In general, chlorophyll is found in leaf mesophyll cell chloroplasts, i.e. in palisade parenchyma cells and parenchyma sponge cells. In chloroplasts, chlorophyll is present in the gamma thylakoid membrane. In higher plants, the types of chlorophyll are chlorophyll A and chlorophyll B. Under normal circumstances, the proportion of chlorophyll A is much greater than that of chlorophyll B (Sedjati et al., 2020).

According to the chlorophyll data in this study, it was found that the chlorophyll data on *Dendrobium* Salaya Fancy plants are more than *Phalaenopsis amabilis* plants because seen morphologically, *Phalaenopsis amabilis* orchid plants have more severe symptoms than *Dendrobium* Salaya Fancy. It is possible that the leaf mesophyll tissue in *Dendrobium* Salaya Fancy is not damaged by the virus, and can produce more chlorophyll for photosynthesis. Therefore, it can be concluded that *Dendrobium* Salaya Fancy is more resistant to ORSV virus or other viruses than *Phalaenopsis amabilis*. Data on chlorophyll B and total chlorophyll in both host crops are stated to be statistically similar because usually the amount of chlorophyll B is less than that of chlorophyll A (Jaclani et al., 2016; Sedjati et al., 2020). Virus treatment and plant species interactions did not significantly affect the two host plants, so further testing was not performed. Therefore, it can be concluded that *Dendrobium* Salaya Fancy have a higher level of resistance than *Phalaenopsis amabilis*.

5. Conclusion

The results showed that the indicator crops and the host crops had quite severe disease with various symptoms. Each crop had the same response, the indicator crop had a disease incidence of > 40% i.e. 75% while the host crop had a disease incidence of > 40% i.e. 80%. Indicator and host plant responses to ORSV are highly susceptible, except that *Dendrobium* Salaya Fancy orchid host plants have a tolerant response to ORSV. The results of physiological response analysis showed that the content of chlorophyll A, B, and total *Dendrobium* Salaya Fancy were higher (0.35 ± 0.02; 0.29 ± 0.05; 0.63 ± 0.05) than *Phalaenopsis amabilis* (0.18 ± 0.0; 0.31 ± 0.06; 0.48 ± 0.04) respectively, after being infected with the virus. This proves that *Phalaenopsis* is the most susceptible type of orchid virus compared to *Dendrobium*.

References


Morphological Identification of Mycorrhizal Fungi Isolated from Native Orchid in Indonesia

Mahfut*

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia

Received: February 27, 2021; Revised: May 2, 2021; Accepted: November 28, 2021

Abstract

Moth orchid [Phalaenopsis amabilis (L.) Blume] is a species of native orchid from Indonesia. The association of this orchid with mycorrhizal fungi in nature is as a biocontrol agent. In a previous study, one Ceratobasidium isolate from Yogyakarta, Indonesia was successfully identified based on rDNA-ITS molecular analysis. This study aimed to identify these isolates based on morphological analysis to complement other identification data, namely anatomy and molecular. Verification morphological analysis is carried out by observing macroscopic and microscopic characteristics, as well as observing peloton. The results of showed that the characterization of Yogyakarta isolates had similarities with Ceratobasidium. These character equations include colony color, cell length, core number, and cell width. The examination of orchid roots also showed the presence of pelotons in the cortical cells. This study confirms that the fungal isolates of orchid mycorrhiza from Yogyakarta, Indonesia were Ceratobasidium based on morphological and molecular analysis. This research is one of the efforts to preserve native orchids in Indonesia using myccorhiza fungi as a biocontrol agent. This study is the first to report regarding Ceratobasidium isolated from native orchids in Indonesia based on morphological analysis.

Keywords: Ceratobasidium; mycorrhiza; morphological analysis; Phalaenopsis; Indonesia

1. Introduction

Orchid is a type of ornamental plant that has a high aesthetic value and is most in demand by the community (Mose et al., 2020). The moth orchid [Phalaenopsis amabilis (L.) Blume] is one of Indonesia’s national flowers, namely the charm that was set through Presidential Indonesia Decree Number 4/1993. Diseases are still the main obstacle in the cultivation and development of natural orchids (Mahfut et al., 2019; Mahfut, 2020; Mahfut et al., 2020b; Mahfut et al., 2021).

Endophytic mycorrhiza is a form of symbiosis between fungi and plant roots during a certain period of their life cycle, forming colonies in plant tissues without endangering their hosts. In general, mycorrhizal fungi help germination of orchid seeds in the presence of ethylene and various vitamins. Another role is to support efforts to provide nutrition for plant growth and development (Haro and Benito, 2019), and to assist in the formation of more buds and flowers. In plant resistance, mycorrhiza fungi serve as a biological agent of control in plant protection against pathogenic infections (Safarini et al., 2020; Song et al., 2020).

In a previous study, Mahfut et al. (2020) reported one Ceratobasidium isolate from Yogyakarta, Indonesia based on rDNA-ITS molecular analysis. The results show sequences measuring 600-750 bp DNA products located on the ITS1-5.8S-ITS4 region. Reconstruction of phylogenetic trees resulted in Indonesian isolates having undergone speciation and separated from Ceratobasidium isolates from other countries. This research is a follow-up study which aims to clarify the identification of these isolates as Ceratobasidium based on morphological analysis. Furthermore, this research can be used as a benchmark in developing strategy for conserving moth orchid through protection against plant diseases.

2. Materials and Methods

2.1. Collection of Healthy Orchid Root Samples and Endophytic Mycorrhizal Isolation

Healthy root of P. amabilis collected from Yogyakarta, Indonesia on coordinates 8º 30' - 7º 20' LS 109º 40' - 111º 0' BT. The sample was taken to the Biotechnology Laboratory of the Faculty of Biology UGM to isolate endophytic fungi following the Chand et al. (2020) method. Isolation of endophytic fungi was then carried out by cutting the roots and culturing on PDA medium. The fungal colonies obtained from the isolation were then purified by sub-culturing aseptically and incubating for 7 days at room temperature (20-25°C). It is possible that the isolates obtained are pure and single isolates that are not contaminated by other fungi.

In a previous study, Mahfut et al. (2020) reported one Ceratobasidium isolate from Yogyakarta, Indonesia based on rDNA-ITS molecular analysis. The results show sequences measuring 600-750 bp DNA products located on the ITS1-5.8S-ITS4 region. Reconstruction of phylogenetic trees resulted in Indonesian isolates having undergone speciation and separated from Ceratobasidium isolates from other countries. This research is a follow-up study which aims to clarify the identification of these isolates as Ceratobasidium based on morphological analysis. Furthermore, this research can be used as a benchmark in developing strategy for conserving moth orchid through protection against plant diseases.

2.2. Macroscopic Characteristic Observation

To observe the macroscopic characteristics of the isolated fungi, small portion of isolates (± 1 mm²) were placed in the middle of the PDA medium. Furthermore, the growth of the isolates was observed and measured every day for 7 days. Furthermore, observations of colony morphological characteristics such as colony color, colony

*Corresponding author e-mail: mahfut.mipa@fmipa.unila.ac.id.
base color, the surface color of young colonies, the appearance of colonies, and the growth rate of the colony were carried out.

2.3. Making Slide Culture Preparations

Observation of microscopic characteristics was also carried out using the slide culture method (Stoian et al. 2019) with a slight modification. This method was carried out to monitor microscopic characteristics such as the color of hyphae, bulk in hyphae, angle of branching of hyphae, and number of cell nuclei. The number of nuclei was observed after treating with safranin and 3% KOH.

2.4. Observation of Pelotons in roots

Observation of peloton was carried out by making squash preparations on root samples which had been treated with previous endophytic fungal inoculations. Root samples are sliced and soaked in trypan blue dye for 15 minutes. Observations were carried out using a light microscope at 100 x magnification.

3. Results

3.1. Collection of Healthy Orchid Root Samples and Endophytic Mycorrhizal Isolation

One endophytic fungus, namely Yogyakarta was isolated from root samples of *P. amabilis* in Yogyakarta, Indonesia in Figure 1.

![Figure 1. A) Root samples of MP1 cultured on PDA medium, B) Colonies of fungi that grow on 7 days old orchid roots](image)

Identification results based on macroscopic, microscopic, and molecular characteristics showed that the isolate was *Ceratorhiza* which is one of the types of *Rhizoctonia* endophytic mycorrhiza. According to Chand et al. (2020), *Ceratorhiza* is *Rhizoctonia* grouped by cell hyphae and monilioid, and many are found to be associated with orchid roots.

