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Abstract 

Breast cancer is a highly complex, diverse disease that is classified into several subtypes according to the expression of 
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Such 
classification is critical as it determines the best therapeutic strategy for the disease. One subtype of breast cancer that lacks 
the expression of the three receptors is termed triple-negative breast cancer (TNBC).  Consequently, TNBC patients do not 
benefit from therapies that target ER or HER2 and often require systemic therapy. TNBC represents about 15-20% of all 
newly diagnosed breast cancers and is responsible for about 5% of all cancer deaths annually. A subgroup of TNBCs 
expresses androgen receptor (AR), which is thought to be a potential therapeutic target. Published reports have indicated that 
the AR signaling pathway contributes to the growth and progression of this breast cancer subtype. In addition, AR-positive 
TNBCs have been reported to have a significantly lower rate of pathological complete response to neoadjuvant 
chemotherapy and are more chemotherapy-resistant. Targets of AR include the multi-drug resistance transporters such as 
breast cancer resistant protein (BCRP/ABCG2), a primary cause of resistance to chemotherapy. Interestingly, the ABCG2 
gene has also been shown to be targeted by specific microRNA molecules (miRNAs), which are also under the 
transcriptional regulation of AR.  Herein, the roles of AR, ABCG2, and miRNAs in regulating chemoresponsiveness of 
breast cancer are presented with a proposal to utilize this knowledge in devising a novel therapeutic strategy of TNBC.  
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1. Introduction 

Breast cancer is the most common type of cancer that 
afflicts women worldwide accounting for approximately 
11.6% of all diagnosed cancer cases globally and is the 
leading cause of cancer death among women (Bray et al., 
2018). In the USA, the 5-, 10-, and 15-year relative 
survival rates for breast cancer are 89%, 83%, and 78%, 
respectively (Miller et al., 2016). While breast cancer rates 
are higher among women in more developed regions, the 
disease is expected to cause the death of approximately 
627,000 women worldwide, which is almost 15% of all 
cancer deaths among women (WHO, 2019). Data from the 
2016 Annual Statistical Report of the Jordanian Ministry 
of Health indicated that cancer-associated deaths constitute 
about 16.2% of total mortality reported in 2012, making it 
the second leading cause of death in Jordan after 
cardiovascular diseases (representing 36.4%) (Annual 
Statistical Report of the Ministry of Health, 2016). 
Importantly, cancer cases are expected to increase reaching 
levels that will challenge public and private healthcare 
systems, potentially jeopardizing access of patients to life-
saving treatment (Abdel-Razeq et al., 2015). In particular, 
breast cancer has been the most common cancer diagnosed 
in the Jordanian population overall throughout the years 
with 1067 cases recorded in 2013 and accounting for 

19.7% of all cancer cases reported that year (Annual 
Statistical Report of the Ministry of Health, 2016). 
Classification of Breast Cancer and TNBC 

Breast cancer is a highly complex, heterogeneous 
disease in its histology, cellular origin, metastatic 
potential, mutations, disease progression, therapeutic 
response and clinical outcome (Ossovskaya et al., 2011).  
Accordingly, it can be classified into different 
distinguishable subtypes according to histological features 
in conjunction with the expression of biomarkers (Lv et 
al., 2011). The most prominent, classifying biomarkers are 
hormone receptors including estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth 
factor-like receptor 2 (HER2). The four clinically 
important breast cancer classes are: (1) ‘luminal A’, which 
is ER- and PR-positive, but HER2-negative, (2) ‘luminal 
B’, which is ER-positive and/or PR-positive, and HER2- 
and Ki-67-positive, (3) HER2-enriched, a disease that is 
characterized by overexpression of HER2 and is ER- and 
PR-negative, and (4) ‘triple-negative breast cancer’ or 
TNBC where all three receptors are not expressed (ER-, 
PR-, and HER2-negative) (Rakha et al., 2007; Boyle, 
2012; Brouckaert et al., 2013; Lam et al., 2014; Parise and 
Caggiano, 2014). The majority of TNBCs possess basal-
like characteristics.  

