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Abstract 

Honey is a broad-spectrum antimicrobial agent that seems to affect different bacteria in many different ways. The aim of this 
study was to evaluate the antibacterial activities of Trigona honey against P. aeruginosa and S. pyogenes. The effect of 
Trigona honey on P. aeruginosa and S. pyogenes was investigated using growth kinetics curve and real-time PCR. The 
growth kinetics of P. aeruginosa and S. pyogenes with 20% (w/v)(MIC) Trigona honey inhibited the growth cells number of 
P. aeruginosa and S. pyogenes compared with cells grown without honey. Treatment with 10% (w/v) (half-MIC) showed 
slightly decreased number of cells of P. aeruginosa and S. pyogenes over a period of 24 hours. Conversely, treatment with 
5% (w/v) (quarter-MIC) was observed to have a similar untreated samples of P. aeruginosa and S. pyogenes. The RT-qPCR 
results showed that the expression of Sof and Sfbl decreased 7.82-fold and 9.23-fold respectively after exposure to 20% 
concentration of Trigona honey, whereas the expression of algD and oprF decreased 6.28-fold and 11.11-fold respectively 
after exposure to 20% concentration of Trigona honey. Trigona honey demonstrated the highest antibacterial activity against 
P. aeruginosa and S. pyogenes in vitro. Our results indicate that Trigona honey has the potential to be an effective inhibitor 
on virulence genes of P. aeruginosa and S. pyogenes. 
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1. Introduction 

Pseudomonas aeruginosa is a pathogen of plants, 
animals and humans with colonies as diverse as the site of 
isolation and is able to cause devastating infections 
because of the strong attachment potential with pili 
(Lyczak et al., 2000; Van Delden and Iglewski, 1998) and 
production multiple virulence genes such as oprF and 
algD (van Delden, 2004; Wendt et al., 2017). oprF is a 
general outer membrane porin of P.aeruginosa allowing 
nonspecific diffusion of ionic species and small polar 
nutrients, including polysaccharides (Nestorovich et al., 
2006). oprF is described as a structural protein, anchoring 
the outer membrane to the peptidoglycan layer (Rawling et 
al., 1998; Woodruff and Hancock, 1989). The structure 
and positioning of oprF provides structural stability, 
forming an anchor point between the outer membrane and 
peptidoglycan layer (Bouffartigues et al., 2015; Chevalier 
et al., 2017; Fito-Boncompte et al., 2011; Rosay et al., 
2015; Sugawara et al., 2006). The reduced expression of 
this gene not only could result in the disruption of 
diffusion, but may also compromise cellular integrity; the 