3.2. Macroscopic Characteristics

Special characteristics of Yogyakarta isolate were identified as having branching types that formed elbows or 90° angles and hyphae cells with a cell nucleus 2 (binucleate). These two characteristics are special characteristics of endophytic mycorrhiza. Endophytic fungi have 1-3 nuclei (binucleate) nuclei, whereas pathogenic fungi have more than 3 nuclei (multinucleates). This is in accordance with the opinion of Pannecouque & Hofie (2009) that in addition to binucleates, the characteristics of endophytic fungi are branching which forms a 90° or T-shaped branches.

Overall, the results of identification of Yogyakarta isolates showed similarities with the types of *Ceratorhiza* mycorrhiza. The following characteristics of Yogyakarta isolates compared to supporting references are presented in Tables 1 and 2.

![Figure 2. Microscopic observation of hyphae cells and monilioid cells Ceratorhiza from Yogyakarta isolates on the 7-day PDA medium using safranin O-KOH staining; (A) Colony, (B) Monilioid cell nucleus, (C) Binucleate, (D) Branching of hyphae 90°. Magnification (A) 10 x, (B, C, D) 40 x. Bar = 10 µm](image)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Yogyakarta Isolate</th>
<th>Ceratorhiza Isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony color</td>
<td>White to yellow</td>
<td>Cream, yellow, or brown</td>
</tr>
<tr>
<td>The appearance of colonies</td>
<td>Like cotton</td>
<td>Like cotton</td>
</tr>
<tr>
<td>The form of branching hyphae</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>Air hyphae diameter</td>
<td>&lt;3 µm</td>
<td>&lt;4 µm</td>
</tr>
<tr>
<td>Number of nuclei per cell</td>
<td>Binucleate</td>
<td>Binucleate</td>
</tr>
<tr>
<td>Clamp connection</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Surface of the colony</td>
<td>Like cotton</td>
<td>Flat and waxy</td>
</tr>
<tr>
<td>Monilioid cells</td>
<td>Elongate barrel shaped</td>
<td>-</td>
</tr>
<tr>
<td>Monilioid cell length</td>
<td>12.22-14.56</td>
<td>-</td>
</tr>
<tr>
<td>Monilioid cell width</td>
<td>2.39-2.91</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Yogyakarta Isolate</th>
<th>Ceratorhiza Isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Yogyakarta Isolate</td>
<td>Ceratorhiza Isolate</td>
</tr>
<tr>
<td>Colony color</td>
<td>White to yellow</td>
<td>Cream, yellow, or brown</td>
</tr>
<tr>
<td>The appearance of colonies</td>
<td>Like cotton</td>
<td>Like cotton</td>
</tr>
<tr>
<td>The form of branching hyphae</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>Air hyphae diameter</td>
<td>&lt;3 µm</td>
<td>&lt;4 µm</td>
</tr>
<tr>
<td>Number of nuclei per cell</td>
<td>Binucleate</td>
<td>Binucleate</td>
</tr>
<tr>
<td>Clamp connection</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Surface of the colony</td>
<td>Like cotton</td>
<td>Flat and waxy</td>
</tr>
<tr>
<td>Monilioid cells</td>
<td>Elongate barrel shaped</td>
<td>-</td>
</tr>
<tr>
<td>Monilioid cell length</td>
<td>12.22-14.56</td>
<td>-</td>
</tr>
<tr>
<td>Monilioid cell width</td>
<td>2.39-2.91</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3. Observation of Endophytic Mycorrhizal Hyphae (Peloton)

Observation of the cross section of the root sample indicated the presence of pelotons in the root cortex (Figure 3). Currah & Zelmer (1992) explain that the characteristic of endophytic fungal hyphae colonizing plants will form a mass of dense hyphae in cortical cells called pelotons.

Figure 3. Peloton structure in the anatomy of the root cortex cells of MP1 with Trypan Blue staining. Magnification (A) 4 x, (B) 10 x, (C) 40 x. Bar = 10 µm

4. Discussion

Characteristics of endophytic mycorrhizal analysis were obtained and compared with the reference characteristics (Shan et al., 2002; Currah and Zelmer, 1992); it was found that Yogyakarta isolates were Ceratobasidium isolates. Ceratobasidium is an anamorphic phase of Ceratobasidium. According to Athipunyakom et al. (2004), the genus Ceratobasidium is a mycorrhizal isolate which is commonly found associated with orchids, where endophytic fungi of this type are Rhizoctonia which are grouped according to cell hyphae and monilioid. Growth of Ceratobasidium reached a diameter of 9 cm after 4 days of incubation by forming a symmetrical zone. The colony turned yellowish after 7 days, and the colony surface appeared as cottony clumps. The lumps are aerial hyphae; this is known from the hyphae that grow on the surface of the agar media. These hyphae are fertile hyphae which play a role for reproduction. The length of monilioid cells is 12.22-14.56 µm, width 2.39-2.91µm and lancet-shaped. If the ratio of length and width is 3.5-4: 1 then it is called the lancet type. The number of nuclei in binucleic cells, according to the characteristics reported by Shan et al. (2002) and Currah and Zelmer (1992).

The peloton structure is evident in the roots of *P. amabilis* which are associated with endophytic fungi (Figure 3). One of the parameters for the mechanism of resistance induction can be the formation of a peloton structure which shows that endophytic fungi penetrate the epidermal finger and into the cortex. In the cortex, the pulp will enter the cell space (intracellular) and form a peloton. The presence of peloton proves that the endophytic fungi can penetrate into the root tissue of *P. amabilis*. According to Currah and Zelmer (1992), the stage of infection with endophytic fungi begins with the formation of appressorium which is an inflated hyphae. These hyphae originate from spores that germinate or externally hyphae at the root surface of infected host plants. Hyphae will then penetrate the root surface mechanically and enzymatically into the space between the root epidermal cells and into the cortex and beyond. Hyphae develop without destroying the cells of the root cortex. In cortex cells, hyphae form a peloton in the form of dense hyphae. In the platoon, the accumulation of organic materials includes protein, glycogen, fat, and nutrients produced by absorption from the soil.

5. Conclusion

The results showed that the characterization of endophytic mycorrhizae from the roots of *P. amabilis* from Yogyakarta, Indonesia had similarities with the type of endophytic mycorrhizal Ceratobasidium. These character equations include colony surface color, colony appearance, hyphae color, hyphae diameter (µm), cell monilioid shape, monilioid cell size (µm), colony growth rate (mm / hour), core number, hyphae branching shape, and clamp connection. The results of mycorrhizal induction also produce a peloton structure in orchid root cortex cells. The peloton structure is evident in the roots of *P. amabilis* which are associated with endophytic fungi. The presence of peloton proves that endophytic fungi can penetrate into the root tissue.

References


Transcriptional Impact of E-cadherin Loss on Embryonic Stem Cells

Hani Alotaibi1,2,*

1 Izmir Biomedicine and Genome Center, Izmir, Turkey; 2 Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey

Received: April 22, 2021; Revised: August 15, 2021; Accepted: August 24, 2021

Abstract

In embryonic stem cells, E-cadherin plays a crucial role in sustaining the pluripotent state; this is achieved by the simultaneous presence of active core pluripotency transcriptional network, proper cell-cell adhesion, and an undifferentiated-state chromatin signature. In contrast, N-cadherin is linked to a more differentiated cell state but can support pluripotency if expressed as a knock-in allele from the E-cadherin locus. This study describes the N-cadherin ki/ki embryonic stem cells, which lack E-cadherin expression, to identify transcriptional changes distinct from the known changes observed in E-cadherin knockout embryonic stem cells. As a result, a remarkable similarity in the expression profiles of N-cadherin ki/ki and wild-type embryonic stem cells was observed. Further analysis of the slight differences revealed significant alterations in several biological processes such as chromatin organization and epithelial-mesenchymal transition. The findings presented here shed light on a new aspect of E-cadherin biology in embryonic stem cells and lay the foundations for comprehensive understanding of E-cadherin's functional relevance beyond the prominent role in maintaining pluripotency.

