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Abstract

Antimicrobial peptides (AMPs) are small molecular weight proteins that play an important role in the innate immune
response against pathogenic invasions. In the present study, the coding sequences (CDs) of four AMPs were characterized
and analyzed. NK-lysin (Cgnkl) and hepcidin (Cghep) coding sequences were obtained from Clarias gariepinus (North
African catfish), while two hepcidin paralogs (Crhepl and Crhep2) coding sequences were identified from Chelon ramada
(thin-lipped mullet). Cgnkl coding sequence consists of 128 amino acids with predicted signal peptide cleavage site between
codons 17 and 18 and six conserved cysteine residues that are held together by three disulfide bonds. On the other hand,
Cghep, Crhepl, Crhep2 coding sequences consist of 91, 85 and 90 amino acids, respectively, and show the similar predicted
signal cleavage site between codons 24 and 25 as well as eight characteristic cysteine residues. Several synonyms and non-
synonyms SNPs were detected within Cghep and Crhepl CDs. Finally, phylogenetic and conservation analyses were carried

out on the amino acid sequences of the discovered AMPs and the 3D structures of their propeptides was predicted.
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1. Introduction

Although AMPs have been recognized in the middle of
the 20th century, they have gained increasing attention in
recent years. AMPs are small size peptides that have a
great diversity in amino acid composition, structural
organization, and mechanism of action (Bruno et al.,
2019). They display antimicrobial activity against several
microorganisms and viruses and participate in the innate
host defense of each eukaryotic species (Masso-Silva and
Diamond, 2014). Generally, all AMPs are able to disrupt
microbes lipidic membranes to kill or inhibit proliferation
(Lai and Gallo, 2009; Mahrous et al, 2020a; Mahrous et al,
2020c).

Fish is a great source of AMPs, as it mainly relies on
humoral primary immune defense mechanism to succeed
in the highly dynamic and challenging external
environment rich with microorganisms (Sathyan et al.,
2013). A large number of AMPs has been identified from
different fish species, including hepcidin and NK-lysin.

Hepcidin, a small cysteine-rich AMP, plays an essential
role in host iron metabolism regulation and immunological
processes. Its amphipathic structure is similar to other
AMPs, such as defensins. It has the ability to defend
against pathogenic bacteria in an indirect way through
decreasing iron in the plasma and extracellular fluids and,
as a result, limiting its proliferation (Drakesmith &
Prentice, 2012; Huang et al., 2019). Unlike many other
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AMPs displaying a high degree of sequence variability
among closely related organisms, hepcidin is highly
conserved from teleosts to mammals (Masso-Silva and
Diamond, 2014). Most mammals present only one copy of
the hepcidin gene, but in fish, multiple copies exist.
Hepcidin antimicrobial peptides (HAMPs) of fish are
divided into two groups, HAMP1 and HAMP2. HAMP1 is
present in all fish while, HAMP2 is present only in
acanthopterygian (Neves et al., 2017).

NK-lysin, a member of the Saposin-like protein family,
is orthologous with human granulysin. It is larger (74-78
amino acids) than the classical AMPs (Kim et al., 2016).
It is released from the natural killer cells and cytotoxic T
lymphocytes (Zhou et al., 2016) with remarkable broad-
spectrum activities against fungi (Stenger et al., 1998),
protozoa (Lama et al., 2018) and bacteria (Pereiro et al.,
2017), and tumor cells (Fan et al., 2016). Its sequence is
rich in positively charged amino acids and the sulfide
bond-forming cysteines (Wang et al., 2018).

Egypt is one of the top seven aquaculture producers by
quantity. Its average annual production is 3.3 tons (FAO,
2017). With the continued expansion of cultured fish
species, aquaculture became a key component of the
animal production industry. Chelon ramada (Thin-lipped
mullet) is a potential species for fish culture in Egypt due
to its temperature tolerance, superior growth, wide salinity
tolerance range and high-quality flesh (Mehanna et al.,
2019). Also, Clarias gariepinus (North African catfish), is
an important catfish species for aquaculture purposes due
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to its rapid growth and the high protein content (Shourbela
etal., 2014).

