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Abstract  

The cytotoxic potential of cadmium chloride (CdCl2) in Oreochromis niloticus was conducted by assessment of 
chromosomal abnormalities (CA). Treatment fish were intraperitoneally injected with 5, 10, 20 and 30 mg/L CdCl2 solution, 
and the CA effects were compared with those of control fish. After 48 h, muscles of the fish were analyzed for cadmium 
(Cd) concentration, and the kidneys were evaluated for CA. Cd concentrations in the fish from the control and treatments 
revealed as lower than detection limits, 0.04±0.02, 0.11±0.01, 0.20±0.06 and 0.17±0.04 mg/kg, respectively, whereas Cd 
was not detected in water samples. Eleven types of CA were demonstrated as single chromatid gap (SCG), sister 
chromatid gap, sister chromatid fragment, fragmentation, single chromatid breaks, deletion, dicentric, centromere 
separate, C-mitotic, centric fusion and pericentric invertion. The most CA in the treated fish was SCG. The percentages 
of CA cells in the control and treatments were 0, ۲۰.٦٦±6.80, 21.66±4.04, 25.00±5.29 and 37.66±2.08, respectively. The 
number of CA and the percentage of CA cells in the control and the treatments were statistically significant (p<0.05). 
The treatment fish injected with 30 mg/L was significant from the other treatments (p<0.05). This study demonstrates that 
acute toxicity with relatively low concentrations (5 mg/L) of CdCl2 can induce CA in the Nile tilapia fish.                      
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1. Introduction 

Aquatic ecosystem contamination by heavy metals 
from industrial, domestic and agriculture wastewater has 
been gaining increased attention. Heavy metals 
contamination can harm life of aquatic organisms after 
being absorbed through contaminated water, sediment and 
the food chain. Accumulation of heavy metals could 
produce adverse effects on structures and functions of cells 
and tissues of the exposed aquatic creatures. Cadmium 
(Cd) is one of nonessential metals in all living creatures 
(Besirovic et al., 2010); however, it is widely used in 
numerous industrial processes, including electroplating, 
smelting, making batteries and production of color as well 
as plastic (Waisberg et al., 2003). In case of leaching into 
aquatic ecosystem, Cd can be bioaccumulated, and cause 
detrimental consequences to various creatures along the 
aquatic food chain, including snail, shrimp and fish as well 
as to human as the top consumer in the food chain. Cd is 
generally accepted as one of hazardous agents to human 
health, and has been documented as teratogenic, apoptotic 
and genotoxic, hepatotoxic, pancreatotoxic, nephrotoxic 
and carcinogenic agent (Ahmed and Abdel-Wahhab, 2000; 
Horiguchi et al., 2000; Hovland et al., 2000; Shimada et 
al., 2000; Banerjee and Flores-Rozas, 2005; Kim et al., 
2005; Mondal et al., 2005; Goodale et al., 2008). Cd 
exerts toxicological effects, mostly in the kidneys and liver 
(Stoeppler, 1991; Cai et al., 2001). Previous reports have 

shown that exposure to Cd at relatively high levels results 
in diseases, disorders and life threatening conditions 
(Othumpangat et al., 2005). 

 Presently, numerous research reports have revealed 
accumulation and toxicity of Cd in fish, including 
oxidative effects, morphology and physiology changes, 
osmoregulation and immune response and endocrine 
disruptions (Romeo et al., 2000; Dang and Wang, 2009; 
Garcia-Santos et al., 2011; Guardiola et al., 2013; Li et al., 
2014). Fish, including the Nile tilapia, Oreochromis 
niloticus, are major aquatic creatures in the food chain of 
aquatic ecosystems, and are often used as biomarkers in 
toxicological studies. When they ingest organisms 
contaminated with heavy metals, deleterious health effects 
occur (Clearwater et al., 2002; Giusto et al., 2012; 
Mustafa et al., 2012; Al-Bairuty et al., 2013; Intamat et 
al., 2016). Among pollutants, Cd is one of hazardous 
toxicants to fish when absorbed via diet or the water 
medium (Kalman et al., 2010; Sriuttha et al., 2017). 
Currently, we have little knowledge of CA resulting from 
acute Cd exposure (Kamunde and MacPhail, 2011). The 
aim of this study was to investigate CA in O. niloticus 
resulting from acute Cd exposure (48 h) at four different 
concentrations.  
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2. Materials and Methods 