Keywords: E-cadherin, Epithelial to Mesenchymal Transition, EMT, Embryonic Stem Cells, Gene replacement.

1. Introduction

Embryonic stem (ES) cells can self-renew, maintain an undifferentiated state of pluripotency, and generate cells that can differentiate into all the various cell types of the body (Niwa, 2007). The pluripotent state's maintenance requires the function of a core transcriptional network comprised of three main transcription factors, Nanog, Sox2, and Oct4 (Ying et al., 2008). The functions of these transcription factors keep the cells in an undifferentiated state distinguished by growth in compact colonies, an active pluripotency transcriptional network, and the presence of bivalent histone modifications on the promoters of several essential genes (Mikkelsen et al., 2007). The transcription factors Sox2 and Oct4, Klf4, and c-Myc induce the pluripotent state in mouse somatic cells by establishing ES-like cells called induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). Nanog's activation is an essential step in establishing the pluripotent state (Silva et al., 2009). The reprogramming to the pluripotent state requires completing a well-orchestrated series of events, including changes in the chromatin landscape and DNA methylation states (Boyer et al., 2006, Maherali et al., 2007). These events coincide with the initiation of the mesenchymal to epithelial transition (MET), during which the somatic cells lose their fibroblast-specific mesenchymal morphology and gradually establish polarization and gain the ES cell-like appearance (Li et al., 2010). This MET event is a crucial step and depends on E-cadherin's (E-cad) activation, a calcium-dependent adhesion molecule. E-cad is essential for maintaining stemness and the pluripotent state since its loss can cause alterations in homophilic adhesion, causing a scattered cell growth of ES cells in culture (Larue et al., 1996, Soncin et al., 2009). Moreover, exogenous E-cad expression can substitute Oct4 in the mixture of reprogramming factors, which results in effective iPSC reprogramming (Redner et al., 2011). ES cell homeostasis fundamentally requires the E-cad-mediated adhesion, an indispensable event for cell-cell communication and signaling (Chen et al., 2010). On the other hand, in mesenchymal cells, such as fibroblasts, cell-cell adhesion is achieved by N-cadherin (N-cad). The protein sequences of both cadherins show striking conservation; thus, they have a similar role in mediating homophilic adhesion and even interact with similar intracellular proteins such as beta-catenin. However, they are primarily present in a mutually exclusive fashion. These molecules also promote contrasting phenotypes; E-cad expression will result in a polarized epithelial form; in contrast, N-cad expression correlates with a depolarized motile state (Wheelock et al., 2008). Several studies addressed the functional redundancy of the two cadherins, their impact on critical developmental stages, and their impact on the pluripotent state in ES cells. One report investigated the impact of replacing E-cad by N-cad during trophoderm formation and concluded that E-cad functions could not be restored by N-cad (Kan et al., 2007). Besides, the expression of N-cad from the E-cad...
locus was sufficient to maintain the pluripotent state and was also suitable for reprogramming fibroblasts into iPSCs (Bedzhov et al., 2013). The maintenance of adhesion was enough for the preservation of pluripotency. Maintaining the pluripotent state by N-cad in ES cells provided a unique opportunity to study the impact of E-cad loss on ES cells that retain the pluripotent state. In recent years, a great deal of research has been dedicated to studying ES cells and iPSCs, notably for their potential use in personalized medicine (Yamanaka, 2020). So, it is of interest to have a better understanding of stem cell biology in general, and a better understanding of the outcomes of potential gene expression signature changes would be of utmost importance for the design and planning of such therapies. The current study reveals the changes in ES cells' gene expression profiles expressing N-cad instead of E-cad. This is addressed by performing in silico analyses and then comparing the expression profiles of E-cad knockout (ko) cells and N-cad knock-in (ki) cells to the wild-type ES cells.

2. Materials and Methods

2.1. ES cell culture

ES cells used in this work were described previously; in summary, N-cad ki/ki, E-cad ko/ko, and wt ES cells were prepared from 12.5 embryos as described in (Bedzhov et al., 2013). ES cells were grown on feeder cells (mitotically inactivated mouse embryonic fibroblasts) in ES cell medium prepared with DMEM (Biochrom) and supplemented with 15% FCS (PAN), 10 U/ml Penicillin and Streptomycin, 0.1 mM non-essential amino acids, two mM L-glutamine (Gibco), 0.15 mM β-mercaptoethanol (Sigma), and 500 U/ml Lif (Millipore). ES cells were grown at 37°C in the presence of 10% CO2. The medium was changed every two days, and the cells were sub-cultured or processed at sub-confluence.

2.2. RNA isolation and gene expression analysis

Cells were seeded in 6-well plates (10^5 cells per well), incubated to sub-confluence, and collected for RNA isolation. For gene expression analysis, RNA extraction and preparation of cDNA were performed using the methods and reagents described previously (Bedzhov et al., 2013). Primers used in this study and their corresponding UPL probes are presented in Table 1. Relative expression was calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001) relative to the wt control and normalized to the housekeeping gene Gapdh. Data represent at least three biological replicates. One-way ANOVA, followed by Tukey's multiple comparison tests, was performed for statistical analysis of group comparisons.

2.3. Microarray analysis

Microarray analysis for the ki/ki and wt2 cells was described before (Bedzhov et al., 2013). In short, RNA from two independent samples per genotype was hybridized to the GeneChip Mouse Genome 430 v2.0 array (Affymetrix, Inc.). The raw data can be downloaded from the NCBI GEO database (Barrett et al., 2013) (GEO accession number GSE42008). Raw data for the E-cad knockout and the corresponding wild-type cells (wt1) are publicly available and were obtained from the ArrayExpress, accession number E-MEXP-2836 (Soncin et al., 2011). Data analysis was performed in R v4.0.3. The data set's quality was examined with the simpleaffy package v2.66.0 (Wilson and Miller, 2005), and expression values and normalization were performed by the GCRMA function, with quantile normalization and excluding features with expression values of < 4 in all samples. Differential expression analysis was performed with the limma package v 3.46.0 (Ritchie et al., 2015), applying the eBayes function. Heatmaps were plotted using the Heatmap.2 function of the ggplot package v3.1.1 (https://cran-r-project.org/web/packages/ggplot/index.html). Using Log2-transformed and normalized expression values, heatmap images were generated, applying Pearson’s correlation to calculate hierarchical clustering. Significant genes were calculated by measuring the standard deviation for each row, then subsets the shortest interval covering half of the values in the data set using the shorth function of the genefilter package v1.72.0 (https://biocductor.org/packages/release/bioc/html/genefilter.html), and then calculating the adjusted p-value according to FDR. PCA plots were generated using the stats package's prcomp command and plotted using the autoplot command of the ggplot2 package v3.3.2 (Wickham, 2009). GO enrichment analysis was performed using the GOExpress package v1.24.0 (Rue-Albrecht et al., 2016) with the following parameters: seed = 4543, permutations = 1000, and random forest method was selected.

Table 1: Primers and corresponding UPL probes used in qPCR experiments.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Primer Sequence</th>
<th>UPL probe ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdh1</td>
<td>F: atctcgccttgtcgtt R: ccacagctttctctcgta</td>
<td>UPL No: 18</td>
</tr>
<tr>
<td>Cdh2</td>
<td>F: tctcgtagatcagctcact R: ataatgaggcttcgtafgga</td>
<td>UPL No: 17</td>
</tr>
<tr>
<td>Eomes</td>
<td>F: acggagacacaaagcagag R: atgcttgctaatcagaatc</td>
<td>UPL No: 9</td>
</tr>
<tr>
<td>Klf4</td>
<td>F: egagagggggagagagacaact R: gaggctcctacgcaacagt</td>
<td>UPL No: 62</td>
</tr>
<tr>
<td>Neurod1</td>
<td>F: cgacagaggaagagttgt R: tttgattatgttccacttc</td>
<td>UPL No: 1</td>
</tr>
<tr>
<td>Vim</td>
<td>F: ccaacctttcttcgaga R: ccaacctttcttcgaga</td>
<td>UPL No: 109</td>
</tr>
<tr>
<td>Snai1</td>
<td>F: gtttgaagctgtgtaaaag R: ccgagagatggttcctcactc</td>
<td>UPL No: 71</td>
</tr>
<tr>
<td>Zeb1</td>
<td>F: gccagctagcatgataaaag R: ttaacaataaccggeaaggtg</td>
<td>UPL No: 48</td>
</tr>
<tr>
<td>Gapdh</td>
<td>F: agctgaatgtagtgaggaag R: ttgtagtgtagtagctcg</td>
<td>UPL No: 9</td>
</tr>
</tbody>
</table>
3. Results

In order to understand the impact of E-cad deletion in ES cells, the previously generated mouse models and ES cells where E-cad was replaced for N-cad as a knock-in allele were used (Bedzhov et al., 2013). In the presence of N-cad (either as ki/wt or ki/ki), ES cells retained the pluripotency state as opposed to the E-cad ko/ko cells, which lose the pluripotency. The functional loss of E-cad expression in ES cells is not limited to loss of pluripotency; this is why the N-cad knock-in (ki/ki) ES cells present a unique model for studying the consequences of E-cad depletion beyond pluripotency.