In the present study, we analyze the coding sequence of
Cgnkl,Cghep, Crhepl and Crhep2. We provide the
predicted conserved  domains,  post-transcriptional
modification motifs, signal peptides cleavage sites and the
propeptides 3D structure. Further, we compare their
deduced amino acid sequences with orthologous peptides
of other bony fish species and construct phylogenetic trees.

2. Materials and Methods

2.1. Tissue Collection

Seven North African catfish (C. gariepinus) and five
thin-lipped mullet (C. ramada) fish were collected from
Lake Manzala and liver tissues were isolated and stored
directly in -80°C for RNA extraction.

2.2. RNA isolation and cDNA synthesis

Liver tissue was homogenized in Trizol reagent
(Invitrogen, Germany) and total RNA was extracted
according to the manufacturer’s instructions. RNA yield
and purity were measured using NanoDrop™ 1000
Spectrophotometer (Thermo Fisher Scientific, USA).
RNase-free DNase kit (Promega) was used to remove any
DNA contamination. One microgram (1 pg) of RNA was
reverse transcribed into cDNA using Revert Aid First-
strand synthesis cDNA kit (Thermo Fisher Scientific,
USA\) as described previously (Sroor et al., 2020).

2.3. Pre-processing and de novo assembly of
transcriptome data

Since some genes are tissue-specific and or inducible,
we assembled RNA-seq datasets (which belong to the
same or closely relates species) in order to maximize the
chance of identifying the target AMPs. Moreover,
assembly of RNA-seq from several datasets helps in
designing primers primer pairs within the mMRNA
conserved regions without SNPs which may prevent
amplification due to mismatching. The transcriptome raw
RNA-Seq data of C. gariepinus (Sequence Read Archive
(SRA) accession # SRX4609822- SRX4609825,
ERX538457 and ERX2104803) were assembled. For C.
ramada, the transcription raw RNA-Seq data of Chelon
labrosus (Thicklip grey mullet; SRA accession #
SRX1672957) and Mugil cephalus (Grey mullet; SRA
accession # SRX1817285 - SRX1817288) were
assembled. FastQC (Andrews, 2010) assessment reports of
sequence reads were performed to evaluate read quality
before pre-processing. Adapter clipping, trimming reads
based on quality, and removing sequences with ambiguous
bases (N) were conducted using Trimmomatic (Bolger et
al., 2014). Bases at both ends of reads were removed
within a sliding window of 10 base pairs when the average
quality in this window was lower than Q20 score. To
verify the integrity of the remaining raw sequence reads,
FastQC was performed again. Upon completion, the
quality assessed reads were then ready to be used as the
input for the wvarious assembly strategies and all
subsequent analyses were conducted using clean reads.
Trinity RNA-Seq de novo transcriptome assembly version
2.0.4 was run using the default parameters (Haas et al.,
2013). Reference transcripts were generated by combining
all clean reads of the sequencing data sets. To represent the

assembled component from each cluster, only the longest
transcript was selected to prevent redundancy. All the data
processing steps were performed online depending on
Galaxy project (Enis et al., 2018).

Geneious Software version 10 (Biomatters, Ltd., New
Zealand) was used to perform batch Basic Local
Alignment Search Tool (BLAST) for the assembled
mRNA sequences against NCBI databases to find
homologues sequences based on blastn and blastx tools.
The assembled mRNA sequences found to be homologues
to the target antimicrobial peptides gene (NK-Lysin and
Hepcidin) were used to design specific primers (Table 1)
using Primer-BLAST software
(www.ncbi.nlm.nih.gov/tools/primer-blast) to amplify the
CDs of each gene.

