1-Pentacosanol Isolated from Stem Ethanolic Extract of *Cayratia trifolia* (L.) is A Potential Target for Prostate Cancer-*In SILICO* Approach

Sundaram Sowmya ¹, Palanisamy Chella Perumal ², Subban Ravi ³, Palanirajan Anusooriya¹, Piramanayagam Shanmughavel ⁴, Eswaran Murugesh ⁴, Karri Krishna Chaithanya⁵ and Velliyur Kanniappan Gopalakrishnan⁵,*

¹Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India 641 021; ²School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China; ³Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India 641 021; ⁴Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India 641 046; ⁵Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Axum, Ethiopia.

Received: June 13, 2020; Revised: September 24, 2020; Accepted: October 2, 2020

Abstract

Cayratia trifolia (L.) are the traditional medicinal plants used in the Indian Ayurvedic system of medicine. The main objective of the study was to isolate and characterize the structure and function of bioactive compound from ethanolic extract of stem parts of *Cayratia trifolia* (L.) against prostate cancer targets such as PTEN, AKT, SMO and E2F3 by *in silico* approach. Column, Thin layer chromatography, UV-visible spectrophotometer (UV), Fourier Transform Infrared (FTIR), ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectroscopy suggested that the isolated natural bioactive compound probably like 1-pentacosanol. The molecular docking results revealed that AKT, E2F3, PTEN and SMO complex with 1-pentacosanol have good glide score of -3.428, -3.573, -3.964 and -3.987 Kcal/mol and the glide energy is -36.846, -31.761, -39.270 and -34.919 Kcal/mol respectively when compared with standard drug, i.e. Finasteride (complex with AKT, E2F3, PTEN and SMO (no interaction) has low glide score and glide energy -3.1/-22.168, -3.8/-41.588 and -3.1/-40.050 Kcal/mol, respectively. The ADME property of the isolated natural compound of 1-pentacosanol was under acceptable range. Based on the results, it can be concluded that the isolated 1-pentacosanol compound may act as novel inhibitors against prostate cancer targets.

Keywords: *Cayratia trifolia*, Chromatography techniques, NMR studies, 1-pentacosanol, Molecular docking. ADME properties.

1. Introduction

Cancer is associated with multiple genetic and regulatory aberrations in the cell. It is a highly heterogeneous disease, both morphologically and genetically (Yan *et al.*, 2007). Prostate cancer is the second most common malignancy (after lung cancer) in men worldwide, counting 1,276,106 new cases and instigating 358,989 deaths (3.8% of all deaths caused by cancer in men) in 2018 (Bray *et al.*, 2018). Prostate cancer is an assorted disease visible in varying pathological and clinical forms. It is complicated to diagnose and treat as prostate cancer tumors may be detected only during autopsy. Significant advancement has been achieved in prostate cancer diagnosis with the introduction of prostate-specific antigen (PSA) screening (Wang *et al.*, 1979). Structural biology and balanced drug design, proteomics and cell imaging contain major role in understanding receptor and drug interactions in prostate cancer (Reynolds, 2008).

Analysis of cancer pathways shows a number of interrelated markers responsible for oncogenesis. The recent studies suggest that, Phosphatase and tensin homolog (PTEN), Protein kinase B (AKT), Smoothened (SMO) and E2F3 overexpression and amplification have central roles in the initiation, progression and metastasis of prostate cancer (Pradip and William, 2005; Feng *et al.*, 2007; Mehrian *et al.*, 2007; Sinosh *et al.*, 2010). A large proportion of the world population depends on the traditional medicine because of the shortage and high expenses of orthodox medicine (Perumal *et al.*, 2014), compared with synthetic compounds, natural products provide inherent larger-scale diversity and have been the major resource of bioactive agents for new drug discovery. From the point of view of research, natural products are rapidly being utilized as source for drug discovery and development (Poomima *et al.*, 2014). From 2003-2012, 22 and 14 natural bioactive compounds having potent antitumor activity, which were isolated from marine fungi and marine red algae respectively (Pejin *et al.*, 2013; Pejin *et al.*, 2015).