3.1. High correlation between wt and N-cad ki/ki ES cells

We have previously shown that the N-cad ki/ki cells resembled wt cells morphologically; they grow as compact colonies on feeder cells and express key pluripotency-specific genes (Bedzhov et al., 2013). This is a continuation of the previous analysis to shed light on the global changes in ki/ki and ko/ko cells. The first analysis revealed that ki/ki cells were closely related to wt cells rather than ko/ko cells (Figure 1A). This remarkable similarity is, of course, reflected by the previous findings regarding pluripotency genes and is also reflected by the morphological features mentioned earlier. Moreover, correlation analysis revealed a remarkable 97% correlation (Figure 1B). As expected, there was no statistically significant correlation between the ko/ko cells compared to either ki/ki or wt cells. These results confirmed once more the functional redundancy of E-cad and N-cad in ES cells.

The global resemblance of gene expression profiles can also be recognized by looking at a heatmap comparing the three cellular models (Figure 1C). The three-way analysis of samples highlighted the similarities and differences between the three cell lines. However, careful examination of the heatmap also unveils the slight differences between ki/ki and wt ES cells (Figure 1C). This analysis was followed by qPCR experiments to validate the expression profiling results. Accordingly, the status of Cdh1 and Cdh2 (The official gene symbols for E-cad and N-cad, respectively) expression was confirmed and reflected the genotypic changes in both cell lines (Figure 1D)

Figure 1. The N-cad ki/ki ES cells are highly similar to the wt ES cells. A) Principal component analysis showing the high similarity between ki/ki and wt cells. PC2 corresponds to less than 3% difference, while PC1 corresponds to more than 95% difference. B) Correlation matrix indicating the percentages of similarity between the samples. C) Heatmap drawing of the expression values of all samples used in this study, D-F) qPCR analysis of genes selected to verify the expression data obtained from microarray analysis. Experiments were performed at least 3 times in triplicates. Error bars correspond to the standard error of the mean. Significant values were labeled with the asterisk.
We have previously studied the expression levels of pluripotency-related genes (Bedzhov et al., 2013). Here, other developmentally relevant genes, such as *Eomes*, *Klf4*, and *Neurod1* (Figure 1E), as well as genes relevant to the cadherin switching, were selected (Figure 1F). Overall, the expression levels detected using qPCR confirmed the signals obtained from microarray experiments' expression profiles.

### 3.2. Common genes differentially expressed in ki/ki and ko/ko ES cells

Studying the differentially expressed genes in ko/ko cells compared to wt ES cells will reveal the impact of E-cad deletion on gene expression, which is reflected by changes in ES physiology. These changes include the known impact on pluripotency. Similarly, examining differentially expressed genes between ki/ki and wt cells will show the impact of the forced N-cad expression on ES cells. Differential expression analyses of ko/ko-wt and ki/ki-wt ES cells were performed using the R-package limma with a cutoff of log2 0.6. The number of differentially expressed genes in ko/ko ES cells was 3527 (Figure 2A), and in ki/ki ES cells, it was 1976 (Figure 2B). To better understand E-cad's impact on ES cells, the differentially expressed genes of ko/ko-wt and ki/ki-wt ES cells were compared first. The common genes were categorized into different groups, as illustrated in Figure 2.

![Figure 2. Common differentially expressed genes. A-B) Heatmaps show 1335 differentially expressed genes in ki/ki and ko/ko ES cells. C-D) Numeric representation of commonly expressed genes.](image-url)

In total, 1335 genes differentially expressed in both ki/ki-wt and ko/ko-wt comparisons are common. The number of commonly upregulated genes was 245, while 206 genes were found downregulated. The Venn diagram in Figure 2C shows the common and unique areas with the number of genes depicted; the complete data is also summarized as a matrix in Figure 2C. Of note here is the difference in differentially expressed genes in both comparisons. The number of differentially expressed genes in ko/ko cells was about two times higher than in ki/ki cells, attesting to the similarities between ki/ki and wt cells (Figure 2C). As described in materials and methods,
common genes differentially expressed were subjected to sequential filtering to find significant genes. The number of remaining genes that remained after applying the adjusted p-value of 0.01 filter was 280 (Supplementary Table S1). These genes were also plotted in the heatmap in supplementary Figure S1 and revealed the remarkable resemblance of ki/ki ES cells to their wt counterparts. The heatmap view also revealed the subtle differences between ki/ki ES cells and wt cells. To better understand these differences, subsetting the common differentially expressed genes for the ki/ki and wt samples from the dataset was performed and followed by applying the filtering as done in the previous analysis. As a result, 179 differentially expressed genes in the ki/ki ES cells with an adjusted p-value of < 0.05 were found (Figure 3A and Supplementary Table S2).

Figure 3. Commonly upregulated and downregulated genes in the ki/ki ES cells. A) Heatmap of the common differentially expressed genes in ki/ki cells. One hundred seventy-nine genes with an adjusted p-value of 0.05 or less were plotted here. Upregulated or downregulated genes in both genotypes were subjected to GO enrichment analysis. The heatmap in B represents 95 genes that were found as enriched.

3.3. GO enrichment analysis of common genes differentially expressed in ki/ki and ko/ko ES cells

To determine the relevance of the differentially expressed genes in ki/ki cells, commonly expressed up- and downregulated genes were included in the GO enrichment analysis. A total of 451 genes (245 upregulated and 206 downregulated) were subjected to GO enrichment analysis using the R-package GOexpress. This analysis revealed significant enrichment in 95 genes belonging to 19 different biological processes. The expression pattern of these genes is presented in the heatmap in Figure 3B. The GO enrichment analysis revealed significant changes in genes within the response to the drug biological process (20 genes: ~14%).

Moreover, chromatin organization (18 genes: ~12%) related genes and genes related to angiogenesis (14 genes: ~ 10%) were also significantly represented. A summary of the GO enrichment analysis results is depicted in the pie chart in figure 4A. Eighteen genes belonging to the chromatin organization biological process were mainly downregulated in response to Cdh1 depletion in the ki/ki cells (Figure 4B), suggesting a positive correlation between these biological processes and E-cad function. On the other hand, genes related to EMT were found to be upregulated in the ki/ki cells, suggesting a tendency to shift to a mesenchymal state in the absence of E-cad (Figure 4C).
Figure 4. GO enrichment analysis identifies significant biological processes affected by E-cad depletion. A) Nineteen biological process GO terms were enriched in ki/ki ES cells, and their percentage is represented in the pie chart. B) Chromatin organization genes were mostly downregulated in ki/ki ES cells. C) EMT-related genes were upregulated ki/ki ES cells.

Other gene groups are also presented in Supplemental Figure 2. Of note, genes belonging to three developmental processes were mapped in supplementary Figure S2; the ossification gene group was mainly upregulated in the absence of E-cad. In contrast, genes belonging to the pituitary gland development were mainly downregulated in the ki/ki cells. The neural tube development genes were mixed (Figure S2A). Genes in the angiogenesis (Figure S2B), apoptosis (Figure S2C), and response to drugs (Figure S2D) were mainly upregulated as a result of E-cad absence. A detailed description of all biological processes represented by the 95 enriched genes is displayed in Table 2.
4. Discussion

This manuscript addresses the impact of E-cad deletion in ES cells while retaining the pluripotency state, taking advantage of our previously published cellular model in which the expression of N-cad as a knock-in allele in the E-cad locus was performed. The expression profiles of ES cells with deleted E-cad (the ko/ko cells) or N-cad as a knock-in allele in the E-cad locus was performed. The expression profiles of ES cells maintained pluripotency, and the resemblance of the gene expression profile to the wild-type ES cells was distinctive. Despite the global comparability of gene expression profiles of N-cad ki/ki ES cells and the wild-type ES cells, subtle differences were observed. These differences are evident when looking at subsetted heatmaps encompassing genes within the biological processes enriched using the GO enrichment analysis. In summary, the results presented here suggest that the loss of E-cad in ES cells results in the foundation of a partial EMT-like state; while cells retain adhesive characteristics, due to N-cad expression, they upregulate specific EMT-associated genes such as Zeb1 and Tgfb3 and downregulate essential epithelial genes such as Grhl3.

