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Abstract 

Background: Mortality and morbidity related to coronary atherothrombotic diseases and the unpredictable adverse effect of 
available anticoagulant drugs prompt the need for the development of effective and safe therapeutic agents. This study 
assessed the metabolomic profiling and molecular docking studies of the constituents of the unripe peel fruit of Ananas 
comosus (L.) Merr. methanolic extract against thrombin protease-activated receptors (PARs). Methods: Metabolomics 
profiling of the methanolic extract of the unripe peel of A. comosus was carried out using gas chromatography connected 
with a mass spectrometer (GC/MS). Molecular docking was done to assess the affinity of the identified compounds for the 
active sites of PARs, and the binding behaviors were visualized with DS BIOVIA. pkCSM, a web server, screened two 
probable compounds which presented ideal binding with all the receptors. Results: The GC/MS profiling showed a total of 
12 volatile compounds with benzyl alcohol being the most prominent compound. The molecular docking analysis showed 2-
(4-methylphenyl)-indolizine, and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-D-ribose demonstrated optimal binding with the 
selected PARs. The computed pharmacokinetic and pharmacodynamics properties of the selected compounds presented 2-
(4-methylphenyl)-indolizine possesses drug-like properties. Conclusion: The findings of this study could be explored and 
optimized in the development of safe and efficient plant-based anti-thrombotic agents. 
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1. Introduction 

Blood is a connective tissue in humans and other 
vertebrates flowing through the blood vessels smoothly 
and efficiently to deliver to cells needed materials 
including oxygen and nutrients. However, this smooth 
flow is obstructed by thrombus resulting in coronary 
atherothrombotic diseases that lead to death (WHO, 2017). 
Other clot formation diseases include pulmonary 
embolism, cerebrovascular accident (CVA), myocardial, 
and cerebral infarction (Ashorobi and Fernandez, 2019). 
Atherothrombotic coronary artery disease and deep vein 
thrombosis are major underlying death drives worldwide 
(Herrington et al., 2016). To substantiate this, Gryka et al. 
(2017) reported that 17 million deaths are caused yearly by 
cardiovascular events, and 7.3 million are caused by 
ischemic heart disease while 6.2 million of deaths are 
caused by strokes. This report was validated in WHO 
(2017) report whereby 31% of global death was due to 
these collective cardiovascular disorders and most occurs 
in low and middle-income countries. 

Thrombosis is a fatal disease involving the blood clots 
formation which leads to associated coronary diseases in 
the circulatory system due to homeostasis imbalance (Ko 
et al., 2004; Mahmud et al., 2015). Mumaw et al. (2015) 
reported the crucial cellular component of arterial 
thrombin as platelet aggregation with evidence from 
different studies showing Protease-Activated Receptors 

(PARs) as thrombin activities’ mediator that enhances 
human platelet activation. PARs, examples of G-protein-
coupled receptors (GPCR) family, expressed in different 
cell types cause proteolytic cleavage at the N-terminal 
sequence for activation (Coughlin, 2000; Hollenberg and 
Compton, 2002). The cleavage remainers bind intra-
molecularly to induce intracellular signal transduction that 
promotes thrombosis via receptor activation (Adams et al., 
2011). Human PAR1, PAR3, and PAR4 have been known 
for their significant role in blood coagulation via 
interaction with thrombin (Ma et al., 2005), a known 
platelet agonist generated by coagulation system (Covic et 
al., 2002). Moreover, Charlotte et al. (2019) reported that 
platelet aggregation with platelet adhesion and activation 
is known to be a vital pathogenic factor in the development 
of atherosclerosis and associated thrombosis in humans via 
receptor-ligand interaction. Anticoagulants have been used 
in the prevention and management of cardiovascular 
disorders that are associated with thrombosis due to their 
clot formation inhibiting potential (De Caterina et al., 
2013; da Silva and Ferreira, 2015). Several anticoagulant 
drugs such as heparin and warfarin are available to 
suppress atherothrombotic events; however, these 
compounds might not be healthy alternatives, besides 
being expensive and producing a wide spectrum of adverse 
effects (Gryka et al., 2017; Wong et al., 2017). This has 
prompted the search for novel cost-effective 
antithrombotic agents that are less toxic (Lau et al., 2009). 
Plants from time immemorial have been known to be the  
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promising sources of novel drug candidates for the 
prevention and treatment of diseases including blood-
clotting disorders. Some plant materials such as Alium 
cepa, Panax notoginseng, and Orbignya phalerata had been 
studied for their repositioning feasibility as anticoagulant 
agents for management and handling of thrombotic 
disorders (Azevedo et al., 2007; Shikha et al., 2014). 
Numerous investigations have been done on the putative 
effect of some phytoconstituents against platelet 
aggregation, towards increase fibrinolysis and coronary 
atherothrombotic diseases (CADs) as a whole (Yoo et al., 
2014; Lee et al., 2015; Mohd Nor et al., 2016; Oso et al., 
2019). Moreover, the peels and seeds of plant materials 
such as Lycopersicum esculentum Mill., Curcuma longa 
L., and Ananas comosus (L.) Merr. are examples of plant 
materials that had been reported to be prospective sources 
of pharmacologic agents against thrombosis (Evangelista 
et al., 2012).  