* Corresponding author e-mail: vkgopalakrishnan@gmail.com.
Cayratia trifolia (L.) is the medicinal plant which belongs to the family of Vitaceae, and it has been reported to contain huge number of bioactive compounds such as yellow wax oil, steroids, terpenoids, flavonoids and tannins (Gupta and Sharma, 2007; Gupta et al., 2012). Whole plant is used in the treatment of tumors, neuralgia, hepatic problems (Guru kumar et al., 2011). This plant extract has also been reported to have antibacterial, antioxidants, antiviral, antiprotozoal, hypoglycaemic activity etc (Kumar et al., 2012; Sowmya et al., 2014, Perumal et al., 2015.). Therefore, the aim of the present study is to isolate, structurally characterize and analyze the anti-prostate cancer potential of isolated compound from stem ethanolic extract of Cayratia trifolia.

2. Materials and Methods

2.1. Plant collection

The stem parts of Cayratia trifolia (L.) were collected from and around the area of Kumbakonam, Tamil Nadu, India and authenticated by Dr. P. Sathyanarayanan, Botanical survey of India, Tamil Nadu Agricultural University Campus, Coimbatore. The voucher number is BSI/SRC/523/2010-2011/Tech.1527 (Perumal et al., 2012). The fresh stem plant material was washed under the running tap water, dipped on saline overnight, air dried and finely powdered for further use.

2.2. Extract preparation

200 g of powdered plant material was weighed and extracted with 1000 ml of ethanol for 72 hours using occasional shaker. The supernatant was collected and concentrated at 40°C in reduced pressure using a rotary evaporator. The dried extract was stored at 4°C for further study.

2.3. Isolation and Identification of bioactive compound

2.3.1. Column chromatography

Chromatographic techniques are based on separation of substances between a stationary and a mobile phase. The mobile phase moves relative to the stationary one. Components of a mixture to be separated move together, with the mobile phase due to their different interactions with the phases. The column chromatography (4 ×100 cm) was performed using 60-120 mesh silica gel to elute out individual compounds from the stem parts of ethanolic extract. After loading with the plant extract (5 g) mixed with 10-20 g of activated silica gel and the column was run with varying solvent polarities with different ratios like Petroleum ether (100%), Petroleum ether: Chloroform (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9), Chloroform (100%), Chloroform: Ethyl acetate (9:1, 8:2, 7:3; 6:4, 5:5, 4:6, 3:7, 2:8, 1:9), Ethyl acetate (100%), Ethyl acetate: Methanol (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9) and Methanol (100%). The fractions were collected and tested by Thin Layer Chromatography (TLC) for single spot.

2.3.2. Thin layer chromatography

Thin layer chromatography is an easy and highly useful technique in research laboratories to separate and identify unknown compounds. It is used for the separation of a mixture into individual components using a stationary and mobile phase (Sadasivam and Manikam, 2004).

The optimized conditions were used for the identification of active constituents present in the plant extract. The fractions collected from chromatographic columns were monitored by TLC in different solvent systems. These plates were placed in the solvent chamber containing mobile phase. The solvent was allowed to rise to the maximum height of the TLC plate, then they were removed from solvent chamber, dried and the spots were detected by placing the TLC plates in a chamber containing iodine vapour. Fractions identified single spots in iodine chamber, Rf value was calculated and pooled together and proceeded for further analysis.

2.4. Functional group analysis and structure characterization

2.4.1. UV-Visible Spectroscopy

The UV-Visible spectroscopy offers a simple, cheap and easy-to-use technique to identify and quantify the main phytochemicals in relation to the polarity of the extraction solvent (Zavoi et al., 2011). Each isolated fraction was determined using the UV region (200-400nm) and visible region (400-800nm) using the UV-Vis-2450, Shimadzu instrument.

2.4.2. Fourier Transform Infrared (FTIR) spectroscopy

FTIR has proven to be a valuable tool for the characterization and identification of compounds or functional groups (chemical bonds) present in an unknown mixture of plant extract (Eberhardt et al., 2007). In addition, FTIR spectra of pure compounds are usually unique, acting as a “molecular fingerprint” (Hazra et al., 2007).

The Shimadzu FTIR Spectrum instrument consists of globar and mercury vapour lamp as sources, an interferometer chamber comprising of KBr and Mylar beam splitters followed by a sample chamber and detector. Entire region of 450-4000 cm⁻¹ is covered by this instrument. The spectrometer works under purged conditions. Solid samples are dispersed in KBr or polyethylene pellets depending on the region of interest. This instrument has a typical resolution of 1.0 cm⁻¹. Signal averaging, signal enhancement, base line correction and other spectral manipulations are possible.