2.4. Amplification and sequencing of the Coding
sequence (CDs) within the target genes

The designed primers (Table 1) were synthetized by
Macrogen (South Korea). Polymerase chain reaction
(PCR) were performed in a 25 pl of reaction volume,
which included a 1 pl of cDNA, a 50 ng of each primer, a
200 uM of each dNTP, a 2.5 pl of 10X PCR buffer and a
0-5 U of Tag DNA polymerase (Promega, Madison, WI,
USA). Amplification was carried out in a thermocycler
programmed as follows: an initial start separation cycle at
94°C for 2 min, 35 cycles including a denaturation step at
94°C for 30 sec, an annealing of each gene (Table 1) for
30 sec, a polymerization step at 72°C for 45 sec and a final
extension cycle at 72°C for 10 minutes. The PCR products
were screened by electrophoresis on a 2% agarose gel in a
0.5X of TBE buffer stained with ethidium bromide and
visualized with an UV transilluminator as described
previously (Mahrous et al., 2020b). The PCR products
were purified using GeneJET Gel Extraction Kit
(Thermo Fisher Scientific, USA) according to the
manufacture instructions and sent for sequencing
(Macrogen, South Korea).

2.5. Amino acids sequence analysis

The CDs of each gene were translated into amino acids
sequence and analyzed using CD-Search software
(https://www.nchi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
to identify the conserved domains. SignalP-5.0
(http://www.chs.dtu.dk/services/SignalP/) software was
used to identify the cleavage sites of the signal peptide.
The amino acid sequences were scanned using MOTIF
online software (https://www.genome.jp/tools/motif/) to
compute the potential motifs within them. The 3D tertiary
structure of the peptide (without the signal peptide) was
predicted using I-TASSER server (Yang et al., 2015) and
the secondary structure assignment was performed using
STRIDE a web server (http://webclu.bio.wzw.tum.de
/cgi-bin /stride/stridecgi.py). The conservation score of
the amino acids within the target proteins was computed
using ConSurf server (https://consurf.tau.ac.il/). UCSF
Chimera software- version 1.14 (https://www.cgl.ucsf.edu/
chimera/) was used for 3D structure visualization and
secondary structure assignment. MEGA-X software-
version 10.16 (Kumar et al., 2018) was used to align the
selected sequences by MUSCLE algorithm based in
neighbor joining clustering method while the phylogenetic
tree was constructed using Maximum Likelihood (ML)
algorithm.
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Table 1: The designed primer sequences used for PCR amplification

Species Gene name Primer sequence Annealing temp
clari . NK-lysin cgnkl-F AACTATCTTTCCCATCTTTAAC
anas ganepinus . anki) cgnkl-R AGAAAAGCATCAATCAGTTC 50
) o Hepcidin cghep-F ACTTGCTTTTAAACGACGACTA
Clarias gariepinus (00 cghep-R ACGTCCCATCTCATGTCTGA 53
Hepcidin-1 crhepl-F CACAAAGATCAGGAGAAAAC
Chelonramada (¢ rhep1) crhepl-R GTGGTCATTTTGTCACATG 52
Hepcidin-2 crhep2-F AGAAGACCTATCAACTCTAATC
Chelon ramada 53
(crhep2) crhep2-R GATGAAGGAAGGGTCTTTAG

3. Results

The total RNA was isolated from C. gariepinus and C.
ramada and converted into cDNA, then the target regions
within the mRNA of the studied genes were amplified
using specific primers. The resultant PCR products of
Crhepl, Crhep2, Cghep and Cgnkl genes had molecular
weights of 520, 408, 362 and 459 bp, respectively
(Figure 1A). The PCR products were purified and
sequenced then the nucleotides sequences were analyzed
using several bioinformatics tools to predict the biological
characteristics of these peptides.

3.1. Characterization of C. gariepinus NK-lysin (Cgnkl)

for 128 aa (Figure 1B). The mRNA CDs sequence was
deposited into GenBank under accession number
MH674388. Saposin (B) SapB domain (aa position 56—
128) which is a characteristic for saposin-like proteins
(SAPLIPs) superfamily was detected within Cgnkl peptide
(Figure 2A) Four N-Myristoylation sites (MYRISTYL; 13-
GSACAI-18, 34-GSLDSV-39, 54-PGACMAC-59, 71-
GNNSNQ-76), a  N-glycosylation  site  (ASN
GLYCOSYLATION; 72-NNSN-75), a Casein kinase 1l
phosphorylation site (CK2 PHOSPHO SITE; 27-SDEE-
30) and a Protein kinase C phosphorylation site (PKC
PHOSPHO SITE; 78-TIR-80) motifs were found in the
full length peptide sequence (Figure 2B). The first 17
amino acids represented a signal peptide with a putative