### Table 2: Detailed descriptions of the identified GO enrichment analysis showing significant biological process terms and corresponding genes.

<table>
<thead>
<tr>
<th>GO ID</th>
<th>GO Name</th>
<th>Gene ID</th>
<th>Total count</th>
<th>Data count</th>
<th>p.val</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0001503</td>
<td>ossification</td>
<td>Sparc, Bmp4, Gpm6b, Ifitm1, Ptn, Csf1</td>
<td>177</td>
<td>6</td>
<td>0.009</td>
</tr>
<tr>
<td>GO:0001525</td>
<td>angiogenesis</td>
<td>Cen2, Ptg2, Hs6811, Jun, Syk, Igyav, Pecam1, Bmp4, Casp8, Cemip2, Parva, Gab1, Plkox1, Npr2</td>
<td>459</td>
<td>14</td>
<td>0.009</td>
</tr>
<tr>
<td>GO:0001837</td>
<td>epithelial to mesenchymal transition</td>
<td>Mir7040, Tgbr3, Hmga2, Rflnb</td>
<td>84</td>
<td>4</td>
<td>0.001</td>
</tr>
<tr>
<td>GO:0006325</td>
<td>chromatin organization</td>
<td>Satb1, Epc1, Dnm3a, Dppa3, Pkraa2, Cccr2, Ace1, Kdm5a, Recro1, Cdh4, Brd1, Nid1, Thl1sr, Cof, Lhmbl3, Eya1, Smarcad, Nr3cl</td>
<td>610</td>
<td>18</td>
<td>0.001</td>
</tr>
<tr>
<td>GO:0008203</td>
<td>cholesterol metabolic process</td>
<td>Apos2, App, Cyp7b1, Abcg1, Pkraa2, Vldlr, Cln6</td>
<td>170</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>GO:0009314</td>
<td>response to radiation</td>
<td>Pigs2, Jun, App, Polk, Col3a1, Ptk3</td>
<td>65</td>
<td>6</td>
<td>0.001</td>
</tr>
<tr>
<td>GO:0009749</td>
<td>response to glucose</td>
<td>Casp6, Ccn2, Apos2, Trh, Fos, Nnt, Neurod1, Selenot, Thbs1</td>
<td>143</td>
<td>9</td>
<td>0.002</td>
</tr>
<tr>
<td>GO:0010942</td>
<td>positive regulation of cell death</td>
<td>Pnpr, Ccn2, Ptg2, Cdkn1a, Bmp4, Dnm3a</td>
<td>106</td>
<td>6</td>
<td>0.009</td>
</tr>
<tr>
<td>GO:0021915</td>
<td>neural tube development</td>
<td>Hes1, Sema3c, Cccr2, Sfpr1</td>
<td>94</td>
<td>4</td>
<td>0.006</td>
</tr>
<tr>
<td>GO:0021983</td>
<td>pituitary gland development</td>
<td>Hes1, Bmp4, Cdh1, Gli1, Hmga2</td>
<td>67</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GO:0034097</td>
<td>response to cytokine</td>
<td>Csp6, Sparc, Ptg2, Jun, Fos, Col3a1, Timp2, Cited1, Cd38</td>
<td>141</td>
<td>9</td>
<td>0.002</td>
</tr>
<tr>
<td>GO:0034446</td>
<td>substrate adhesion-dependent cell spreading</td>
<td>Itgav, Parva, Megf9, Antsr1, Itga8, Sfpr1</td>
<td>107</td>
<td>6</td>
<td>0.002</td>
</tr>
<tr>
<td>GO:0035019</td>
<td>somatic stem cell population maintenance</td>
<td>Hex1, Tjap2, Ctk, Hmga2, Sfpr1</td>
<td>78</td>
<td>4</td>
<td>0.007</td>
</tr>
<tr>
<td>GO:0042493</td>
<td>response to drug</td>
<td>Pigs2, Jun, Gstk1, Abchalb, Cdkn1a, Map1b, Dnm3ta, Fox, Slc1a3, Neurod1, Usp47, Timp2, Adipor2, Src, Ptn, Cdh1, Cd38, Cbya, Sfpr1, Thbs1</td>
<td>619</td>
<td>20</td>
<td>0.008</td>
</tr>
<tr>
<td>GO:0043525</td>
<td>positive regulation of neuron apoptotic process</td>
<td>Casp6, Pnpr3Jun, Pmaip1, App, Pak3</td>
<td>153</td>
<td>6</td>
<td>0.007</td>
</tr>
<tr>
<td>GO:0045600</td>
<td>positive regulation of fat cell differentiation</td>
<td>Frzb, Ccdc3, Sk3pald2b, Zfp36, Sfpr1</td>
<td>90</td>
<td>5</td>
<td>0.007</td>
</tr>
<tr>
<td>GO:0051384</td>
<td>response to glucocorticoid</td>
<td>Adam9, Sparc, Ptg2, Cdkn1a, Alpl, Kras, Dusp1, Cdo1</td>
<td>126</td>
<td>8</td>
<td>0.01</td>
</tr>
<tr>
<td>GO:0071276</td>
<td>cellular response to cadmium ion transport</td>
<td>Jun, Mtl1, Fos, Mt2, Mt4</td>
<td>68</td>
<td>5</td>
<td>0.004</td>
</tr>
<tr>
<td>GO:1901998</td>
<td>toxin transport</td>
<td>Abcg1, Crcl2, Antsr1</td>
<td>78</td>
<td>3</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Loss of Grhl3 was previously shown to result in a robust mesenchymal phenotype during MET initiation (Alotaibi et al., 2015). The effects of E-cad depletion have been studied in the non-tumorigenic MCF10A cells. The cells presented significant changes associated with tissue remodeling and cell-substrate attachment proteins such as ITGA1. On the other hand, they did not show a similar increase in EMT-related genes (Chen et al., 2014). The observed increase in Itga8 and Itgav gene expression is in agreement with their findings. E-cad deletion also affected several developmental genes, particularly the ossification genes, and some of the neural tube development-related genes were mainly upregulated. This was associated with changes in differentiation genes and suggested a link between the changes in the EMT-associated genes and the development-related or differentiation-related genes. Cellular reprogramming is known to include EMT and MET (Li et al., 2010), and the differentiation state of cells is also expressed in terms of epithelial-like or mesenchymal-like. A recent report showed that a sequential EMT/MET is required to differentiate hESCs to the hepatic lineage. This process involves an autocrine TGFβ signaling loop resulting in an upregulation of EMT inducers and downregulation of E-cad expression (Li et al., 2017). Concerning reprogramming, the observed downregulation in the chromatin organization gene signature was profound, except for Ctcf and Dnmt3a, which regulate chromatin architecture and DNA methylation. Epigenetic reprogramming is closely associated with fate determination, differentiation, and cellular reprogramming. Previous studies indicated a critical role for E-cad in reprogramming MEFs into iPSCs (Li et al., 2010, Redmer et al., 2011).