2.4.3. Nuclear Magnetic Resonance (NMR) spectroscopy

NMR spectroscopy is used to determine the molecular structure based on the chemical environment of the magnetic nuclei like ¹H, ¹³C, 2D NMR etc., even at low concentrations. This is one of the most powerful non-destructive techniques in elucidating the molecular structure of biological and chemical compounds and used in organic chemistry, biology, medicine, pharmaceuticals, etc., for characterization of compounds. This technique is used in JEOL GSX 400 NB FT-NMR spectrometer. The spectra of samples containing low abundant nuclei like ¹H, ¹³C, etc. are thus easily obtained. Also, dynamic studies are possible by relaxation measurements. Homo and hetero ¹H decoupling are also possible.

2.5. In silico analysis

The 3D structure of AKT (PDB ID: 4GV1), E2F3, PTEN (PDB ID: 1D5R) and SMO (PDB ID: 4QIM) was retrieved from the Protein Data Bank (www.rcsb.org), and proteins were prepared by protein preparation wizards (standard methods) that are available in grid-based ligand
docking with energetic (Protein Preparation Wizard, 2012). The active site (binding pocket) and functional residues of AKT, E2F3, PTEN and SMO were identified and characterized by site-map module from Schrodinger package. The isolated bioactive compound was used in molecular docking studies. These ligands were prepared using the LigPrep 2.4. The structure of each ligands was optimized. All docking analysis were performed by using the standard precision (SP) which is Standard mode of Glide (Grid based Ligand Docking with Energetic) module from Schrodinger 2012. The isolated bioactive compound was docked in to the binding site AKT, E2F3, PTEN and SMO using GLIDE. ADME properties predictions were carried out using QikProp 2.3 module. QikProp helps in analysing the pharmacokinetics and pharmacodynamics of the ligand by accessing the drug like properties. Significant ADME properties such as molecular weight (MW), H-bond donor, H-bond acceptor and log P (O/W) were predicted.

3. Results

Column chromatography was performed in the stem ethanolic extract of *Cayratia trifolia* (L.) by varying solvent polarities with different ratios like Petroleum ether (100%), Petroleum ether : Chloroform (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9), Chloroform (100%), Chloroform : Ethyl acetate (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9), Ethyl acetate (100%), Ethyl acetate : Methanol (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9) and Methanol (100%). Totally 223 fractions were collected and analysed by TLC which is shown in table 1.

Table 1. Isolated fractions of stem ethanolic extract of *Cayratia trifolia* Separation of fractions by column chromatography

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Ratio</th>
<th>Fractions collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum ether</td>
<td>(100%)</td>
<td>1-20</td>
</tr>
<tr>
<td>Petroleum ether:</td>
<td>9:1, 8:2, 7:3,</td>
<td>21-30, 31-37, 38-45, 56-58,</td>
</tr>
<tr>
<td>Chloroform</td>
<td>6:4, 5:5, 4:6,</td>
<td>49-55, 56-60, 61-69, 76-80,</td>
</tr>
<tr>
<td>Chloroform</td>
<td>3:7, 2:8, 1:9</td>
<td></td>
</tr>
<tr>
<td>Chloroform: Ethyl acetate</td>
<td>9:1, 8:2, 7:3,</td>
<td>110-116, 117-120, 121-125,</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>6:4, 5:5, 4:6,</td>
<td>126-129, 130-132, 133-137,</td>
</tr>
<tr>
<td>Ethyl acetate: Methanol</td>
<td>3:7, 2:8, 1:9</td>
<td>138-147, 148-150, 151-153,</td>
</tr>
<tr>
<td>Methanol</td>
<td>100%</td>
<td>154-160</td>
</tr>
<tr>
<td>Ethyl acetate:</td>
<td>9:1, 8:2, 7:3,</td>
<td>161-163, 164-169, 170-178,</td>
</tr>
<tr>
<td>Methanol</td>
<td>6:4, 5:5, 4:6,</td>
<td>179-182, 183-188, 189-195,</td>
</tr>
<tr>
<td>Methanol</td>
<td>3:7, 2:8, 1:9</td>
<td>196-198, 199-201, 202-205</td>
</tr>
<tr>
<td>Methanol</td>
<td>100%</td>
<td>206-223</td>
</tr>
</tbody>
</table>

TLC is a simple, rapid, and inexpensive procedure that gives a quick answer as to how many components are in a mixture. From the TLC analysis 202-205 fractions show the maximum absorbance at 271nm, so it confirmed that the compound doesn't have double bond and that bond was not weak (Figure 2).