Ananas comosus is a fruit that belongs to the family of 
Bromeliaceae. The inedible parts of the fruit such as the 
peels, crown, and core have been reported to be rich 
sources of beneficial biologically active phytochemicals 
such as polyphenols (Li et al., 2014). Also, Li et al. (2014) 
identified catechin, epicatechin, ferulic acid and gallic acid 
as the phytochemical constituents of the peel of A. 
comosus methanolic extract through HPLC-MS analysis. 
The classes of these phytocompounds are known to 
contribute immeasurably to various pharmacological 
properties of plant materials (Banji et al., 2018; Abdel-
Mawgoud et al., 2019). Therefore, this study aimed at 
investigating the putative anti-thrombotic effects of the 
phytocompounds of the unripe peel fruit of A. comosus 
methanolic extract through in silico studies. 

2. Material and Methods 

2.1. Plant Materials 

The plant materials (unripe pineapple fruit) were 
obtained from local suppliers in Ajebo, Ogun State, South-
Western Nigeria and authenticated at the Department of 
Biological Sciences, McPherson University, Nigeria.  

2.2. Methodology 

2.2.1. Extraction of plant materials 

The peel of fruit was removed, washed three times with 
distilled water, and dried at room temperature of 30±1˚C. 
The dried peel was pulverized and reserved for subsequent 
extraction. Fifty grams of the pulverized peel were 
transferred into 500 ml flat-bottom and macerated with 
200 ml of absolute methanol for twenty-four hours and the 
mixture was filtered. The filtrate was concentrated and 
stored at -18°C in an air-tight container (Oso et al., 2019). 
2.2.2. Identification and characterization of compounds 

A concentrated extract of A. comosus was dissolved in 
methanol and the solution was used for the GC/MS 
analysis. The analysis was performed using Agilent 
Technologies GC/MS (Model 7890A) equipped with 
Agilent 19091IS-433HP-5MS 5% Phenyl Methyl Silox 
column (30 m × 250 µm × film thickness 0.25 µm) 
coupled with mass spectrometry. Pure helium gas as 
carrier gas at 1.5 mL/min constant rate was used.  The 
injector temperature was 250 ºC.  GC/MS analysis 

resulting in chromatogram was compared to the complete 
library using a data base of the National Institute of 
Standard and Technology (NIST). The values were 
presented as the relative percentage of the chemical 
components expressed as a percentage by peak area. The 
GC/MS profiling was performed at the Department of 
Chemical Engineering, University of Ilorin, Ilorin, Nigeria. 
2.2.3. In silico Molecular docking 