latter supports the scanning microscopy data, which 
showed a loss and disruption of extracellular components 
and abnormal cell structure observed in previous studies 
(Henriques et al., 2011; Al-Kafaween et al., 2019). 
Currently, oprF has been shown to play a role in the 
growth and biofilm formation (Bouffartigues et al., 2015; 
Chevalier et al., 2017; Fito-Boncompte et al., 2011; Rosay 
et al., 2015; Sugawara et al., 2006) of P.aeruginosa 
(Bjarnsholt et al., 2008; James et al., 2008; Yoon et al., 
2002). The mucoid phenotype of P.aeruginosa is caused 
by excessive alginate production and has long been 
associated with prolonged infection of the pulmonary 
cavity, particularly in those suffering from cystic fibrosis 
(Jones et al., 2013; McIntyre et al., 2010; Wozniak et al., 
2003). Recent studies (Wood and Ohman, 2012) have 
shown that alginate genes are under the regulation of 
sigma factor (s22) and are upregulated as part of an extra 
cytoplasmic stress response to cell wall stress. Of the many 
genes regulated, 11 are directly involved in cell envelope 
homeostasis. The algD (GDP-mannose dehydrogenase), 
which is essential for the production of alginate (algB, 
algC, algE, algR, algG and algT) and as a virulence factor 
(Leid et al., 2005; May et al., 1991). Additionally, algD is 
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a key enzyme of the alginate biosynthetic pathway (Manzo 
et al., 2011;Jones et al., 2013; McIntyre et al., 2010; 
Wozniak et al., 2003). S. pyogenes produces a wide range 
of virulence factors, and the cell wall associated M protein 
is a major virulence factor of S. pyogenes, which can bind 
directly to the extracellular matrix components (e.g. 
fibrinogen)(Cole et al., 2007; Yamaguchi et al., 2013). 
Fibronectin (Fn) is a high‐molecular weight glycoprotein 
that circulates free as a dimer in the soluble form in blood 
plasma or as a fibrillar form is assembled by cells as major 
component of the extracellular matrix. So far, fibronectin 
binding proteins are the best studied adhesions of S. 
pyogenes and currently 11 different such adhesions have 
been identified (Yamaguchi et al., 2013), divided in two 
types. First type proteins are SfbI, PrtF2, Sof, SfbX, 
Fbp54, FbaA, and FbaB and they all contain Fn‐binding 
repeats. Second type proteins are M1, Shr, Scl1, and 
GAPDH and they do not contain these repeats. It is 
estimated that 60% of initial attachment to cells is realized 
by streptococcal lipoteichoic acid. Fibronectin binding 
proteins are the most important in the irreversible stage of 
adherence. Binding of these adhesions to Fn could result in 
irreversible attachment to the cell or biofilm production in 
tissue or bacterial internalization. Expression of 
Fn‐binding proteins is regulated as response to the 
environmental conditions in which streptococci survive 
and multiply. Protein F/SfbI, which allows binding to cells 
of the dermis and Langerhans cells, shows increased 
expression on bacterial surface with increasing pressure of 
oxygen. Similarly as in protein F1/SfbI, F2 activity is also 
response to the environmental oxygen pressure (Jaffe et 
al., 1996). Previous studies showed that the expression of 
oprF and algD of P. aeruginosa and Sof and Sfbl of S. 
pyogenes were suppressed after treated with Manuka 
honey (Maddocks et al., 2012; Roberts et al., 2012). 
Honey is a natural product and for many centuries was 
held in high regard due to its antibacterial properties 
(Crane, 2001; Rao et al., 2016). Such effects have been 
observed against more than 80 bacterial species, including 
both Gram-positive and Gram-negative bacteria, and 
multidrug-resistant pathogens (Cooper et al., 2009; Molan, 
1992). The inherent antibacterial properties of honey are 
partly conferred by sugars, which account for 80% of its 
weight, resulting in a high osmolarity and low water 
activity (Abu Baker et al., 2018; Jibril et al., 2019). This 
study was undertaken to determine the effect of Trigona 
honey on the level of gene expression of P. aeruginosa 
and S. pyogenes. 

2. Materials And Methods  

2.1. Bacterial strains and culture conditions  

Pseudomonas aeruginosa ATCC 10145 and 
Streptococcus pyogenes (ATCC 19615) were used 
throughout the study. One to five colonies of test organism 
were inoculated into 20 ml nutrient broth (Oxoid, UK)  
and incubated at 37oC for 24 hours. After incubation time, 
the turbidity of the suspension was adjusted to achieve 0.5 
McFarland with the absorbance range of 0.08 to 0.1 by 
using spectrophotometer at wave length of 600 nm 
(Bouacha et al., 2018; Zainol et al., 2013). 

2.2. Honey Samples 

Trigona honey samples were obtained from farm in 
Kelantan state in East Coast of Peninsula Malaysia. The 
samples were kept in the dark (Bouacha et al., 2018; 
Garedew et al., 2003; Ng et al., 2017). The MIC of this 
Trigona honey for the test organisms is 20% (w/v) as 
described by AL-kafaween et al., (2020) 