2.1.  Experimental fish specimens 

Oreochromis niloticus with weight 15-20 g received 
from a private fish farm in Khon Kaen city, Thailand, were 
bathed with KMnO4 solution (0.05% v/v) to avoid skin 
infection (Pandey et al., 2011). They were acclimatized 
under experimental conditions for 10 days before the Cd 
toxicity study in vivo.  

2.2. Exposure concentration of Cd 

 The acclimatized fish in the control were 
intraperitoneally injected with 0.8% sterilized normal 
saline, whereas the fish in four treatments were injected 
with 5, 10, 20 and 30 mg/L at a volume of 100 µL of 
cadmium chloride (CdCl2). The experimental fish were 
kept for 48 h before the CA assessment.  

2.3. Cd concentration in water  

After 48 h, a 25-mL water sample was put in a glass 
container, and nitric acid (1.25 mL) was added. The 
container was set in water bath at 90±5°C, for 30 min. 
Deionized water was later added to the acid digested water 
sample to make a 25 mL final volume before being filtered 
using standard 11 µm filter paper. Cd in the water was 
evaluated by inductively coupled plasma optical emission 
spectrometry (ICP-OES) (Promsid et al., 2015). 

2.4. Cd concentration in O. niloticus 

 The fish muscle weighed 1 g was homogenized, and 
mixed with 7 mL of nitric acid. After adding 1 mL of 
hydrogen peroxide, the samples were set in water bath at 
90±5°C for 2 h. After cooling, deionized water samples 
were adjusted to make a suspended mixture of 25 mL. 
Then, the mixture was passed through an 11 µm cellulose 
filter paper. Cd concentration in fish muscle was measured 
using ICP-OES (Promsid et al., 2015) with a wavelength 
of 226.502 nm and a detection limit of 0.001 mg/L.  

2.5. Quality assurance 

 Following standards of quality assurance, detection 
and measurement for Cd contamination were conducted at 
every tenth sample. The blank Cd concentrations were < 
5% of the average of analyzed concentrations. Accuracy 
as well as precision of the analyses were confirmed by the 
replication of analyzed samples against Cd standard 
reference (APHA, 2005). 

2.6. Chromosome preparation  

 The fish chromosomes were collected following 
conventional method (Srikacha et al., 2018; Tengjaroenkul 
et al., 2018). Each experimental fish was injected 
intramuscularly using 1 ml colchicine solution (0.05%) 
per 100 g fish weight, kept approximately 1 h, and 
anesthetized in ground ice. The kidneys were excised, 
made to small pieces and mixed with 0.075 M KCl. 
Sediment cells of 8 mL was incubated at 25°C for 30 min, 
before being fixed in cool methanol-acetic acid fixative at 
ratio 3:1. Later, the cells were centrifuged for 4 times at 
1500 rpm for 10 min with 8 mL of the cool fixative. For 
chromosomal study, the cleaned sediment was added with 
1 mL of the cool fixative, dropped to a glass slide, air dried 
and then stained with Giemsa solution (20%) for 30 min 
(Intamat et al., 2016).  

One hundred with clear and well spread chromosomes 
in each treatment were photographed. Number of CA cells 
was recorded. All parameters as well as fundamental 
number (number of chromosome arms or NF) were used 
for karyotyping. Cytotoxicity was evaluated by 
determining the percentage of CA cells of the fish (Intamat 
et al., 2016). 