An in silico molecular docking study was done to 
validate the binding potency of all the compounds of A. 
comosus extract to thrombin by using AutoDock 4.2 
program (Trott and Olson, 2010) and visualized with DS 
BIOVIA using the method described by Rizvi et al. 
(2013). The molecular dockings were conducted by using 
the 3D crystal structure of the PAR1, PAR3, and PAR4, 
obtained from the protein data bank (www.rcsb.org) 
(Berman et al., 2000) with PDB IDs 3HKJ, 2PUX, and 
3QDZ respectively. The selected crystal structures were 
obtained from the human genome except for 2PUX which 
was an available murine PAR3 chosen as a human 
homologous (Bah et al., 2007). The associated thrombin 
and ligand complexes were deleted using DS BIOVIA. 
Moreover, polar hydrogen atoms were added, and the 
crystal water remained. The selected ligands are thrombin 
(PubChem CID: 65045), benzyl alcohol (PubChem CID: 
244), 2-(4-methylphenyl)-indolizine (PubChem CID: 
346948), and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose 
(PubChem CID: 542798). Benzyl alcohol, 2-(4-
methylphenyl)-indolizine, and 2-p-nitrobenzoyl-1,3,5-
tribenzyl-α-d-ribose were selected from the GC/MS 
chromatogram based on their respective binding affinity 
with a threshold determined by thrombin, a PAR agonist. 
The ligands were obtained from the PubChem database 
(Bolton et al., 2008; Kim et al., 2019). The cubic grid box 
was set to -12 × -22 × 20 points with a spacing of 1.0 Å. 
The catalytic site of the grid box was centered on the 
following coordinates (x = 68; y = 62; z = 83) to obtain the 
best orientations and conformations of the ligands in the 
binding pockets of protein. The interaction figures were 
generated in both 3D and 2D to visualize the specific 
interactions between the selected compounds and the 
receptors. The docking results were recorded with binding 
energy and bonded residues.  
2.2.4. Prediction of ADMET by computational analysis 

Pharmacokinetic (PK) properties of 2-(4-
methylphenyl)-indolizine and 2-p-nitrobenzoyl-1,3,5-
tribenzyl-α-D-ribose were investigated using the pkCSM 
ADMET descriptors algorithm 
protocol (http://biosig.unimelb.edu.au/pkcsm/prediction) 
(Douglas et al., 2015). Two important chemical descriptors 
relate well with PK features; the absorption of drugs relies 
on factors such as membrane permeability [indicated by 
colon cancer cell line (Caco-2)], intestinal absorption, skin 
permeability levels, P-glycoprotein substrate or inhibitor. 
The distribution of drugs relies on factors such as the 
blood-brain barrier (logBB), CNS permeability, and the 
volume of distribution (VDss). Metabolism is predicted 
based on the CYP models for substrate or inhibition 
(CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9). 
Excretion is predicted based on the total clearance model 
and renal OCT2 substrate. The safety of compounds is 
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foreseen based on skin sensitization, AMES toxicity, 
hepatotoxicity, and hERG inhibition. 

3. Results 

3.1. Characterization of Phytochemical Compositions 

The chromatograms of the metabolomics profiling of 
the volatile and semi-volatile components of the extract are 
presented in Figures 1 and the identified compounds are 
presented in Table 1. 

 

 
Figure 1. GC/MS chromatogram of methanol extract of the unripe peel of A. comosus L. with benzyl alcohol (62.52 %), 4H-1,2,4-triazol-3-
amine, 4-propyl (7.12 %) and 2,5-Difluorophenylhydrazine (7.64 %) as abundant compounds 

Table 1. Chemical composition of methanol extract, retention time, percentage of correlation and percentage relative composition of unripe 
of A. comosus 

Compounds RT (mins) CM (%) RC (%) 

Benzyl alcohol 10.442 100.00 62.53 

4H-1,2,4-Triazol-3-amine, 4-propyl 12.437 11.40 7.13 

chloro- Acetaldehyde 14.063 3.20 2.00 

2,5-Difluorophenylhydrazine 14.583 12.23 7.65 

N-(3-Methylbutyl)acetamide 16.997 6.56 4.10 

1,4-dinitro- Benzene 18.336 3.30 2.40 

2,2-Dimethoxy-1-oxa-2-sila-1,2-dihydronaphthalene 24.134 3.66 2.29 

2-p-Nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose 24.829 4.29 2.68 

2,3-dihydro-2,8-dimethyl- Benz[b]-1,4-oxazepine-
4(5H)-thione 

28.038 3.25 2.03 

3-amino-3-cyano-, methyl ester Acrylic acid 29.345 5.62 3.52 

5-(ethyl) (4-diethylamino-1-methyl Pyrimidine-2,4,6 
(1H,3H,5H)-trione 

32.792 3.29 2.05 

2-(4-methylphenyl)- Indolizine 33.617 3.12 1.95 

RT=Retention time; CM= Maximum Correlation; RC= Relative composition expressed in percentage of total. 