In the USA, TNBC represents about 15-20% of all 
newly diagnosed breast cancers, and is responsible for 
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about 5% of all cancer deaths annually (Dent et al., 2007). 
In addition to its lack of expression of ER, PR and HER-2, 
this class of breast cancer is characterized by expression of 
genes usually found to be active in basal or myoepithelial 
cells of the normal breast (Rakha et al., 2007; Rakha et al., 
2009). Initially, TNBC was further classified into six 
subtypes: basal-like 1 (BL1), basal-like 2 (BL2), 
mesenchymal (M), immunomodulatory (IM), 
mesenchymal stem-like (MSL) and luminal androgen 
receptor (LAR) (Lehmann et al., 2011, Masuda et al., 
2013). However, in a follow-up study, IM and MSL 
subtypes were found not to be true TNBC and were 
removed from this category (Lehmann et al., 2016). 
Furthermore, both Burstein et al. (2015) and Ding et al 
(2019) classified TNBC into basal-like, immune-activated 
(BLIA), basal-like immunosuppressed (BLIS), LAR, and 
MES subtypes. Recently, Jiang et al. (2019) classified 
TNBC into four transcriptome-based subtypes: LAR, IM, 
BLIS, and mesenchymal-like (MES). 

Transcriptional signatures of each breast cancer 
subtype can be used to support therapeutic decisions, 
predict outcomes and assist in the management of 
individual breast cancer patients (Harris et al., 2016; 
Rakha 2017). In addition, ER, PR and HER-2 expressions 
not only play an important role in the biology of the 
tumors, but are also determinants of therapeutic strategy. 
For example, whereas ER-expressing tumors are treated by 
targeting the receptor with antagonists such as tamoxifen 
or with inhibitors of the estrogen-producing enzyme, 
aromatase, HER2-enriched tumors are treated with HER2 
inhibitors such as Trastuzumab or Herceptin® (Lewis 
Phillips et al., 2008). There is no effective targeted therapy 
for TNBC due to the lack of expression of these receptors 
and TNBC patients, therefore, often require systemic anti-
cancer therapy to manage the disease (Brady-West and 
McGrowder, 2011). TNBC is the most sensitive to 
chemotherapy amongst breast cancer subtypes (Anders and 
Carey, 2008; Khokher et al., 2013; Cetin and Topcul, 
2014). However, TNBC is associated with a higher risk of 
disease recurrence at earlier times, worse prognosis after 
recurrence, and higher rates of central nervous system and 
visceral metastases (Carey et al., 2010). This has been 
referred to as the triple negative paradox (Carey et al., 
2007). Interestingly, since TNBCs differ in their 
clinicopathologic characteristics, it has been reported that 
TNBC subtypes also differ in their response to 
standardized therapeutic efforts (Choi et al., 2012; Masuda 
et al., 2013).   
Structure and Function of Androgen Receptor in 
Breast Cancer 

Testosterone is produced by and released from Leydig 
cells of the male testes and theca cells of the female 
ovaries, while dehydroepiandrosterone is produced in the 
adrenal gland of both genders (Smith et al., 2013). 
Testosterone acts as both a hormone and a pro-hormone 
(Smith et al., 2013). It is converted to its more efficacious 
derivative dihydrotestosterone (DHT) by 5-α-reductase in 
peripheral tissues, skin, hair follicle, bone, prostate and 
liver, or by aromatase to the potent estrogen, 17β-estradiol 
in ovaries, bone, brain, adipose tissue and prostate (Ellem 
and Risbridger, 2010; Smith et al., 2013). The levels of 
circulating androgens decline with age in both men and 
women, which can affect bone and muscle integrity and 

sexual drive in addition to general wellbeing (Davison et 
al., 2005; Gooren 2010).  