. . . cleavage site between Alal7 and 1lel8 (Figure 2C).
The determined sequence of C. gariepinus NK-lysine

gene complete CDs consisted of 387 nucleotides coding

A
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Figure 1: (A) Agarose gel electrophoresis for the PCR product of the amplified region within antimicrobial peptides Crhepl, Crhep2, Cghep
and Cgnkl cDNA. M: 100 bp molecular marker (B) The nucleotides and translated amino acids sequences of Cgnkl prepropeptide.
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Figure 2. Predicted motifs and domains within Cgnkl prepropeptide. A) The detected conserved domain for SapB superfamily within the
amino acids sequence. B) The predict motifs within the prepropeptide. C) The predicted signal peptide cleavage site. SP(Sec/SPI): standard
secretory signal peptides transported by the secretory translocon and cleaved by Signal Peptidase I, CS: cleavage site, Other, Other: the
sequence does not have any kind of signal peptide.
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Figure 3. Phylogenetic and conservation analysis of the relationship Cgnkl and its orthologous prepropeptide in some bony fish species. (A)
multiple sequence alignment (conserved residues highlighted in cyan). (B) conservation analysis. (C) phylogenetic tree.
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Alignment of Cgnkl amino acid sequence with the NK-
lysine prepropeptides from 19 species belong to bony fish
(Figure 3A and B) displayed that 19 aa were conserved of
which, 13 aa were positioned at the last 35 residues in the
Cgnkl C-terminus. Moreover, 10 conserved residues could
be exposed whereas the remaining 9 conserved residues
might be buried. The constructed phylogenetic tree was
composed of 3 main clades (Figure 3C). Cgnkl existed in
clade | with P. nattereri, P. hypophthalmus and I.
punctatus. The distance between C. gariepinus and P.
hypophthalmus (Iridescent shark fish) NK-lysin sequences
is the smallest distance and C. gariepinus and X.
maculatus (Southern flatfish) NK-lysine sequences is
largest distance.

The predicted 3D structure of Cgnkl propeptide was
constructed of 57.7% alpha helix,7.2% beta sheet, 0.9%
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isolated beta bridge,25.2% turn and 9% coil. Six conserved
cysteine (Cys) residues forming three disulfide bonds
(Cys39-Cysl11, Cys42-Cys105, and Cys70-Cys80) were
detected (Figure 4). There were differences in the
secondary structure assignment between the results of
UCSF Chimera software which consist of (Eigure left) and
stride results which contain additional beta-sheets and
isolated beta bridge (Figure right). These differences in the
secondary structure assignment results could be explained
by the fact that each tool uses a different secondary
structure assignment algorithm, and the different
secondary structure assignment algorithms could lead to
several alterations in the assignment results (Martin et al.,
2005).
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Figure 4. The predicted 3D structure of Cgnkl propeptide shows the secondary structures and molecular surface of the peptides (left) and
description for the secondary structure and disulfide bonds within the peptides (right).

3.2. Characterization of C. gariepinus Hepcidin (Cghep)

The coding sequence of Cghep is 276 bp coding for 91
aa residues (Figure 5A). The amplified mRNA coding
sequences was deposited into GenBank under accession
numbers from MH674372 to MH674387. Four SNPs were
identified in Cghep prepropeptide containing two
synonyms SNPs (C78T and A195G) and two non-
synonyms SNPs (A67G and T144G). The non-
synonymous SNP (A67G) leads to threonine/alanine while
the non-synonymous SNP (T144G) leads to glutamic
acid/aspartic acid variation (Figure 5A and B). A segment