Furthermore, genetic ablation of E-cad prevented iPSC reprogramming (Redmer et al., 2011, Bedzhov et al., 2013). This reprogramming is associated with global epigenetic reorganization, resetting the chromatin infrastructure from a differentiated somatic state to an undifferentiated pluripotent state (Hochbedinger and Jaenisch, 2015). E-cad's importance to ES cells in terms of pluripotency is well known, and its essential role in the reprogramming to the pluripotent state is central to the establishment of MET that precedes the pluripotency network activation. In the absence of E-cad, the tendency to shift to a more differentiated state as illustrated by changes in chromatin organization genes and EMT-associated genes shed light onto new aspects of E-cad functions in ES cells. It will be of great interest to experimentally corroborate these novel findings, which will significantly benefit the field of stem cell biology and eventually personalized medicine. Stem cell therapy and personalized medicine are considered the future of medicine (Strauer and Kornowski, 2003). The scope of personalized medicine goes beyond common diseases such as cancer and is considered for developmental disorders or rare diseases as well (Garcia-Castro and Singec, 2017). Hematopoietic stem cells are used to treat leukemia (Tian et al., 2016), and recent examples can also be seen in studies related to Parkinson's disease (Parmar et al., 2020). With this in mind, it is imperative to acknowledge the importance of understanding changes in molecular pathways and gene signatures when planning novel therapeutics.

Acknowledgments

We would like to thank Dr. Gökhân Karaquire and Prof. Uygar Tazebuy for carefully reading the manuscript. This study was financed by İzmir Biomedicine and Genome Center institutional funds. The author discloses no conflict of interest that may have influenced either the conduct or the presentation of the research.

Supplementary Data

Supplementary Data is available online at the Mendeley data website (http://dx.doi.org/10.17632/wdf66b4gb4d.2).

References


Mathematical evaluation of chromosomal anomalies induced by xylol in *Vicia faba* L. regarding application time and concentration

Ali Özdemir¹ and Canan Özdemir²,*

¹Celal Bayar University, Science and Art Faculty, Mathematics Department, Manisa, Turkey; ²Celal Bayar University, Science and Art Faculty, Biology Department, Manisa, Turkey.

Received: June 12, 2021; Revised: August 4, 2021; Accepted: September 4, 2021

Abstract

This study investigates how xylol acts on chromosomes of broad bean (*Vicia faba* L.) according to the time and concentration parameters. Xylol has the chemical formula C₆H₄(CH₃)₂, which is also called dimethylbenzene. This chemical is evaluated as a basic substance or a supplementary basic substance in many industrial products such as farming chemicals. Xylol is used as a typical solvent in solvent-based formulations and serves as the carrier solution for the pesticide ingredient in farming chemicals.

The present study investigates the chromosomal changes induced by xylol in the meristematic cells of the root tips of *V. faba*, which is widely used as food by humans. The root tips were treated with xylol solutions which are prepared in various concentrations (5, 20, 40 and 80 ml/L) for different treatment duration periods (8 and 72 h). The aim of the microscopic examination was to clarify chromosomal anomalies of cell division. The microscopic examination showed that various anomalies occurred in cells of the root tip meristems such as chromosome breaking, dispersion, adherence, bridge chromosome and ring chromosomes. The data obtained from microscopic analysis in the study were evaluated statistically. We have tried to demonstrate and assess the effects obtained from laboratory studies numerically. The Pearson’s correlation and variance analysis were applied to data to reveal the similarities and the differences of the chromosomal features. The statistical analyses used in the study also serve the purpose of reliability, concreteness and the comparison of the results. The study also sheds light on the possible harms of xylol on chromosomes transferring genetic codes of living beings to forthcoming generations.

Keywords: Chromosome Anomalies, Mathematically Evaluation, Xylol, *Vicia faba*.

1. Introduction

Xylol is uncoloured, characteristic dissolvent, fragrant and fluid form crude substance with a chemical formula of C₆H₄(CH₃)₂. It was first isolated and named in 1850 by the French chemist Auguste Cahours, having been discovered as a constituent of wood tar (Cahours, 1850). It has industrial value and medical technology as a solvent, but concerns about its safety have raised questioned from time to time. In addition, the areas of application of xylol include the printing, rubber, and leather industries. It can be used where slower drying is desired (Jenifer, 1994). For similar reasons, it is often the active ingredient in commercial products for ear wax removal (Fabri et al., 2000). Xylol easily penetrates most ordinary clothing and can become trapped in ordinary gloves and boots. Xylol trapped in the clothing can cause burns and blistering. Long-term exposure to xylol may lead to headaches, irritability, depression, insomnia, agitation, extreme tiredness, tremors, impaired concentration and short-term memory loss. This condition is sometimes generally referred to as "organic solvent syndrome." Unfortunately, there is very little information available that isolates xylol from other solvent exposures in the examination of these effects. The type and severity of health effects depends on several factors, including the amount of xylol you are exposed to and the exposure time (Vijayakumar, 2015). In the literature, some researchers made investigations on cytogenetic effects of especially heavy metal pollution on plants and other living things (Shraideh, 2010; Özdemir et al., 2015; Şutan et al., 2018; Osama et al., 2020; Tengjaroenkul & Neeratanaphan, 2020). In the literature, the studies on the effects of solvents on plants have mostly been evaluated in terms of agricultural productivity (Barchan et al., 2014; Ghasemzadeh et al., 2011). Studies on the effects of solvents on plant chromosomes are very limited. Recently, Alaca et al., (2020) have investigated the effect of xylol solvent on *Vicia faba* plant chromosomes for different concentration and time.

In this study, we investigated the effects of xylol used as raw materials in many industrial products especially agrochemicals on the *V. faba* plant as a model system for plant cytogenetic studies to configure its mode of action on mitotic chromosomes.

The new aspect here is to evaluate the data observed from the research mathematically, in particular
statistically. Statistical analysis was performed using Pearson's correlation and analysis of variance methods, which are widely used in similar studies.

2. Material and Methods

The study was carried out in Manisa Celal Bayar University, Botanical Research Laboratory in 2020. Ten number plump and equal-sized seeds of *V. faba* were used for each treatment and as a control group. The seeds were soaked with distilled water for 10 - 15 minutes then germinated at 20-25 °C in petri dish. When the root tips reached 10-15 mm in length, germinated seeds were treated with different concentrations (5, 20, 40 and 80 ml/L) of xylol for 8 and 72 hours. The root tips of the control treated with different concentrations (5, 20, 40 and 80 ml/L) germinated at 20 -25 °C in petri dish. When the root tips soaked with distilled water for 10 -15 minutes then for each treatment and as a control group. The seeds were obtained, were fixed with carnous's fixative (60 ml ethanol absolute+30 ml chloroform+10 ml acetic acid glacial) for 2 hours. Then, preserved in 70 % ethyl alcohol (Puchtler et al., 1968). For microscopic observation the root tips were stained by Feulgen method (Darlington and La Cour, 1976). Homologous areas were chosen on the preparations for cytogenetic examination. The cells were counted in selected areas, and the number of mitotic cells was also detected. The mitotic index was calculated based on the frequency of division in cell images obtained under a microscope. The preparation was prepared using 5 root tips for each xylol application. Twenty image fields were chosen on these preparations for cytogenetic examination, and chromosome abnormalities were detected. Approximately, 600 cells were evaluated for each application. The occurrence and frequency of chromosomal anomalies in the cells were established by hand counting from the microscope images. Chromosomal anomalies were tried to detected in the cells counted. Preparates were photographed with motorized Leica DM 3000 microscope. For statistical analyses, chromosome anomalies detected in the study were coded as A-G and the concentrations/times of treatment as 1-8 (Table 1-6). Statistical analyses were performed using the Pearson’s correlation and analysis of variance method with MINITAB software package.

3. Results

It was observed that the different concentrations of xylol treatment on the root tips at different time periods increased mitotic cell division compared to the the control group. Mitotic cell division was observed the highest level at 40 ml/L -72h treatment. Mitotic cell division was observed high levels at all 72th hours of treatment times according to the 8th hour of treatment times. It was observed that the mitotic index increased in parallel with the increase in concentration with only one exception after 80ml/L treatment (Table 1).