2.3. Growth Kinetics 

To determine the effects of Trigona honey on the 
growth of P. aeruginosa and S. pyogenes cells were grown 
and treated in 96-well plate with MIC 20% (w/v), half-
MIC 10% (w/v) and quarter-MIC 5% (w/v) concentration 
of honey. Initially, column number 1 was filled 200 µl of 
final volume of 20%, column number 2 was filled 200 µl 
of final volume of 10% and column number 3 was filled 
200 µl of final volume of 5%.  The plate was incubated at 
37ºC for 24 hours. At 60 min intervals, the plate was 
measured at 570nm using a microplate reader (Tecan 
Infinite 200 PRO, Austria). The experiments were 
performed in triplicate (Bouacha et al., 2018; Maddocks et 
al., 2012; Roberts et al., 2012; Zainol et al., 2013). 

2.4. RNA extraction from P.aeruginosa and S.pyogenes  

P. aeruginosa and S.pyogenes cells were grown in 
duplicate in 10 ml of Mueller Hinton broth for 24 hours at 
37°C. The total RNA from untreated and treated 
P.aeruginosa  and S.pyogenes was extracted using the SV 
Total RNA Isolation System (Promega, UK)(França et al., 
2011; Goldsworthy, 2008; Maddocks et al., 2012; Roberts 
et al., 2012; Wasfi et al., 2016; Yadav et al., 2012). Total 
RNA concentrations from untreated and treated of 
P.aeruginosa and S.pyogenes were examined by using 
Implen NanoPhotometer® NP80. RNA purity levels were 
assessed using the 260/280 absorbance ratio, with only 
sample ratios between 1.8 and 2.1 being accepted for 
conversion to cDNA. The experiments were performed in 
triplicate.  

2.5. Conversion of RNA to cDNA 

Reverse transcription of RNA was performed with 
Oligo (dT)15 primers and Random Primers. Total RNA 
samples were converted to cDNA using a high capacity 
RNA to cDNA conversion kit (Promega, UK). Samples 
were diluted to 100 ng/μl using ultra pure water. 
Mastermix 1 was prepared for RNA samples extracted 
from cells treated and untreated as per the manufacturer’s 
instructions (Promega, UK). For each reaction, 4 μl of 
(100 ng/μl) RNA, 1 μl of Oligo (dT)15, 2 μl of random 
primers and nuclease-free water was added to get 10 μl. 
Mastermix 1 was incubated in PCR thermal cycler at 70°C 
for 5 minutes to denature the secondary structures of RNA 
that potentially formed in samples, before was chilled on 
ice for 5 minutes. While matermix 1 was being incubated, 
mastermix 2 for each reaction was prepared as following 4 
μl 5X Reaction Buffer, 2 μl MgCl2, 1 μl PCR nucleotide 
mix, 0.5 μl ribonuclease inhibitor, 1 μl reverse 
transcriptase primers and topped up with nuclease-free 
water to a final volume of 10 μl. Negative controls were 
created by substituting total RNA with ultra pure water. 
The mixture of Mastermix 1 and Mastermix 2 was 
incubated at 5 minutes at 25ºC, 60 minutes at 42ºC and a 
final hold at 70ºC for 15 minutes by using a thermal 
cycler. Following conversion to cDNA, samples were 
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stored at -20ºC until ready to use (Maddocks et al., 2012; 
Roberts et al., 2012; Yadav et al., 2012). 

2.6. Reverse Transcriptase Quantitative Polymerase 
Chain Reaction (RT-qPCR) 

Primers of P. aeruginosa and S. pyogenes were 
retrieved from previous studies as shown in Table 1. 
Lyophilised and desalted oligonucleotides were 
reconstituted using sterile ultra-pure water following the 
manufacturer’s instructions. Stock solutions were stored at 
-20ºC. The RT-qPCR mastermix for each reaction was 
prepared by following the manufacturer’s instructions 
(Promega, UK), 10µl of qPCR Master Mix, 1µl of forward 
primer, 1µl of reverse primer, 2µl of cDNA template, 
0.2µl CXR Reference dye and topped up with nuclease-
free water to 20μl. Wells were closed with strip caps, 