At the molecular level, the function of androgens is 
mediated by activation of androgen receptor (AR). DHT 
has two fold higher affinity for AR and a five-fold lower 
rate of dissociation when compared with testosterone 
(Grino et al., 1990; Tan et al., 2015). AR is a member of 
the steroid-hormone receptor family, which also includes 
receptors for estrogen, progesterone, glucocorticoids, and 
mineralocorticoids (Lubahn et al., 1989). The human AR 
gene is located on chromosome Xq11-12 and contains a 
highly polymorphic CAG repeat sequence within exon 1 
(Lubahn et al., 1989; Chamberlain et al., 1994). The 
receptor is ubiquitously expressed in human tissues, with 
the highest levels reported in reproductive tissues (testes, 
prostate, uterus and ovaries) as well as liver, breast, 
adipose and muscle tissues (Bookout et al., 2006). AR-
regulated signals are responsible for male sexual 
differentiation and reproductive development (Bruchovsky 
et al., 1976). In the absence of ligand, AR exists primarily 
in the cytoplasm, bound to chaperone proteins that 
stabilize the receptor in a conformational state that 
promotes ligand binding (Claessens et al., 2008). In the 
presence of androgens, in particular testosterone and DHT, 
AR undergoes a series of conformational changes, 
dissociates from chaperones, then forms a homodimer that 
translocates into the nucleus (Claessens et al., 2008). 
Inside the nucleus, the hormone-AR complex binds to 
androgen response elements and recruits co-regulatory 
activators resulting in the regulation of target gene 
transcription (Claessens et al., 2008). AR expression also 
has a role in a range of other conditions including acne, 
male pattern baldness and polycystic ovarian syndrome 
(Smith et al., 2013). Importantly, AR has been shown to 
play an important role in the development and progression 
of a number of cancers such as prostate, endometrial, 
bladder, kidney and breast (Hunter et al., 2018).  

The AR signaling pathway has a role in breast cancer 
proliferation. Interestingly, both growth stimulatory and 
growth inhibitory impacts of androgens have been 
described in breast cancer cells lines (reviewed in Rahim 
and O’Regan, 2017). Mechanisms underlying these 
seemingly paradoxical effects are complex. However, the 
function of AR in breast cancer pathogenesis may depend 
on the molecular phenotype of the tumor, the relative 
coexpression of other hormone receptors, and the 
hormonal environment (Rahim and O’Regan, 2017). AR 
expression has been identified in 70-90% of breast tumors, 
similar to ER expression, and it is commonly found in 
breast tumors that express ER (Obeidat et al., 2018). The 
prevalence of AR expression in TNBCs is less frequently 
reported, ranging from 13.7% to 64.3% (Rakha et al., 
2007; Luo et al., 2010; McNamara et al., 2013; Asano et 
al., 2017; Obeidat et al., 2018). This variability may be 
due to technical differences among the different studies or 
to the criteria used to define AR positivity (Rakha et al., 
2007; Luo et al., 2010; McNamara et al., 2013; Obeidat et 
al., 2018). 

Formerly, androgens, such as fluoxymesterone, 
testolactone, and calusterone were used for the treatment 
of advanced breast cancer, resulting in about 18-39% 
clinical responses (Gucalp and Traina, 2016). However, 
the undesirable masculinizing side effects of these agents 
have limited their routine use in the treatment of breast 
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cancer especially in the advent of newer, less toxic 
endocrine agents. Currently, there is renewed interest in 
targeting the AR signaling pathway, particularly in TNBC. 
In fact, AR-positive TNBC showed preserved androgenic 
signaling that can be used as a possible therapeutic target 
similar to ER-positive breast cancers (Lehmann et al., 
2011; Gucalp et al., 2013). Several clinical trials currently 
underway have illustrated the efficiency of anti-androgen 
therapy for the treatment of AR-positive TNBC (Gucalp et 
al., 2013; Bonnefoi et al., 2016). 

AR-positive TNBCs have different clinicopathologic 
characteristics than compared to AR-negative TNBCs. 
One such difference is reported in disease-free survival 
whereby AR-positive TNBC patients survive longer after 
recurrence than those with AR-negative TNBCs (Asano et 
al., 2017). In addition, patients with AR-positive TNBC 
have a better prognosis and delayed disease recurrence 
(Luo et al., 2010; Asano et al., 2017). Most AR-positive 
TNBCs could be categorized as the LAR subtype (Asano 
et al., 2017), associated with lower Ki-67 index 
(McNamara et al., 2013), postmenopausal status, positive 
nodal status (Luo et al., 2010), higher tumor grade, and 
development of distant metastasis (Rakha et al., 2007). It 
is also important to note that some studies have suggested 
positive correlations between AR positivity and 
progressive disease or poor prognosis (Hu et al., 2011). 
Thus, debate still exists concerning the clinical 
significance of AR expression in TNBC (Fioretti et al., 
2014). 