In UV-Visible spectroscopy analysis, the 202-205 fractions show the maximum absorbance at 271nm, so it confirmed that the compound doesn't have double bond and that bond was not weak (Figure 2).

Figure 1. Thin Layer Chromatography of isolated compound of *Cayratia trifolia*

Figure 2. UV Visible Spectroscopy of isolated compound of *Cayratia trifolia*

FTIR confirmed to be a valuable tool for the characterization and identification of compounds or functional groups (chemical bonds) present in an unknown mixture of plants extract. The FTIR analysis showed the presence of O-H at 3442 cm\(^{-1}\), C-H at 2927 cm\(^{-1}\) and C-O at 1061 cm\(^{-1}\), groups (Figure 3 and Table 2).

Table 2. FTIR spectrum peak values and functional groups of 202-205\(^{th}\) fractions

<table>
<thead>
<tr>
<th>Functional Groups</th>
<th>Type of Vibration</th>
<th>Characteristic Absorptions (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>Alcohol Stretch</td>
<td>3442</td>
</tr>
<tr>
<td>C-H</td>
<td>Alkane Stretch</td>
<td>2927</td>
</tr>
<tr>
<td>C-O</td>
<td>Alcohol Stretch</td>
<td>1061</td>
</tr>
</tbody>
</table>

Figure 3. FTIR Spectroscopy of isolated compound of *Cayratia trifolia*

The \(^1\)H NMR spectrum showed the presence of a triplet at δ 0.86 for a terminal methyl group, a broad singlet at δ 1.25 showing the presence of a long chain of methylene groups, at δ 2.34 for a methylene \(\alpha\)- to the oxy methylene.
group, at δ 2.17 for a β - methylene to an oxymethylene group and a pair of multiplet signals at δ 3.6 to an oxymethylene group (OCH₂) (Figure 4).

Figure 4. ¹H NMR Spectroscopy of isolated compound of Cayratia trifolia

¹³C NMR spectrum indicates the presence of long chain methylene groups (Figure 5). Based on the chromatographic and spectrum techniques indicated that the isolated compound is a 1-pentacosanol (Figure 6 and Table 3).

Table 3. Isolated compound from stem ethanolic extract of Cayratia trifolia

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
<th>IUPAC Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-pentacosanol</td>
<td>C₂₅H₅₂O</td>
<td>368.68 g/mol</td>
<td>Pentacosan-1-ol</td>
</tr>
</tbody>
</table>

3.1. Molecular Docking analysis

The isolated natural compound was docked with targeted proteins such as AKT and E2F3, PTEN and SMO using Glide module from Schrodinger suite. Based on glide score and glide energy, the docking results were analysed. The docking result of the isolated 1-pentacosanol compound was complex, and the interaction of amino acids with AKT, E2F3, PTEN and SMO protein is shown in Table 4.

Table 4. Docking Results of isolated natural compound and standard drug complexed with AKT, E2F3, PTEN and SMO proteins

<table>
<thead>
<tr>
<th>Target protein</th>
<th>Amino Acids interaction</th>
<th>Ligand atom</th>
<th>Glide Gscore/ Glide energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT</td>
<td>ALA 230 (H)</td>
<td>LYS 276(H)</td>
<td>-3.1/-22.168</td>
</tr>
<tr>
<td></td>
<td>LYS 179(H)</td>
<td>ASP 292(C)</td>
<td>-3.42/-34.919</td>
</tr>
<tr>
<td>E2F3</td>
<td>SER 147 (O)</td>
<td>GLN 303(O)</td>
<td>-3.8/-41.588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARG 121(O)</td>
<td>-3.57/-36.846</td>
</tr>
<tr>
<td>PTEN</td>
<td>LYS 330 (H)</td>
<td>ASP 153(O)</td>
<td>-3.1/-40.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARG 172(H)</td>
<td>-3.96/-39.27</td>
</tr>
<tr>
<td>SMO</td>
<td>No Interaction</td>
<td>ILE 413 (O)</td>
<td>-3.98/-31.761</td>
</tr>
</tbody>
</table>