2.7. Statistical analysis 

 Levels of Cd in water and O. niloticus muscles, as 
well as number and the percentage of CA cells were 
statistically analyzed using Analysis of Variance as well as 
Turkey’s post hoc test (at 95% confidence). 

3.  Results  

3.1. Cd concentration in water and O. niloticus 

Cd in all experimental water samples was not detected. 
The Cd concentration in O. niloticus is demonstrated in 
Table 1. The highest Cd level in the fish muscle was 
shown in the treatment injected with 20 mg/L. Statistical 
results demonstrated that Cd concentrations of the fish in 
the control and the treatments revealed significant 
difference (p<0.05), and only the treatment received 5 
mg/L was significantly different (p<0.05) from the other 
treatments.  
Table 1. Cd concentration in O. niloticus samples. 

CdCl2 
concentration 
(mg/L) 

Cd concentration in fish 
muscle (mg/kg) 

Average Cd 
concentration 

experimental unit 
1 2 3 (mg/kg) 

Control  ND ND ND ND 

٥ 0.02 0.04 0.06 0.04±0.02a 

۱۰ 0.12 0.10 0.11 0.11±0.01b 

۲۰ 0.27 0.16 0.17 0.20±0.06c 

۳۰ 0.21 0.15 0.14 0.17±0.04c 

ND: Not detected 
a, b, c Values in the same column with different letters are 
significantly different (p<0.05). 

3.2. Assessment of chromosomal abnormalities 

The current study used a CA test to evaluate cytotoxic 
consequences on the Nile tilapia (O. niloticus) after 
acutely (48 h) injected with Cd. The diploid chromosome 
number (2n) of the Nile tilapia is 44. The karyotype of the 
tilapia fish consisted of two submetacentric, twelve 
acrocentric and thirty telocentric chromosomes (Figure 1). 
The different categories of CA found in the current study 
were single chromatid gap (SCG), single chromatid breaks 
(SCB), sister chromatid gap (SSCG), sister chromatid 
fragment (SSCF), fragmentation (F), deletion (D), 
dicentric (DC), centromere separate (CS), C-mitotic, 
centric fusion (CF) and pericentric invertion (PI) (Figure 2 
and Table 2). The type of CA found in O. niloticus was 
different among levels of Cd concentrations. The control 
fish had no CA, whereas the treatment fish injected with 
Cd at 5 and 10 mg/L revealed nine types of CA (SCG, 
SSCG, F, D, DC, CS, C-mitotic, CF and PI). The treatment 
fish injected with Cd at 20 and 30 mg/L revealed eleven 
types of CA (SCG, SSCG, SCB, F, SSCF, D, DC, CS, C-
mitotic, CF and PI).  

The highest total number of CA was demonstrated in 
the treatment injected with 20 mg/L, while the highest 
number of cells with CA was demonstrated in the 
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treatment injected with 30 mg/L (Table 2). Statistical 
analyses indicated that there were significant differences in 
the number of CA and the number of CA cells between the 
control and the treatments (p<0.05), except for the fish 

treated with 5 mg/L. Among the numbers of CA cells in 
the treatments, there were significant differences between 
the fish treated with 30 mg/L and the other treatments 
(p<0.05) (Table 2). 

 Figure 1. Karyotypes of diploid chromosome (2n=44) of the O. niloticus in the control. 

Figure 2. Examples of different chromosomal abnormalities in O. niloticus (2n=44): single chromatid gap (SCG), sister chromatid gap 
(SSCG), single chromatid breaks (SCB), centric fusion (CF), fragmentation (F), sister chromatid fragment (SSCF), deletion (D), dicentric 
(DC), pericentric invertion (PI), centromere separate (CS) and C-mitotic.

Table 2.  Number and percentage of CA cells of O. niloticus in the control and the CdCl2 treatments. 