centrifuged and placed into PCR instrument. The 
following PCR protocol was used: denaturation at 95oC for 
2 minutes one cycle, amplification at 95oC for 15 seconds 
40 cycles and a final elongation annealing: at 60 oC for 1 
min 40 cycles. The positive control for the reaction was 
provided by the manufacturer (Promega), and nano-pure 
water was used to exclude the possibility of contamination. 
Also, negative control primers were used for both bacteria. 
Densitometry was performed by using the Applied 
Biosystems StepOne Software v2.3. The experiments were 
performed in triplicate to determine the level of relative 
gene expression in samples, a modified 2-ΔΔ Ct method 
was used (Livak and Schmittgen, 2001; Maddocks et al., 
2012; Roberts et al., 2012; Schmittgen and Livak, 2008; 
Wasfi et al., 2016; Yadav et al., 2012).  

Table 1. Primers used for the RT-qPCR analysis of P.aeruginosa and S.pyogenes 

Primer sequence 
(5’ → 3’) 

Direction 
 

Number of 
cycles 

Annealing 
temp (Co) 

GC 
content 

Amplicon 
Size (bp) 

Gene of 
name 

CGCCGAGATGATCAAGTACA 
AGGTTGAGCTTGTGGTCCTG 

Forward  
Reverse 

41 56 42.5 % 
42.9% 

144 1. algD 

CTGGACGCCATCTACCACTT 
CTGTCGCTGTTGATGTTGGT 

Forward  
Reverse 

41 54 41.2% 
42% 

101 2. oprF 

GCGACGGTATTCGAACTTGT 
CGAAGAAGGAAATGGTCGAG 

Forward  
Reverse 

41 53 42.3% 
42.6% 

146 3. rpoD* 

ACTTAGAAAGTTATCTGTAGGG 
TCTCTCGAGCTTTATGGATAG 

Forward 
 Reverse 

41 57 36.4 % 
42.9 % 

873 4. Sof 

AACTGCTTTAGGAACAGCTTC 
CCACCATAGCCACAATGCT 

Forward 
 Reverse 

41 55 42.9 % 
52.6 % 

960 5. SfbI 

ATGGATACAAGACCAATTGG 
TCATAAGGTGACATGCTCCAC 

Forward  
Reverse 

41 54 42.9 % 
47.6 % 

797 6. glr* 

*rpoD was used as a reference gene for P.aeruginosa and *glr was used as a reference gene for S.pyogenes 

2.7. Statistical Analysis 

Data was expressed as mean ± standard error of means, 
one way analysis of variance and graphing was performed 
using SPSS program, version 20.For each data set, three 
replicates were performed. 

3. Results 

3.1. Growth kinetic curves 

As shown in Figure 1 and 2, results showed 
P.aeruginosa and S.pyogenes could not be recovered after 
24 h incubation with MIC (20% (w/v) and prevented the 
growth of P.aeruginosa and S.pyogenes. P. aeruginosa 
and S.pyogenes treated with half-MIC (10% w/v) have 
resulted a decreased optical density and decreased lag 
phase and exponential phase compared to untreated 
sample. Conversely, P.aeruginosa and S.pyogenes treated 
with quarter-MIC concentrations (5 %, w/v) had no 
inhibition in growth compared with untreated cells. The 
data obtained from growth kinetics supporting the MIC of 
Trigona honey as mentioned in previous study by Al-
kafaween et al., (2020) 

Figure 1. Growth curves of P.aeruginosa cells grown with and 
without Trigona honey. 