from Phe62 to Phe91 was found to be a conserved domain
belonging to hepcidin super family (Figure 6A). A Casein
kinase Il phosphorylation site (56-TGPE-59), a N-
myristoylation site (84-GCGYCC-89),a cAMP- and
cGMP-dependent protein kinase phosphorylation site (65-
KRQS-68), a Microbodies C-terminal targeting signal (89-
CRF-91) and Cysteine-rich region (73-
CRYCCNCCKNKGCGYCC-89) motifs were found
within the amino acid sequence (Figure 6B). The predicted
signal peptide cleavage site is located between Ala24 and
Val25, and the predicted signal peptide spanned from
position 1 to 24 (Figure 6C).
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Amino acid sequence alignment of Cghep with the
orthologous prepropeptide from 19 bony fish species
(Figure 7A and B) showed that there were 19 highly
conserved amino acids among these species, and 16 amino
acids among them were located within the last 29 amino
acids of Cghep. 17 amino acids out of the total highly
conserved amino acids were predicted to be exposed which
means that they could have roles in the antimicrobial
peptide function or processing while, highly conserved 2
cysteine residues were buried and could have a role in the
stabilization of the hepcidin polypeptide 3D structure in
these species. The phylogenetic tree of the aligned
sequences (Figure 7C) showed that the tree divided to 3
main clades. Cghep is located in clade Il which consists of
six species. Cghep formed a subclade contains P.

hypophthalmus, 1. punctatus and |. furcatus hepcidin
prepropeptides while the hepcidins from the last 2 species
hepcidin are clustered together faraway from Cghep.
Among the investigated species the distance between
C.gariepinus and P. hypophthalmus (Iridescent shark fish)
hepcidins is the smallest within the tree while the distance
between C. gariepinus and E. naucrates (Live
sharksucker) hepcidins in clade Il is the largest. The
predicted structure of polypeptide was constructed of
22.4% alpha helix,53.7% turn,14.9% coil and 9% 3-10
helix. Eight cysteine residues were identified in C-terminal
of Cghep two residues were predicted to form one
disulfide bond (Cys55-Cys56) as evident from the
secondary structure (Figure 8).
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Figure 8. The predicted 3D structure of Cghep propeptide shows the secondary structures and molecular surface of the peptides (left) and
description for the secondary structure and disulfide bonds within the peptides (right).

3.3. Characterization of C. ramada Hepcidin-1 (Crhepl)
and Hepcidin-2 (Crhep2)

The coding sequence of Crhepl mRNA (GenBank
accession numbers from MH674362 to MH674369)
consisted of 258 nucleotides (nt) coding for 85 aa (Figure
9). Three SNPs were identified in Crhepl prepropeptide,
containing one synonyms SNP (C196A C/A) and two non-
synonyms SNPs (C194A and T205C). The C194A caused
non-synonymous SNP alanine/aspartic acid variation while
the T205C SNP caused phenylalanine/leucine variation
(Figure 9A and B). Both of Crhepl and Crhep2 have
hepcidin conserved regions (which are characteristic for
hepcidin superfamily members) were identified between
the amino acids positions 37-85 and 38-91, respectively.
A potential cleavage site for the signal peptide was
predicted between Ala24 and Val25, resulting in a 24-aa
signal peptide (Figure 10C). Two Crhep2 isoforms,
Crhep2A and Crhep2B, were identified and deposited in
GenBank under accession number MH674370 and

MHG674371, respectively. The nucleotide sequence of
Crhep2A CDs consisted of 276 nt coding for 91 aa while
Crhep2B lacked a codon coding for the amino acid
number 30 (Glutamine or Q) resulting in 273 nt coding for
90 aa (Figure 13). Crhep2 prepropeptide contains a 24-aa
signal peptide where its cleavage site was predicted
between Ala24 and Val25 (Figure 14C). In Crhepl
prepropeptide, the ferredoxin-type iron-sulfur binding
region (74-CGPGICGVC-82), Microbodies C-terminal
targeting signal (83-CRF-85), Casein kinase Il
phosphorylation site (48-TSVD-51), and Cysteine-rich
region (67-CRLCCGCCEPGICGVCC-83) motifs were
found (Figure 10B). In Crhep2A prepropeptide, the
CAMP-  and  cGMP-dependent  protein  kinase
phosphorylation site (64-KRQS-67), Cysteine-rich region
(72-CRWCCNCCRGNKGCGFCC-89), Two N-
myristoylation site (81-GNKGCG-86, 84-GCGFCC-89),
Microbodies C-terminal targeting signal (89-CKF-91) and
motifs were found (Figure 14 B).
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Figure 11. Phylogenetic and conservation analysis of the relationship Crhepl and its orthologous prepropeptide in some bony fish species.
(A) multiple sequence alignment (conserved residues highlighted in cyan). (B) conservation analysis. (C) phylogenetic tree.