3.2. Molecular docking 

The inherent nature of molecular docking is the 
recognition process of molecules, relating to their space 
and energy matching. The docking results tabulated 
between the PARs and the ligands are shown in Figure 2a, 
b, and Table 2. The results showed that 2-(4-
methylphenyl)-indolizine and 2-p-nitrobenzoyl-1,3,5-
tribenzyl-α-d-ribose were found to possess the maximum 

binding energies as -7.0 and -6.5, -8.4 and -5.1, and -8.4 
and -7.2 kcal/mol respectively towards PAR1, PAR3, and 
PAR4 compared to thrombin except for PAR3 where 2-(4-
methylphenyl)-indolizine had lower binding energy than 
thrombin. However, benzyl alcohol had lower binding 
energy towards all the PARs compared to thrombin and 
had its interaction towards PAR1 despite its high 
percentage composition in the A. comosus unripe peel.
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Figure 2a: 2D View of  the molecular docking of PAR-1 towards and ligands: Ai thrombin, Aii benzyl alcohol, Aiii 2-(4-methylphenyl)-
indolizine and Aiv 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose; PAR-3 towards and ligands: Bi thrombin, Bii benzyl alcohol, Biii 2-(4-
methylphenyl)-indolizine and Biv 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose; and PAR-4 towards and ligands: Ci thrombin, Cii benzyl 
alcohol, Ciii 2-(4-methylphenyl)-indolizine and Civ 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose

Ai Bi Ci 

Aii Bii Cii 

Aiii Biii Ciii 

Aiv Biv Civ 
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Figure 2b: 3D View of  the molecular docking of PAR-1 towards and ligands: Ai thrombin, Aii benzyl alcohol, Aiii 2-(4-methylphenyl)-
indolizine and Aiv 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose; PAR-3 towards and ligands: Bi thrombin, Bii benzyl alcohol, Biii 2-(4-
methylphenyl)-indolizine and Biv 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose; and PAR-4 towards and ligands: Ci thrombin, Cii benzyl 
alcohol, Ciii 2-(4-methylphenyl)-indolizine and Civ 2-p-nitrobenzoyl-1,3,5-tribenzyl-alpha.-d-ribose 

Table 2. Docking analysis of 2-(4-methylphenyl)-indolizine and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose from the methanolic extract of 
unripe of A. comosus L with thrombin receptors (PARs) 

Ligands 
PubChem ID Molecular 

mass(g/mol) 
Binding energy (Kcal/mol) Amino acid residues in conventional 

H-bond at the binding site 
 PAR1 PAR3 PAR4 PAR1 PAR3 PAR4 

Thrombin 65045 263.75 -6.1 -6.4 -6.4 Glu97 Arg 77 Asn60G, Ile88 

Benzyl alcohol 244 108.14 -4.3 -5.1 -4.7 Phe232 NR Trp96, Leu99 

2-(4-methylphenyl)-indolizine 346948 209.72 -6.5 -5.1 -7.2 NR NR NR 

2-p-nitrobenzoyl-1,3, 
5-tribenzyl-α-d-ribose 542798 569.61 -7.0 -8.4 -8.4 Arg 93, 

Asn95 NR Leu123 

NR=No residue

3.3. Prediction of ADMET by computational analysis 

The ADMET properties of 2-(4-methylphenyl)-
indolizine and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose 
are presented in Table 3. 2-(4-methylphenyl)-indolizine 
had a Log P value of 3.91472 and was predicted to have 
Log P value of 3.92, water solubility (-3.99 log mol/L), 
Caco-2 permeability (1.65 log Papp in 10-6 cm/s) and 97.5 
% could be absorbed through the intestine. However, 2-p-

nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose showed Log P of 
5.86, water solubility (-5.98 log mol/L), Caco-2 
permeability (1.07 log Papp in 10-6 cm/s) and 100 % 
intestinal absorption. 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-
ribose was suggested as an inhibitor of P-glycoprotein and 
human ether-a-go-go-related gene (hERG) and a 
hepatotoxic agent. 