Figure 2. Growth kinetics curve of S.pyogenes cells grown with 
and without Trigona honey.
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3.2. RT-qPCR of genes expression of P.aeruginosa and 
S.pyogenes 

Two genes oprF and algD of P.aeruginosa and two 
genes Sof and Sfbl of S.pyogenes showed a statistically 
significant reduction in gene expression after being treated 
with 20% (w/v) of Trigona honey. As shown in Table 2 
and Figure 3, results showed all genes were downregulated 
and different degrees of downregulation were observed. 
The RT-qPCR results demonstrated that the expressions of 
oprF and algD genes of P. aeruginosa were decreased 
11.11-fold and 6.28-fold respectively after treated with 
20% (MIC) Trigona honey. Whereas Sof and Sfbl of S. 
pyogenes were decreased 7.82-fold and 9.23-fold 
respectively after treated with 20% (MIC) Trigona honey. 
Table 2.  Effect of Trigona honey on the expression of 
P.aeruginosa and S.pyogenes detected by RT-qPCR (Schmittgen 
& Livak, 2008). 

Gene  
name 

Average 
ΔΔCt 

Expression 
Fold 
Change 

(2^-ΔΔCt) 

Expression 
Fold 
Change 

P-
value 

SD 

1. oprF 3.47 0.09 -11.11 0.04* 1.0 

2. algD 2.65 0.16 -6.28 0.04* 1.5 

3. Sof 2.97 0.13 -7.82  0.03* 1.3 

4. Sfbl 3.21 0.11 -9.23 0.03* 1.5 

If the delta-delta Ct has a negative value, the gene of 
interest is upregulated, because the fold change will be 
larger than 1. On the other hand, if the delta-delta Ct has a 
positive value, the gene is down regulated and the fold 
change is <1. *Statistically significant change in the level 
expression (P<0.05). 

Figure 3.Alterations in gene expression profiles associated with 
exposure of P.aeruginosa and S.pyogenes to Trigona honey as 
determined by RT-qPCR. Mean values of fold changes (±SD) are 
shown in relation to untreated (control).Error bars denote standard 
error of the mean from three biological samples. 

4. Discussion 

This study describes the first systematic analysis of the 
effect of Trigona honey on level of gene expression of 
P.aeruginosa and S. pyogenes. Total viable cell decreased 
after exposure to 20% (w/v) and 10% (w/v) of Trigona 
honey. Studies by (Zainol et al., 2013) reported that 
Trigona honey inhibited growth of P.aeruginosa at 20% 
concentration of honey. Studies by (Maddocks et al., 2012; 
Roberts et al., 2012) showed that the number of cells of 

S.pyogenes were decreased after treated with  20% 
concentration of Manuka honey. Previous studies showed 
that the growth kinetics of P.aeruginosa and S.epidermidis 
was gradually declined after exposure to 40% (w/v) 
concentration of Indian honey (Chakraborti et al., 2014). 
Recently, honey has been documented to reduce growth 
rate of Gram-positive and Gram-negative bacteria (Nassar 
et al., 2011). RT-qPCR was used to determine the level of 
gene expression of P.aeruginosa and S.pyogenes after 
treated with Trigona honey. Reduced expression was 
noticeable with a different level of expression in both 
bacteria. The expression of Sof and SfbI of S.pyogenes 
decreased 7.82-fold and 9.23-fold respectively after treated 
with 20% (MIC) of Trigona honey. Whereas oprF and 
algD of P.aeruginosa decreased 11.11-fold and 6.28-fold 
respectively after treated with 20% (MIC) of Trigona 
honey. In previous study oprF has been shown to play a 
role in the anaerobic growth of P.aeruginosa(Yoon et al., 
2002) and subsequent biofilm formation, concurrent with 
chronic wound infection (Bjarnsholt et al., 2008; James et 
al., 2008). The observed reduction of oprF in 
P.aeruginosa following treatment with Trigona honey may 
therefore, in part, account for the observed ability of 
honey-treated P.aeruginosa to form microcolonies. GDP-
mannose dehydrogenase is essential for the production of 
algD (Leid et al., 2005; May et al., 1991). It is, therefore, 
possible that the observed decrease in algD and oprF 
causes instability of the cell envelope, making 
P.aeruginosa susceptible to the osmotic action of Trigona 
honey, which results in the decreased expression of algD 
as the extra cytoplasmic stress response system is 
activated. Sfbl is regarded as one of the major adhesions of 
S.pyogenes (Medina et al., 2000) and Sof is regarded as a 
major virulence factor that is known to contribute to 
pathogenesis of streptococcal infection in animal models 
(Courtney and Pownall, 2010). The Sof gene was first 
sequenced over 15 years ago (Rakonjac et al., 1995) and 
its product was found to be a surface bound protein of over 
100 kDa, with a C-terminal domain comprised of 
numerous repeating peptides that bound to both fibronectin 
and fibrinogen (Courtney et al., 2003; Courtney and 
Pownall, 2010). It is a possibility that the reduction in 
fibronectin binding was a combination of reduced 
expression and specific physical disruption of binding or 
stearic hindrance by components of the Trigona honey.  