Reason(s) for the increased survival of patients with 
AR-positive TNBC have not been identified and might be 
due to differences in sensitivity to conventional treatments 
or to the innate nature of this tumor phenotype (Asano et 
al., 2017). AR-positive TNBCs have been reported to have 
a significantly lower rate of pathological complete 
response (pCR), of about 10%,  to neoadjuvant 
chemotherapy (NAC) and are more chemotherapy-
resistant (Asano et al., 2016; Lehmann et al., 2016). 
Therefore, it is hoped, as will be detailed in the next 
section, that the status of AR expression in TNBC may aid 
in determining the best strategy of breast cancer treatment 
and the use of AR-targeted therapy (Gucalp and Traina, 
2016).  
Role of ABCG2 in Breast Cancer 

Development of chemoresistance is a significant 
obstacle in the effective treatment of breast cancer. 
Overexpression of multi drug resistance (MDR) 
transporters is one of the most important causes of 
chemoresistance (Szakács et al., 2006) and members of the 
ABC transporter family members are the most widely 
studied MDR transporters (Gottesman and Ling, 2006). 
ABC transporters use ATP hydrolysis to control the 
absorption, distribution, and clearance of numerous 
substances, including hormones (e.g. folates and 
dihydrotestosterone), pharmaceutical agents, dietary 
carcinogens and conjugated metabolites (Huss et al., 2005; 
Vore and Leggas, 2008). In addition, they have similar 
trans-membrane domains that can pump chemotherapeutic 
drugs out of cancer cells against a concentration gradient 
in an ATP-dependent manner, thus reducing intracellular 
accumulation of such agents and sparing cancer cells from 
toxicity (Huss et al., 2005; Vore and Leggas, 2008).  

To date, 48 ABC transporters have been  identified in 
the human genome (Vasiliou et al., 2009), among which 
the most extensively characterized  are P-glycoprotein (P-
gp/ABCB1), multidrug resistance associated protein-1 
(MRP1/ABCC1), and breast cancer resistant protein 
(BCRP/ABCG2) (Huang et al., 2014; An et al., 2017). 
ABCG2 is a 72 kDa protein that has many substrates, 
which include tyrosine kinase inhibitors (TKIs) (e.g. 
imatinib and gefitinib), anthracyclines (e.g. doxorubicin), 
camptothecin-derived topoisomerase I inhibitors, disease-
modifying anti-rheumatic drugs (e.g. methotrexate), and 
cyclin-dependent kinase inhibitors (e.g. flavopiridols) (An 
et al., 2017). Recent studies have demonstrated that 
transcriptional factors and nuclear receptors and epigenetic 
factors play important roles in the regulation of ABCG2 
expression in different model systems (To et al., 2008a).  

An ABCG2-expressing side population (SP) is present 
in normal and cancerous tissues (Mathew et al., 2009). 
ABCG2 expression and function are well studied in 
prostate cancer where expression is found in ~1% of cells 
in the basal compartment (Huss et al., 2005). ABCG2-
expressing prostate tumor cells have been detected in 
tissue biopsies following androgen deprivation therapy 
(Huss et al., 2005) and ABCG2 expression is upregulated 
upon androgen blockade in vitro (Huss et al., 2005; 
Pfeiffer et al., 2011). Moreover, ABCG2-expressing SP 
cells in the prostate demonstrate multipotency and self-
renewal properties, suggesting an enrichment of stem cells 
in this population (Huss et al., 2005; Foster et al., 2013). 
An earlier study has shown the ability of ABCG2 to efflux 
the AR antagonist bicalutamide in prostate cancer tissues 
(Colabufo et al., 2008). Another study has shown a link 
between AR signaling and ABCG2 at various levels where 
inhibition of ABCG2-mediated androgen efflux led to 
increased nuclear AR expression concomitant with 
induced expression of AR target genes, delayed cell 
growth response and cell differentiation mediated by AR, 
delayed tumor progression and increased overall survival 
in vivo (Sabnis et al., 2017). 