The Crhepl was aligned with orthologous
prepropetides of 19 bony fish and about 28% from Crhepl
amino acids (24 aa) were found to be conserved among all
the studied sequences (Figure 11A). Furthermore, Figure
(11B) indicated that 11 conserved residues were predicted
to be exposed and 13 conserved residues were predicted to
be buried. The aligned sequences were used to build a
phylogenetic tree which had 3 main clades (Figure 1C).
Crhepl was clustered with hepcidins from 7 species in
clade Il and form a subclade with S. partitus. The hepcidin

sequences of O. niloticus (Nile tilapia) (within Clade II)
and E. moara (Longtooth grouper fish) (within Clade 1I1)
had the shortest and longest distances within the tree from
Crhepl sequence. The predicted structure of the propeptide
was constructed of 19.7% alpha helix, 3.3% isolated beta
bridge, 52.5% turn, 13% coil and 11.5% 3-10 helix. Eight
conserved cysteine residues were detected from which,
four residues form two disulfide bonds (Cys43-Cys55,
Cys46-Cys50) (Figure 12).
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Figure 12. The predicted 3D structure of Crhepl propeptide shows the secondary structures and molecular surface of the peptides (left) and
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Interestingly, about 55% (50 amino acids) of Crhep2A
were highly conserved when the sequence was aligned
with 19 orthologous prepropeptides from 19 bony fish
species (Figure 15A and B). The 26 conserved amino acids
could be exposed in the folded polypeptide, while 24 could
be buried (Figure 15B). The amino acid in the position 30
(Glutamine or Q) was characteristic for Crhep2A and was
not found in Crhep2B or the aligned sequences. The
aligned data were used to make a phylogenetic tree and the
results showed that the investigated hepcidins sequences
were clustered in 3 main clades in addition to isolated
branch which contained only the M. salmoides hepcidins
(Figure 15C). Crhep2A was positioned in Clade Il which
contained hepcidins of 7 species. C. ramada, M. zebra, C.
zillii and O. niloticus hepcidins were connected to the
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same node and form a subclade in which the last 3
prepropeptides grouped together. Regarding the distances
between Crhep2A and the other hepcidin sequences in the
tree, the D. labrax (European bass) and E. moara
(Longtooth grouper fish) hepcidin sequences were
estimated to have the smallest and the largest distances,
respectively. The predicted structure of Crhep2A
propeptide was constructed of 77% turn and 23% coil
while, Crhep2B was constructed of 13.1% alpha
helix,65.5% turn,14.8% coil and 6.6% 3-10 helix.
Conserved eight cysteine residues were detected in both
isoforms of Crhep2. In Crhep2A, four cysteine residues
formed two disulfide bonds (Cys48-Cys64, Cys52-Cys61)
(Figure 16A) while, in Crhep2B two cysteine residues
formed one disulfide bond (Cys54-Cys60) (Figure 16B).
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Figure 16. The predicted 3D structure of Crhep2 clone A (A) and clone B (B) propeptides shows the secondary structures and molecular
surface of the peptides (left) and description for the secondary structure and disulfide bonds within the peptides (right).