A study by (Roberts et al., 2012) showed that algD of 
P.aeruginosa increased 16-fold in the expression whereas 
oprF decreased 10-fold after treated with 12% (MIC)  of 
Manuka honey. A previous study showed that the Sof and 
Sfbl proteins decreased in the expression of S. pyogenes 
after treated with 20% (MIC) of Manuka honey 
(Maddocks et al., 2012). A study by (Roberts et al., 2014) 
showed that six genes (fliA, fliC, flhF, fleN, fleQ and fleR) 
of P. aeruginosa were reduced in gene expression after 
exposure to 24% (MIC)  of Manuka honey. A previous 
study showed that tnaA and yjfO (bsmA) genes were down-
regulated in expression of E.coli in the range of 12.5–16.2-
fold after treated with 25% (MIC) of Egyptian honey 
(Wasfi et al., 2016). A study by (Wasfi et al., 2016) 
reported that ycfR (BhsA) and evgA genes of E.coli were 
upregulated in expression in the range of 2.2–4.19-fold and 
1.09-fold respectively after treated with 25% (MIC) of 
Egyptian honey. Honey is a complex substance estimated 
to be comprised of between 200 and 600 components, 
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including fructose (~38.2 %), glucose (~31.3 %), sucrose 
(1 %) and ‘other sugars’ (9 %) (Bogdanov et al., 2008). 
Additional minor constituents include acids (0.57 %), 
proteins (0.266 %), amino acids (0.1 %), nitrogen (0.41 
%), minerals (0.17 %) The antibacterial action of Trigona 
honey is attributed to its high osmolarity, low water 
activity, viscosity, low PH and the presence of hydrogen 
peroxide; it is the combination of these factors that is 
thought to provide an unsuitable environment for bacterial 
growth (Cooper, 2008; Adams et al., 2009). It is evident 
that Trigona honey is effective at inhibiting the growth of 
P. aeruginosa and S. pyogenes, causing abnormal cell by 
reducing structural integrity to the point of cell lysis as 
mentioned in previous study by (Al-kafaween et al., 2019). 
The data presented here supports previous findings and 
describes the effects of Trigona honey on P. aeruginosa 
and S. pyogenes at a genetic level. These effects may be 
compounded by the high osmolarity of Trigona honey. 
Whether these are the only targets remains to be 
determined, and the global effect of Trigona honey on P. 
aeruginosa and S. pyogenes will be the subject of future 
research. 

5.  Conclusion 

This is the first comprehensive study of the level of 
gene expression of P. aeruginosa and S. pyogenes after 
exposure to Malaysian Trigona honey. Taken together, our 
results revealed that the tested Trigona honey has the 
potential to be effective inhibitors of S.pyogenes. 
Differential gene expression in response to honey exposure 
exhibited down-regulation of two genes involved in 
microcolonies and biofilm formation in P. aeruginosa and 
S. pyogenes. The obtained results indicate that the honey 
under study may represent promising antibacterial, 
antibiofilm and anti-virulence agents for treatment and 
modulation of infections caused by P.aeruginosa and 
S.pyogenes. Future clinical evidence pertaining to the 
efficacy of the tested Trigona honey in the prevention and 
treatment of P. aeruginosa and S. pyogenes induced 
infections at various tissue/cell types might be required. 
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