In breast cancer, higher levels of ABCG2 were 
correlated with a reduced efficacy of chemotherapy and 
poorer outcome in breast cancer patients (Kim et al., 
2013). ABCG2 has been described as a stemness marker 
for various histological breast cancer subtypes (Collina et 
al., 2015). Furthermore, it was suggested that ABCG2 
alone can be considered a suitable marker for breast 
cancer, in particular for the TNBC phenotype, but this 
observation was limited to cellular models (Britton et al., 
2012). Interestingly, ABCG2 has been shown to be down-
regulated in androgen-treated breast cancer cells affecting 
chemoresistance to mitoxantrone, a topoisomerase II 
inhibitor (Chua et al., 2016). The last report suggests that 
AR activation may influence the chemoresponsiveness of 
breast cancers. 
MicroRNA and Their Significance in Breast Cancer 

The variable expression of specific genes in tumor 
cells, including cell surface receptor proteins, mutated 
genes, and microRNAs (miRNAs or miRs) has been 
shown to predict the likelihood of cancer progression. 
miRNAs have significant potential in clinical research 
since they have important regulatory biological roles, are 
detected in different tissue types including serum and are 
relatively stable in formalin-fixed paraffin-embedded 
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tissue samples, suggesting that they can be used as 
biomarkers (Sethi et al., 2014; An et al., 2017). MiRNAs 
are short, single-stranded, non-coding RNAs of 20–25 
nucleotides in length, and are widely conserved among 
species (Christodoulatos and Dalamaga, 2014). Since their 
discovery in 1993, around 2600 unique mature human 
miRNAs have been identified and more are expected to be 
detected (miRBase version 20) (Kozomara and Griffiths-
Jones, 2013). Most miRNAs are located in non-coding 
intronic regions, but some are located in exonic regions 
(Rutnam et al., 2013). The main function of miRNAs is 
post-transcriptional gene silencing via directly and 
specifically base-pairing of their conserved 5ʹ- 
heptametrical seed sequence with the 3ʹ untranslated 
region (3ʹ-UTR) of multiple target messenger RNAs 
(mRNAs). Consequently, they induce either mRNA 
degradation if base-pairing is perfect or decrease the rate 
of protein translation if the match is imperfect (Rutnam et 
al., 2013; Subtil et al., 2014). It is worth noting that 
miRNAs are not always associated with inhibitory or down 
regulatory effects. In rare circumstances, dependent on cell 
cycle phase and co-factor expression, miRNAs can 
activate mRNA translation, thus up regulating protein 
levels (Vasudevan et al., 2007). 

More than 50% of all translated human genes are 
regulated by miRNAs and this type of gene regulation 
controls many facets of cell signaling pathways in both 
normal and tumor tissues (Rutnam et al., 2013; Subtil et 
al., 2014). Moreover, each miRNA can regulate numerous 
target genes, and the same target gene can be regulated by 
multiple miRNAs, creating a complex network of 
molecular interactions (Esteller 2011; Mendell and Olson, 
2012; Spizzo et al., 2012). The inherent complexity of this 
regulatory system allows miRNAs to control the global 
activity of the cell including cell differentiation, 
proliferation, stress response, metabolism, cell cycle, 
apoptosis, and angiogenesis (Gebert and MacRae, 2019). 
Comparison of human plasma or tissue samples from 
cancer patients vs. cancer-free individuals by miRNA 
microarray has revealed evidence of deregulation of 
several miRNAs in many cancers including breast cancer 
(Sethi et al., 2014; An et al., 2017). Different miRNA 
expression profiles between cancerous cells and paired 
normal tissues from the same organ have been documented 
in a number of studies (Lu et al., 2005; Zhu et al., 2014). 
As such, it is proposed that miRNAs influence cancer 
development, metastasis, angiogenesis and drug resistance 
(Liang and He, 2011; An et al., 2017). 