 

Ai Bi Ci 

Aii Bii Cii 

Aiii Biii Ciii 

Aiv Biv Civ 
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Table 3. Prediction of ADMET properties of 2-(4-methylphenyl)-
indolizine and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose 

Property 
2-(4-
methylphenyl)-
indolizine 

2-p-nitrobenzoyl-
1,3,5-tribenzyl-α-
d-ribose 

Absorption 

Log P 3.92 5.86 

Water solubility (log mol/L) -3.99 -5.98 

Caco2 permeability (log Papp 
in 10-6 cm/s) 1.65 1.07 

Intestinal absorption (% 
Absorbed) 97.5 100 

Skin Permeability (log Kp) -2.11 -2.74 

P-glycoprotein substrate No No 

P-glycoprotein I inhibitor No Yes 

P-glycoprotein II inhibitor No Yes 

Distribution 
VDss (log L/kg) 0.20 -0.57 
Fraction unbound  0.24 0.04 
BBB permeability (log BB) 0.55 -1.27 
CNS permeability (log PS) -1.55 -2.93 
Metabolism 

CYP2D6 substrate No No 

CYP3A4 substrate Yes Yes 
CYP1A2 inhibitor Yes No 
CYP2C19 inhibitor Yes Yes 
CYP2C9 inhibitor No Yes 
CYP2D6 inhibitor No No 
CYP3A4 inhibitor No Yes 
Excretion 
Total Clearance (log 
ml/min/kg) 0.50 0.82 

Renal OCT2 substrate No No 
Toxicity 
AMES toxicity No No 
MTD (log mg/kg/day) -0.72 0.84 

hERG I inhibitor No No 

hERG II inhibitor No Yes 
Oral Rat Acute Toxicity 
(LD50) (mol/kg) 2.25 2.48 

Oral Rat Chronic Toxicity 
(log mg/kg_bw/day) 0.97 1.52 

Hepatotoxicity No Yes 
Skin Sensitisation No No 
Pyriformis toxicity (log 
ug/L) 0.573 0.29 

Minnow toxicity (log mM) 1.7 -8.68 

BBB= Blood brain barrier, CNS= Central nervous system, 
Cytochrome P450, Renal OCT2= organ cation transporter, MTD= 
Maximum tolerated dose and hERG= human Ether-à-go-go-
Related Gene 

4. Discussions 

The metabolomic investigation on the compounds 
composition present in the unripe A. comosus methanolic 
extract was conducted for better clarification of the 

contributions of the peel to the observed reported 
biological activities. Several volatile compounds seen in 
the extract include esters, alcohols, ketones, aldehydes, 
and terpenes. The results showed that 12 volatile 
compounds are present in the unripe A. comosus 
methanolic extract.  However, only 2-(4-methylphenyl)-
indolizine, and 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose 
depicted higher binding scores than thrombin. Benzyl 
alcohol with a relative composition of 62.52% was the 
prominent volatile compounds present in the extract 
followed by 4H-1,2,4-triazol-3-amine, 4-propyl. Benzyl 
alcohol, a relatively non-toxic and naturally occurring 
flavouring agent is usually an active compound in 
cosmetics (McCloskey et al., 1986).   