The molecular docking results revealed that AKT (Fig. 7), E2F3 (Fig. 8), PTEN (Fig. 9) and SMO (Fig. 10) complex with 1-pentacosanol has good glide score of -3.428, -3.573, -3.964 and -3.987 Kcal/mol and the glide energy is -36.846, -31.761, -39.270 and -34.919 Kcal/mol respectively. When compared with standard drug, i.e., Finasteride (complex with AKT, E2F3, PTEN and SMO (no interaction) has lower glide score and glide energy -3.1/22.168, -3.8/-41.588 and -3.1/-40.050 Kcal/mol respectively. An ADME property of the isolated natural compound of 1-pentacosanol is shown in Table 5 and was under acceptable range. Perumal et al., (2016) reported that the bioactive compound, epifriedelanol isolated from the ethanolic extract of Cayratia trifolia having binding affinities against few proteins (HER2, EGFR and CXCR4) might act as good inhibitor against ovarian cancer.

Figure 5. ¹³C NMR Spectroscopy of isolated compound of Cayratia trifolia

Figure 6. Structure of the isolated compound

Figure 7: The 3D structure of 1-pentacosanol and finasteride complexed with AKT protein?: (a) 1-pentacosanol ?; (b) Finasteride
3. Discussion

Nature has been a source of medicinal agent for thousands of years and an impressive number of modern drugs have been isolated from natural sources (Nair et al., 2005). Natural products discovered from medicinal plants have played an important role in combating cancer irrespective of their multifactorial origin (Rajkumar et al., 2012). Isolation of pharmacologically active compounds from medicinal plants persist today. Investigation of the chemical composition and secondary metabolites from medicinal plants is an active research field and is the base for drug discovery, due to the demand for identifying and analysing the target proteins with their active sites and potential drug molecules that can bind to these sites specifically.

Cayratia trifolia (Vitaceae), known as fox grape in English, a perennial climber having trifoliate leaves (2–3 cm), is native to India, Asia and Australia. The methanolic extract is more effective than aqueous extract of *Cayratia trifolia* were found to be defending against esophageal cancer in rodents (Rejitha and Das 2009). *Cayratia trifolia* (L.) leaves contain stilbenes such as piceid, reveratrol, viniferin and amelnopisin. Stem, leaves and roots are reported to possess hydrocyanic acid and delphinidin. The leaves were used to cure swelling, injury and infection for bullock (Kumar et al., 2011). Sowmya et al (2016), also reported that more phytochemical and bioactive compounds were present in the stem ethanolic extract of *Cayratia trifolia* (L.) confirmed by FTIR, HPTLC and GC-MS analysis. The ethanolic root extract of *Cayratia trifolia* having anti diabetic activity was reported by Mohammed et al, (2017).

Many databases are available today to describe the medicinal plants and compound (Nonita et al., 2012). The current study provides useful insights to research in isolation and identification of potential anticancer chemo preventive metabolites from stem parts of ethanolic extract of *Cayratia trifolia*. The identification of natural compounds using chromatography and spectroscopic techniques may provide efficient information concerning qualitative and quantitative composition of herbal medicines (Barbosa et al., 2013). Docking is a method which predicts the preferred direction of one molecule to a second when bound to each other to form a stable complex (Tripathi et al., 2012).

The target of ligand-protein docking is to predict the predominant binding model of a ligand with a protein of known three-dimensional structure (Srivastava et al., 2010). The highest negative value of glide score and glide energy indicated that these complexes may have good affinity (Srinivasan et al., 2014). In the present study, the isolated natural compound 1-pentacosanol has comparable good affinity with selected prostate cancer targets of PTEN, AKT, SMO and E2F3 when compared with FDA approved drug of Finasteride.

5. Conclusion

Based on the results, it can be concluded that the isolated bioactive compound of 1-pentacosanol may act as a good inhibitor to the selected targets and a novel anti-prostate cancer agent in future. However, the molecular docking studies alone cannot completely support to control the prostate cancer. The combined in silico approach has been translated into in vitro and in vivo molecular studies which have provided encouraging in silico results against the prostate cancer.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgement

The authors are thankful to our Chancellor, Chief Executive Officer, Vice-Chancellor and Registrar of Karpagam Academy of Higher Education, Coimbatore, India for providing facilities and encouragement. Our thanks are also due to Sophisticated Analytical Instrument Facility (SAIF), Cochin University of Science and Technology, Cochin, India for successful NMR analysis.

References

Sowmya S, Perumal PC and Gopalakrishnan VK. 2016. chromatographic and spectrophotometric analysis of bioactive compounds from Cayratia trifolia (L.) stem. Int J Pharm Pharm Sci. 8: 56-64.