MiRNAs are reported to be aberrantly expressed in 
human breast cancers compared with normal breast tissue, 
with affected miRNAs having tumor suppressing or 
oncogenic effects. Furthermore, several studies have 
demonstrated that diverse cancer types at different 
developmental stages display unique miRNA expression 
profiles (Puppin et al., 2014). Down-regulated miRNAs 
include miR-10b, miR-125b and miR-145 (Iorio et al., 
2005), and the re-introduction of under-expressed miRNAs 
has been shown to reduce the viability of cancer cells, 
suggesting tumor-suppressor functions and 
antiproliferative and /or pro-apoptotic roles (Lu et al., 
2005; Zhu et al., 2014). In contrast, oncogenic miRNAs 
(oncomiRs) display antiapoptotic activities and are over-
expressed in cancer cells (Nugent 2014). An example is 
miR-21, which was found to be overexpressed in breast 

tumors compared to matched normal breast tissues (Si et 
al., 2007). Inhibition of miR-21 resulted in cell growth 
inhibition in association with increased apoptosis and 
decreased cell proliferation (Si et al., 2007). Expression of  
miR-21 was also found to be associated with specific 
features of breast cancer such as expression of ER and PR, 
tumor stage, vascular invasion, and proliferation (Yan et 
al., 2008). 

Changes in the expression of miRNAs and/or their 
functional roles in TNBC, particularly, have also been 
investigated. Differential expression of some miRNAs 
have been proposed as prognostic biomarkers such as miR-
9, miR-15, miR-588 (Jang et al. 2017; Nama et al., 2019). 
Several circulating miRNAs were identified in the sera of 
early-stage TNBC patients (miR-126-5p and miR-34a) 
(Kahraman et al., 2018). In addition, numerous published 
studies have elucidated the association of miRNAs with 
TNBC progression or suppression (Piasecka et al., 2018). 
One example is miR-20a-5p that promotes the growth of 
triple-negative breast cancer cells through targeting 
RUNX3 (Bai et al., 2018). MiR-9 was also been shown to 
exhibit a suppressor-like activity in metastatic TNBC cells 
by direct targeting of NOTCH1 (Mohammadi‐Yeganeh et 
al., 2015). Migration and invasion of TNBC have been 
proven to be affected by several miRNAs. Examples 
include miR-124, which regulates epithelial-to-
mesenchymal transition (EMT) via targeting ZEB2, 
thereby inhibiting invasion and metastasis in TNBC (Ji et 
al., 2019). It was reported that Let-7 miRNA controls 
metastasis and stemness of TNBC cells by regulating the 
JAK-STAT3 and cMyc pathways (Lyu et al., 2014). 
Furthermore, the role of miR-10a in suppressing breast 
cancer progression via the PI3K/Akt/mTOR pathway was 
illustrated (Ke and Lou, 2017).  

Significant changes in miRNA expression profiles have 
been observed in drug-resistant cancer cells in comparison 
with parental drug-sensitive cancer cells (Fojo 2007). 
Evidence pointing to the role of miRNAs in determining 
drug sensitivity and MDR is emerging (Wang et al., 2015). 
One example is miRNA-451 whose expression correlates 
with an increased sensitivity of MCF-7 cells towards 
doxorubicin (Kovalchuk et al., 2008). The dysregulation of 
miRNA expression profiles in cancer cells can lead to 
resistance towards anti-cancer drugs by abnormally 
modulating the expression of genes involved in MDR 
action such as genes encoding ABC transporters, apoptosis 
and autophagy regulators, regulators of drug metabolism, 
and genes associated with redox systems (Wang et al., 
2015). Therefore, miRNAs may drive tumorigenesis or 
may be used as diagnostic and prognostic biomarkers, and 
can potentially  be targeted in order to improve treatment 
responses. 

Dysregulation of numerous miRNAs has been linked to 
the chemoresponsiveness of TNBC (Rizzo et al., 2017; 
Ouyang et al., 2014). For example, upregulating miR-33a-
5p significantly increased cell sensitivity toward 
doxorubicin in TNBC, but not other breast cancer types 
(Guan et al., 2019). Downregulation of miR-27b-3p also 
desensitized cells to tamoxifen in TNBC by increasing 
NR5A2 and CREB1 expression (Zhu et al., 2016). 
Interestingly, tamoxifen has also been shown to reverse 
EMT in TNBC as well as their metastatic capability by 
down-regulating miR-200 (Wang et al., 2017). One 
mechanism by which miRNA can affect 
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chemoresponsiveness of cells is via manipulating DNA 
repair efficiency as shown for miR-302b (Cataldo et al. 
2016). Another mechanism has also been illustrated for 
miR-5195-3p, which enhances the sensitivity of paclitaxel-
resistant TNBC cells by down-regulating EIF4A2, a 
helicase upregulated in proliferating cells (Liu et al., 
2019). These findings, and others, strongly implicate the 
possibility of alternative therapeutic strategies for the 
disease.  
Androgen Regulation of MiRNA in Breast Cancer 