The binding affinities of the identified compounds: 
benzyl alcohol, 2-(4-methylphenyl)-indolizine, and 2-p-
nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose were estimated 
through molecular docking. The docking analysis result 
revealed that benzyl alcohol, the most prominent volatile 
compound in the extract had the least binding affinity 
towards PARs. This implies that the compound might not 
be responsible for the established antithrombotic effect of 
A comosus peel through modulation of the PARs (Limjuco 
et al., 2014; Go and Mariposque, 2018). Conversely, 2-p-
nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose had the best 
binding score towards the PARs including thrombin value 
with conventional hydrogen bond formation to basic 
residues (Asn and Arg) and van der Waal interaction in 
PAR1 binding site. Elokely and Doerksen (2013) reported 
that scoring systems generally rely on electrostatic 
interactions, Van der Waal's forces, and hydrophobic 
linkage. The conventional hydrogen interaction could be 
linked to the hirudin-like domain on PAR1, an exosite 1 
that recruits thrombin to PAR1 (Vu et al., 1991). 
Similarly, 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose had 
the best effective interaction with PAR3 using the same 
mechanism as PAR1, but no conventional hydrogen 
linkage was observed. The absence of a conventional 
hydrogen linkage may be attributed to the differences in 
organism genome on the receptor.  In contrast to PAR1 
and PAR3, 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose 
could be antagonist by blocking the interaction between 
the receptor and G protein. This could be due to its 
hydrophobic nature (log P value greater than 5) and 
prevent the internalization of signaling in the cellular part 
(French and Hamilton, 2016). More so, 2-(4-
methylphenyl)-indolizine had a better binding score to all 
the PAR1 and PAR4 with no conventional hydrogen 
formation. This higher binding score may be attributed to 
the high number of alkyl and pi alkyl bond formation 
suggesting other mechanisms aside hirudin-like linkage 
(Heuberger and Schuepbach, 2019). Also, a low binding 
score was observed for PAR3 for 2-(4-methylphenyl)-
indolizine which may be due to organism genome 
difference.  

The distribution, metabolic, and excretion properties of 
2-(4-methylphenyl)-indolizine and 2-p-nitrobenzoyl-1, 3, 
5-tribenzyl-α-d-ribose were assessed through the ADMET 
parameters based on the pkCSM thresholds of drug ability. 
The computed partition coefficient (log P) which defines 
the respective lipophilicity of the compounds showed that 
2-(4-methylphenyl)-indolizine had relative good 
lipophilicity as the log P is not greater than 5. This shows 
that it could have good absorption due to its maintain 
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fitting balance maintenance between the hydrophilicity and 
lipophilicity suggesting good system maintenance of 
appropriate ligand concentration. However, 2-p-
nitrobenzoyl-1, 3, 5-tribenzyl-α-d-ribose could have poor 
oral absorption and increased risk of promiscuity and 
toxicity as the log P is greater than 5 (Pajouhesh and Lenz, 
2005; Hughes et al., 2008).  Moreover, the observed 
lipophilicity correlates negatively to water solubility and 
positively to intestinal absorption. The moderate level of 
the lipophilicity of 2-(4-methylphenyl)-indolizine could 
suggest it would have no negative effect on brain exposure 
as indicated by the probable effect brain-blood barrier and 
central nervous system permeation. 2-(4-methylphenyl)-
indolizine showed a comparatively better drugability score 
than 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose. This 
could also be substantiated by the inhibitory potential of 2-
p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose on P-
glycoprotein and hERG. The P-glycoprotein inhibition 
could impair the active transport of xenobiotics in the 
system. Additionally, impairment in the function hERG 
potassium channel through inhibition may result in 
delayed ventricular repolarisation which could lead to a 
severe disturbance in the normal cardiac rhythm (Wang et 
al., 2012). The mutagenic properties computed through 
AMES toxicity showed the compounds are not mutagens. 
However, 2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose was 
suggested to be a hepatotoxic compound. The hepatotoxic 
effect of 2-p-nitrobenzoyl-1, 3, 5-tribenzyl-α-d-ribose 
could be related to its lipophilicity and enhanced retention 
within the membranes and binding to non-desired protein. 

5. Conclusion 

This study identified 2-(4-methylphenyl)-indolizine and 
2-p-nitrobenzoyl-1,3,5-tribenzyl-α-d-ribose as potential 
inhibitors of PARs. They could perchance function 
additively in modulating the signaling event, leading to 
clot formation. Their therapeutic use as anti-thrombotic 
factors may lead to a beneficial solution against coronary 
atherothrombotic diseases. Further investigations on the 
potential toxicity of the phytocompounds through various 
laboratory studies are recommended.  
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