4. Discussion

NK-lysin has been identified in many fish species, such
as Japanese flounder (Paralichthys olivaceus) (Hirono et
al., 2007), half-smooth tongue sole (Cynoglossus
semilaevis) (Zhang et al., 2013), zebrafish (Danio rerio)
(Pereiro et al., 2015), channel catfish (Ictalurus punctatus)
(Wang et al., 2006a and 2006b), common carp (Cyprinus
carpio) ( Wang et al.,2018), Nile tilapia (Oreochromis
niloticus) (Huang et al., 2018), turbot (Scophthalmus
maximus) ( Pereiro et al., 2017), Atlantic salmon (Salmo
salar) (Acosta et al., 2019), and large yellow croaker
(Larimichthys crocea) (Zhou et al.,2016), mudskipper
(Boleophthalmus pectinirostris) (Ding et al., 2019). In
contrast to the single copy gene in human, some fish have
several copies of Nk-lysins, for example, zebrafish showed
the highest score as it possesses four copies.

Deduced amino acid sequence of Cgnkl contains 128
aa. A signal peptide (17aa) was predicted as well as the
characteristic  surfactant-associated protein B (SapB)
domain of the SAPLIPs (saposin-like protein family).
Saposins have been reported to increase the level of
intracellular ceramide, a molecule involved in the
induction of apoptosis, via activating lipid-degrading
enzymes, such as glucosylceramidase and
sphingomyelinases. Saposin-like polypeptides are known
to be greatly resistant to thermal denaturation; however,
such property is abolished after reduction of the disulfide

bonds (Gonzalez et al., 2000). One N-glycosylation site
was identified in Cgnkl at 72-75aa, which is needed for the
intracellular transport mechanism (Martinez et al., 2001).
Also, four N- myristoylation sites at 13-18, 34-39, 54-59
and 71-76aa were detected. Lately, Krishnakumari et al
(2018) indicated that myristoylation enhances antibacterial
activity and modulates hemolytic activity to different
extents.

The amino acid sequence of Cgnkl contains six well
conserved cysteines residues that form three disulfide
bonds. Cgnkl consisted of five-helices, spaced by three
loops, as evident from the predicted 3D structure. As
previously reported by Pereiro et al. (2015), this structure
allows the interaction with biological membranes and the
ability to altering the membrane integrity. The second and
third a-helices in NK-lysin define a helix-loop-helix motif
that is similar to the structural patterns of smaller anti-
bacterial peptides such as bactenecin (coil-loop-coil) or
protegrins (sheet-loop-sheet) (Andreu et al., 1999). NK-
lysin is known to be extremely stable polypeptide, as its
structure remains conserved after the interaction with their
target cell membranes. This stability is due to its
amphipathic character of 3 of its 5 helices and the disulfide
bridges (Waring et al., 2016). Phylogenetic tree analysis
showed that Cgnkl was grouped with bony fish from the
same order (siluriforms) and was closely related to P.
hypophthalmus (Iridescent Shark fish).

Hepcidin, a small cysteine-rich antimicrobial peptide,
plays an important role in host immunological process and
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iron regulation (Ke et al., 2015). The genomic copies of
hepcidin differ notably depending on the organism. There
are multiple copies of hepcidin in fish unlike most
mammals which possess a single copy. It has been
reported that at least five copies of hepcidin genes are
found in winter flounder (Douglas et al., 2003) and seven
copies in black porgy (Yang et al., 2007). In the present
study, all identified hepcidins showed the characteristic
features of fish hepcidins. The predicted cleavage site for
the signal peptide was between Ala24 and Val25.

Fish HAMPs are divided into HAMP1 and HAMP2
groups. HAMP2 presents only in acanthopterygians, while
HAMP1 presents in both acanthopterygians and non-
acanthopterygians (Kim et al., 2019). C. gariepinus is a
non-acanthopterygian species. Thus, the identified Cghep
belongs to the HAMP1 group. The hypothetical iron
regulatory sequence, QSHLS that is found in the N-
terminus prior to the first Cysteine residue in the mature
peptide, is not found in HAMP2 (Kim et al., 2019).
Crhep2 lacks QSHLS motif indicating that it belongs to
HAMP2 group. Consequently, Crhep2 could be more
involved in iron regulation, whereas Crhepl could be
involved in the immune defense.