Published studies have predominantly focused on the 
association of AR with miRNA expression in prostate 
cancer.  A few studies, however, have analyzed the 
regulation of miRNA expression by androgens in breast 
cancer.  For example, Nakano et al. (2013) showed that 
five miRNAs were dysregulated in MCF-7 cells using 
PCR microarray. Lyu et al. (2014) showed that expression 
of four miRNAs, let-7a, b, c and d was up-regulated in 
androgen-treated MDA-MB-453 cells while other 7 
miRNAs were downregulated. The regulation of miRNA 

expression by androgens in MDA-MB-453 cells has also 
been studied using PCR arrays by Ahram et al. (2017) 
reporting the differential expression of 20 miRNAs.  
Interestingly, only three microRNAs, let-7a, b, and d were 
found to be commonly altered in the former two studies 
but with a different trend where Lyu et al. (2014) reported 
their up-regulation, whereas they were down-regulated by 
the study of Ahram et al. (2017).  Ahram et al. (2017) also 
analyzed the regulation of miRNA expression by 
androgens in MCF-7 and T47D cells.  However, none of 
the reported changes were common with those reported by 
Nakano et al. (2013).  These discrepancies in the results 
could be due to the type and concentration of agonist used, 
the duration of experiments, and/or passage number of 
cells.  Further work by our group has identified a number 
of miRNAs, including miR-328-3p, whose expression was 
up-regulated upon androgen treatment of the TNBC MDA-
MB-231 cells (Al-Othman et al., 2018).  The general 
experimental conditions and results of these studies are 
summarized in Figure. 1.

 

 
Figure 1. Androgen regulation of miRNAs in breast cancer and their cellular effects 

MiRNAs Regulate ABCG2 Levels 
A number of miRNAs have been shown to regulate the 

expression of proteins involved in the chemoresponsivness 
of cancer (Pan et al., 2009; Bockhorn et al., 2013; Wang et 
al., 2019). ABCG2/BCRP was the first MDR transporter 
found to be regulated by miRNA (To et al., 2008b). To 
date, several miRNAs have been shown to regulate 
ABCG2 expression, including miR-328, which has been 
shown to increase mitoxantrone sensitivity by negatively 
regulating ABCG2 protein expression via binding to target 
sites in the ABCG2 gene 3’-UTR (Pan et al., 2009; Li et 
al., 2010; Li et al., 2011). Restoration of miR-328 

expression as a therapy could therefore improve treatment 
outcomes, particularly responsiveness to doxorubicin and 
mitoxantrone, both of which are two substrates for 
ABCG2 (Pan et al., 2009; Li et al., 2010). Other miRNAs 
have similar negative regulatory effects on ABCG2 
expression including miR-519, miR-520h, miR-212, miR-
181a, and miR-487a (Li et al., 2011; Turrini et al., 2012; 
Jiao et al., 2013; Ma et al., 2013). 

2. Conclusion 

AR is an important regulator of breast cancer growth 
and has been proposed to be a potential therapeutic target. 
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The observations that AR can control cancer 
chemoresponsiveness can be highly significant in the 
clinical setting. However, the molecular mechanisms by 
which it can do so are incompletely characterized. One 
interesting mechanism is via miRNA molecules that 
regulate the expression of transporters involved in drug 
efflux such as ABCG2. Findings that AR can regulate both 
ABCG2 and its targeting miRNAs constitute an intriguing 
mechanism of regulation. Understanding of these 
molecular mechanisms may lead to novel and more 
effective therapeutic strategies of TNBC based on AR 
targeting of both ABCG2 and ABCG2-regulating miRNA.   
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