<table>
<thead>
<tr>
<th>Total</th>
<th>counted</th>
<th>5 ml/L</th>
<th>20 ml/L</th>
<th>40 ml/L</th>
<th>80 ml/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8h</td>
<td>72h</td>
<td>8h</td>
<td>72h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitotic index (%) ± SD</td>
<td>10 ± 4.1</td>
<td>600</td>
<td>11 ± 4.1</td>
<td>25 ± 7.1</td>
<td>12 ± 6.1</td>
</tr>
<tr>
<td>Total anomalies (%)</td>
<td>0.00</td>
<td>600</td>
<td>02.35</td>
<td>08.20</td>
<td>10.03</td>
</tr>
<tr>
<td>Number of different anomalies</td>
<td>0.00</td>
<td>600</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

S.D. - Standard Deviation Time (h): hour

Some chromosome anomalies were caused by xylol on the root tips of *V. faba* such as bridge chromosome, fish bone chromosome, sticky chromosome, ring chromosome, scattered anaphase, C- chromosome at different stages of mitotic division as shown in (Figures 1-7). The percentage of anomaly was highest after (40 ml/L -72h). Bridge, fish bone, sticky and ring chromosomes were the common types of anomalies in percentage after all treatments. The most frequently observed anomaly was bridge chromosome in all treatments. Treatment with 40 ml/L -8h mainly induced the highest percentage of chromosome anomalies, chromosome bridge (3%) and highest percentage of sticky chromosome (2.9 %). The highest percentage of fish bone chromosome anomaly (2.50%) was observed after (80 ml / L -72h) treatment. Ring chromosome was recorded after all treatments except (80 ml/L -8h) and (80 ml/L -72h). C- chromosome anomaly was observed in only 4 treatment (Table 2). The lowest total percentage of different chromosome anomalies were observed at (80 ml/L -72h) treatment. When all treatments were considered, the most common type anomaly was the fish bone chromosome.

The results of statistical analysis were obtained based on the Pearson’s correlation and analysis of variance method. According to the statistical results, there is a considerable positive relation between the treatment concentrations and the percentage chromosome anomaly except after (80 ml/L -72h) treatment (Table 2, Figures 1-7). Statistical analysis based on Pearson’s correlation pointed to the important correlations among the anomaly’s types (A-E, A-G, D-F, E-F and F-G) (Table 3). Also, the variance statistical analysis pointed to the important correlations among (A-G, D-F, E-F and F-G) at levels of 0.01 and 0.05 (Table 5). It was shown that the correlations between the treatment time and concentrations in Table (4) are based on the Pearson’s correlation method, while the correlations in Table (6) are based on the analysis of variance method. The collected data revealed that there are highly significant correlations among the following (2-3; 2-4; 2-5; 2-7; 3-4; 3-5; 4-5) concentrations /times of treatment at levels of 0.01 and 0.05 (Table 4 and 6).
Table 2. The percentage of chromosome anomalies in *Vicia faba* root–tip meristems after treatment with xylol.

<table>
<thead>
<tr>
<th>Xylol concentration/time of treatment</th>
<th>Chromosome anomaly’s type</th>
<th>5 ml/L 8h</th>
<th>5 ml/L 72h</th>
<th>20 ml/L 8h</th>
<th>20 ml/L 72h</th>
<th>40 ml/L 8h</th>
<th>40 ml/L 72h</th>
<th>80 ml/L 8h</th>
<th>80 ml/L 72h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge chromosome</td>
<td>A</td>
<td>1.10</td>
<td>1.50</td>
<td>1.60</td>
<td>2.10</td>
<td>3.00</td>
<td>2.50</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Fish bone chromosome</td>
<td>B</td>
<td>1.30</td>
<td>1.20</td>
<td>1.30</td>
<td>1.90</td>
<td>1.70</td>
<td>1.80</td>
<td>1.40</td>
<td>2.50</td>
</tr>
<tr>
<td>Sticky chromosome</td>
<td>C</td>
<td>1.90</td>
<td>0.70</td>
<td>1.20</td>
<td>1.60</td>
<td>2.90</td>
<td>1.10</td>
<td>1.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Ring chromosome</td>
<td>D</td>
<td>0.50</td>
<td>0.24</td>
<td>1.10</td>
<td>1.20</td>
<td>1.70</td>
<td>2.10</td>
<td>2.00</td>
<td>1.10</td>
</tr>
<tr>
<td>Chromosome breaking</td>
<td>E</td>
<td>0.70</td>
<td>1.00</td>
<td>1.30</td>
<td>1.80</td>
<td>2.10</td>
<td>1.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Scattered anaphase</td>
<td>F</td>
<td>1.10</td>
<td>0.00</td>
<td>1.00</td>
<td>0.80</td>
<td>1.15</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>C- chromosome</td>
<td>G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.80</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Treatment time (h): hour; Abbreviations: A-G: Codes of chromosome anomalies; Abbreviations: 1-8: Codes of Treatment (5 ml/L -8h): 1, (5 ml/L -72h): 2, (20 ml/L -8h): 3, (20 ml/L -72h): 4, (40 ml/L -8h): 5, (40 ml/L -72h): 6, (80 ml/L -8h): 7, (80 ml/L -72h): 8.

Table 3. Pearson’s correlation based on chromosome anomalies.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.087</td>
<td>0.837</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.398</td>
<td>0.142</td>
<td>0.328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.192</td>
<td>0.292</td>
<td>0.349</td>
<td>0.648</td>
<td>0.397</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.942</td>
<td>0.133</td>
<td>0.453</td>
<td>0.060</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.624</td>
<td>0.223</td>
<td>0.635</td>
<td>0.018**</td>
<td>0.700</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.702</td>
<td>0.397</td>
<td>0.331</td>
<td>0.411</td>
<td>0.705</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>0.048*</td>
<td>0.330</td>
<td>0.423</td>
<td>0.312</td>
<td>0.041*</td>
<td>0.397</td>
</tr>
</tbody>
</table>

* Significant at the level of \( P < 0.05 \). ** Significant at the level of \( P < 0.01 \). Abbreviations: A-G : Codes of chromosome anomalies

Table 4. Pearson’s correlation based on treatment (concentration / time).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.446</td>
<td>0.316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.650</td>
<td>0.760</td>
<td>0.114</td>
<td>0.048*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.485</td>
<td>0.269</td>
<td>0.985</td>
<td>0.010**</td>
<td>0.795</td>
<td>0.033*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.698</td>
<td>0.081</td>
<td>0.748</td>
<td>0.050*</td>
<td>0.824</td>
<td>0.023*</td>
<td>0.805</td>
</tr>
<tr>
<td>6</td>
<td>0.165</td>
<td>0.724</td>
<td>0.698</td>
<td>0.081</td>
<td>0.692</td>
<td>0.085</td>
<td>0.722</td>
</tr>
<tr>
<td>7</td>
<td>0.395</td>
<td>0.010**</td>
<td>0.229</td>
<td>0.142</td>
<td>0.280</td>
<td>0.368</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.381</td>
<td>0.984</td>
<td>0.621</td>
<td>0.761</td>
<td>0.542</td>
<td>0.417</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.460</td>
<td>0.501</td>
<td>0.572</td>
<td>0.442</td>
<td>0.879</td>
<td>0.076</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the level of \( P < 0.05 \). ** Significant at the level of \( P < 0.01 \). Abbreviations: 1-8 : Codes of Treatment

Table 5. Correlation between the investigated chromosome anomalies (Analysis of Variance).

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>F-value</th>
<th>Probability</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>0.057</td>
<td>0.05</td>
<td>0.837</td>
<td>NS</td>
</tr>
<tr>
<td>A-G</td>
<td>3.66</td>
<td>5.83</td>
<td>0.052</td>
<td>*</td>
</tr>
<tr>
<td>C-G</td>
<td>0.38</td>
<td>0.74</td>
<td>0.423</td>
<td>NS</td>
</tr>
<tr>
<td>D-F</td>
<td>3.15</td>
<td>6.22</td>
<td>0.010</td>
<td>**</td>
</tr>
<tr>
<td>D-G</td>
<td>0.52</td>
<td>1.22</td>
<td>0.312</td>
<td>NS</td>
</tr>
<tr>
<td>E-F</td>
<td>1.97</td>
<td>5.78</td>
<td>0.050</td>
<td>*</td>
</tr>
<tr>
<td>E-G</td>
<td>2.01</td>
<td>5.95</td>
<td>0.049</td>
<td>*</td>
</tr>
</tbody>
</table>

MS: Mean Square *\( P < 0.05 \) **\( P < 0.01 \) A-G: Codes anomalies NS: Not Significant
Table 6. Correlation between treatment time and concentrations (Analysis of Variance).