Sequence alignment of Cghep, Crhepl and Crhep2 with
other fish species showed a high degree of conservation,
particularly the eight cysteine residues. These residues are
involved in the formation of four disulfide bonds, which
may stabilize hairpin-like structure. This structure is
believed to be essential for proper antimicrobial and
cytotoxic properties (Alvarez et al., 2014). Nevertheless,
hepcidins of some fish have been found to have less than
eight cysteine residues and still likely to be fully functional
(Nemeth et al., 2006). Hirono et al. (2005) reported only
six cysteine residues in Japanese Flounder (P. olivaceus).

Interestingly, as evident from the structure of
prohepcidins identified in this study, not all of eight
cysteine residues participated in formation of disulfide
bonds. In Cghep and Crhep2B, only two residues formed
one disulfide bond while, in Crhepl and Crhep2A, four
residues formed two bonds. Previous studies reported that
Cysteine residues may serve different functions including:
structural stabilization through forming stable disulfide-
bonded, Metal-binding, catalytic activity and regulatory
roles as they serve as sites of post translational
modifications (Tu et al., 2004; De Domenico et al., 2008;
Marino and Gladyshev, 2011; Marino and Gladyshev,
2012).

In Cghep, four SNPs were detected. C78T and A195G
were synonyms SNPs while A67G and T144G were non-
synonyms SNPs which caused threonine/alanine and
glutamic acid/aspartic acid variations, respectively. In
Crhepl, one synonyms SNP (C196A) and two non-
synonyms SNPs (C194A and T205C) were detected. The
non-synonymous SNPs C194A and T205C leads to
alanine/aspartic acid and phenylalanine/leucine variations,
respectively. Fernandes et al (2010) suggested that this
genetic variation due to accelerated evolutionary rates
might be directed when the host is exposed to pathogens.
In our previous study, two SNPs were detected in
hepcidin-1 that was identified from Nile tilapia species (S.
galilaeus). 108 A/G was synonyms SNP and 101 A/T was
non-synonyms SNP that caused Glutamine / Leucine
variation. Also, one synonyms SNP (86 T/C) and one non-
synonyms SNP (101 G/T) were detected in hepcidin-2. In

hepcidin 2 identified from T. Zilli, one synonyms SNP
(213 C/T) and one non-synonyms SNP (101 G/T) were
found (Karima et al., 2020). In the present study, two
Crhep2 isoforms were detected due to the absence of
amino acid, Glutamine or Q, in the position 30. Pereiro et
al. (2012) suggested that the different isoforms help fish to
develop their innate immune recognition capabilities.

The post-translational ~ modifications, such as
phosphorylation, myristoylation and microbodies targeting
motifs, are important for both structure and function of
AMPs. They have the ability to tune peptide activities and
lead to diverse structural scaffolds (Wang et al., 2012).
Maurer-Stroh and Eisenhaber (2004) observed that N-
myristoylation mediates the viral infectivity and eukaryotic
infections. Recently, Latendorf et al (2019) demonstrated
that the extent of post-translational modification and the
peptide chain length are the major factors that control the
antimicrobial output.

Sequence alignment with different bony fish species
showed that about 55% of the deduced amino acid of
Crhep2A is highly conserved. The higher variability in the
amino acid sequence of Crhepl might be an evolutionary
mechanism for the recognition of a diverse range of
microbes and the longer half-life with regard to Crhep2
could favor the elimination of pathogens (Pereiro et al.,
2012). C. ramada hepcidins placed it with species from
orders cichliformes and perciforms. Phylogenetic analysis
showed that Crhep2 is highly homologous with D. labrax
(European seabass), while Crhepl is highly homologous
with O. niloticus (Nile tilapia). Furthermore, the Cghep is
highly homologous with P. hypophthalmus (Iridescent
shark fish) from the same order (Siluriformes) and less
homologous with E. naucrates (slender shark sucker) from
order carangiform.

5. Conclusion

In the present study, coding sequences of Cgnkl,
Cghep, Crhepl and Crhep2 were analyzed. Cgnkl was
found to possess all characteristic features of previously
identified NK-lysins. The coding sequences of Cghep,
Crhepl and Crhep2 show the similar predicted signal
cleavage site as well as eight characteristic cysteine
residues. Further studies will be required to analyze the
basal expression of the identified AMPs mRNA in
different tissues.
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