<table>
<thead>
<tr>
<th>MS</th>
<th>F-value</th>
<th>Probability</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>0.522</td>
<td>0.154</td>
<td>0.269</td>
</tr>
<tr>
<td>1-3</td>
<td>0.346</td>
<td>0.92</td>
<td>0.381</td>
</tr>
<tr>
<td>1-8</td>
<td>0.251</td>
<td>0.64</td>
<td>0.460</td>
</tr>
<tr>
<td>2-3</td>
<td>1.232</td>
<td>6.83</td>
<td>0.048 *</td>
</tr>
<tr>
<td>2-4</td>
<td>2.071</td>
<td>7.47</td>
<td>0.010 **</td>
</tr>
<tr>
<td>2-5</td>
<td>1.196</td>
<td>6.37</td>
<td>0.050 *</td>
</tr>
<tr>
<td>2-7</td>
<td>1.067</td>
<td>4.87</td>
<td>0.045 *</td>
</tr>
<tr>
<td>3-4</td>
<td>0.969</td>
<td>8.59</td>
<td>0.033 *</td>
</tr>
<tr>
<td>3-5</td>
<td>1.039</td>
<td>10.54</td>
<td>0.023 *</td>
</tr>
<tr>
<td>4-5</td>
<td>1.086</td>
<td>9.20</td>
<td>0.029 *</td>
</tr>
<tr>
<td>4-7</td>
<td>0.033</td>
<td>0.10</td>
<td>0.761 NS</td>
</tr>
</tbody>
</table>

MS: Mean Square  **P<.01  Abbreviations: 1-8 : Codes of Treatment  NS: Not Significant

Figure 1. Metaphase stages with fish bone chromosomes after treatment with 80 ml/L concentration xylol for 8 and 72 hours.

Figure 2. The stage of mitosis with sticky chromosomes after treatment with 40 and 80ml/L concentrations xylol for 8 and 72 hours. The first image shows that ever stickiness at late metaphase stage preventing it from entry to anaphase. The third image shows stickiness at prophase stage, the other two images represent metaphases.

Figure 3. Metaphase stages with ring chromosomes after treatment with 40ml/L concentration xylol for 8 and 72 hours.

Figure 4. The stage of mitosis with chromosome breaking after treatment with 40ml/L concentration xylol for 8 and 72 hours. First image: anaphase stage, the other three images represent metaphases.
4. Discussion

In the current study, cytogenetic effects of xylol on meristematic cells of root tips belonging to *V. faba* (widely used as food by humans) have been investigated. We determined that xylol stress affects mitotic cell division and causes various types of chromosome anomalies. The obtained results of chromosome anomalies were mostly on the same track with (Alaca et al., 2020) after treatment the *Vicia faba* seeds with xylol in different concentrations (10 and 100 ml/L) for different times (12 and 24 hours) of treatment. Similarly, Barbhuiya et al. (2018) investigated the effect of benzene and thinner solvents, which are used as materials in many industrial products as in the case of xylol, on the root tip cells of *Allium cepa*. They observed that the solvents enhanced the mitosis index and caused chromosomal anomalies. Similar to our results, they observed that the solvents caused abnormalities such as bridge, sticky and scattered chromosomes and increased the mitosis index.

In another study, it has been determined that the chromosome adherence and the bridge chromosomes were the most frequently observed anomalies in cells of lettuce after exposure to glyphosate (Silva et al., 2018). In our study, the mitotic division of the root tip treated with xylol gradually increased in comparison to the control group except to 80ml/L treatment. Parween et al., (2011) obtained similar results examining the effect of cadmium chloride in pure germ line in broad beans (*V. faba*) in relation to chromosome anomalies and cell division rate. However, in another study, the seeds of *Lens culinaris* Medik were kept at different concentrations of Sr (stronsiyum) (0.05, 0.1, 0.25, 0.5 and 1.0 M) for 12 hours; those anomalies showed no regular distribution (Sepet and Çanlı, 2020). Thus, it is not in agreement with the previous reference and our work.

As an example of similar results with non-solvent treatment, we refer to Özdemir et al., (2008), where the effects of uranium exposure on *V. faba* cells are investigated. They found a concentration dependent increase in mitotic index.

The statistical analysis therein was also performed using the Pearson’s correlation and analysis of variance method. The results were taken into account in the significance evaluations at $P<0.05$ and $P<0.01$ levels. Similarly, we tried to prove and evaluate the results obtained from laboratory studies numerically. According to the statistical results derived, different concentrations of xylol treatment on root tip increased the mitotic cell division at the different periods of time, compared to the control group. However, mitotic division was decreased at (80 ml/L -72h) treatment. At the same time, the least number of different anomalies was seen in this application.
We refer to this concentration with severe damage on the cell cycle and delay the mitotic division. On the contrary, the different anomalies were mainly observed at the application level (80 ml / L -8h), where the mitosis was at its highest frequency. This result shows that the concentration and the time periods of the treatment in the mitotic division is important. As shown in the tables 3-6 according to Pearson’s correlation and analysis of variance method, it has been found that there have been statistically important differences at levels of 0.01P between ring chromosome and scattered anaphase. At the same time, there have been statistically important differences at levels of 0.05P between chromosome breaking and C-chromosome (Tables 3,5). We can say that these chromosomal anomalies are inter-related and trigger each other. Studies on the effect of xylol on chromosomes in the literature have mostly been done on animal cells. Donner et al. (1980) exposed rats to technical grade xylol by inhalation at 300 ppm, 6 h/day, 5 days/week for up to 18 weeks. The chromosome damage has been detected in inhalation at 300 ppm, 6 h/day, 5 days/week for up to 18 weeks. The chromosome damage has been detected in

et al., (1980) exposed rats to technical grade xylol by inhalation at 300 ppm, 6 h/day, 5 days/week for up to 18 weeks. The chromosome damage has been detected in


References


Name: ..............................................................................................................................................
Specialty: ...........................................................................................................................................
Address: ...........................................................................................................................................
P.O. Box: ...........................................................................................................................................
City &Postal Code: ...............................................................................................................................
Country: ...........................................................................................................................................
Phone: ..............................................................................................................................................
Fax No.: .............................................................................................................................................
E-mail: ..............................................................................................................................................
Method of payment: ............................................................................................................................
Amount Enclosed: ............................................................................................................................... 
Signature: ..............................................................................................................................................

I would like to subscribe to the Journal
For
☐ One year
☐ Two years
☐ Three years

<table>
<thead>
<tr>
<th>One Year Subscription Rates</th>
<th>Inside Jordan</th>
<th>Outside Jordan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td>JD10</td>
<td>$70</td>
</tr>
<tr>
<td>Students</td>
<td>JD5</td>
<td>$35</td>
</tr>
<tr>
<td>Institutions</td>
<td>JD 20</td>
<td>$90</td>
</tr>
</tbody>
</table>

Correspondence

Subscriptions and sales:

The Hashemite University
P.O. Box 330127-Zarqa 13115 – Jordan
Telephone: 00 962 5 3903333
Fax no. : 0096253903349
E. mail: jjbs@hu.edu.jo
المجلة الأردنية للعلوم الحياتية: مجلة علمية عالمية محكمة ومفهرسة وصنفة، تصدر عن الجامعة الهاشمية ودعم من صندوق دعم البحث العلمي والإبتكار – وزارة التعليم العالي والبحث العلمي.

هيئة التحرير

رئيس التحرير
الأستاذ الدكتور منار فايز عتم
الجامعة الهاشمية، الزرقاء، الأردن

مساعد رئيس التحرير
الدكتور مهند عليان مساعدة
الجامعة الهاشمية، الزرقاء، الأردن

الأعضاء:

الدكتور زهير سامي عمرو
جامعة العلوم والتكنولوجيا الأردنية

الدكتور عبد الرحيم أحمد الحنيطي
جامعة الأردن

الدكتора حنان عيسى ملكاوي
جامعة اليرموك

الدكتور خالد خليفات
جامعة الأردن

فريق الدعم:

المحرر اللغوي
الدكتور شادي ناعمنة

ترسل البحوث إلى العنوان التالي:
رئيس تحرير المجلة الأردنية للعلوم الحياتية
الجامعة الهاشمية
الزرقاء، 13115، الأردن

 هاتف: 0096253903333
E-mail: jjbs@hu.edu.jo, Website: www.jjbs.hu.edu.jo
المجلة الأردنية للعلوم الحياتية

مجلة علمية عالمية مطبوعة

تصدر بدعم من صندوق دعم البحث العلمي والابتكار

http://jjbs.hu.edu.jo/