CdCl2 
concentrations 

Number of CA 
Total number 

of CA 
Number of 

cells with CA 

Percentage of 

cells 

with CA 

SCG SSCG SCB SSCF CF F D PI DC CS C-mitotic 

Control  0 0 0 0 0 0 0 0 0 0 0 0 0 0a 

5 5 2 0 0 6 1 5 2 7 3 6 36 21 ۲۰.٦٦±6.80b 

10 9 4 0 0 2 2 2 2 7 1 3 33 21 21.66±4.04b 

20 9 5 1 1 5 2 4 3 7 4 7 48 25 25.00±5.29b 

30 7 3 1 1 7 2 4 4 7 4 7 47 32 37.66±2.08c 
a, b, c Values in the same column with different letters are significantly different (p<0.05). 

4.  Discussion 

The Cd concentration in water samples was not 
detected. This result could be due to the distribution and 
elimination of toxicants in fish. As Cd elimination in fish 

is low, resulting in Cd accumulation in liver, gill and 
muscle of various fish species (Jayakumar and Paul, 2006; 
Cyrille et al., 2012). Fish muscle, a valuable edible protein 
source, was selected as a target organ to detect low levels 
of Cd deposition. Previous studies have reported that the 
main target organs for Cd accumulation in fish samples are 
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the kidneys, liver, gills and skin. A potential reason that 
the muscle accumulated Cd as the lowest level is that it is 
not directly contact to the water medium. Another 
probable reason is that muscle has no function related to 
detoxification of xenobiotics, and consequently, 
accumulation of Cd in the muscle as compared with the 
liver and kidney is less likely to occur (Jayakumar and 
Paul, 2006). In addition, an accumulation of Cd in fish 
could be long in their life time; this is supported by 
Agency for Toxic Substances Disease Registry (1999) 
who reported half-life of Cd in the liver approximately 4-
19 years. 

The diploid chromosome number of O. niloticus is 
similar to previous studies (Vervoort, 1980; Sofy et al., 
2008; Intamat, 2016; Sriuttha et al., 2017). This result 
implies that numerical of chromosome is not changed after 
acutely injected with Cd in the Nile tilapia fish.  

The results using CA assessment revealed that O. 
niloticus injected with Cd had greater in both of the 
number of CA cells and the percentage of CA cells as the 
Cd concentration increased. Eleven types of CA indicate 
that Cd, particularly at higher levels is more effective on 
changing chromosome structures. The results of this study 
were different from other findings. For example, Intamat 
(2016) studied cytotoxic effects of sodium arsenite on O. 
niloticus on an experimental scale, and found five types of 
CA, including SCG, SCB, CG, F and D. Sriuttha et al. 
(2017) demonstrated that heavy metals of O. niloticus in 
domestic wastewater canals could induce six types of CA, 
including SCG, SCB, CG, F, D and DC. This variable CA 
information could imply that the CA may correlate to 
types, toxicities as well as the contact time of the exposed 
heavy metals. Several heavy metals have adverse effects 
on genetic materials (Achanzar et al., 2002; Asmuss et 
al., 2000; Hartwig and schwerstle, 2002; Fatur et al., 
2003; Jin et al., 2003; Potts et al., 2003; Waisberg et 
al., 2003). Our results revealed that the different levels of 
Cd concentrations were associated with different types of 
CA. The most abnormality of chromosome from the tilapia 
kidney cells was SCG (Table 2). This result is similar to 
previous studies. Intamat et al. (2016) and Sriuttha et al. 
(2017) reported that SCG was the most found CA in 
kidney cells of the tilapia fish collected from both 
laboratory experiments and heavy metal contaminated 
areas. SCG has been demonstrated probably due to a lack 
of folding of the metaphase chromosome fiber into a 
chromatid. Palitti (2004) mentioned that SCG could 
occur as results of protein or DNA damages.  

Cd compounds can cause breaking of DNA strand and 
CA that demonstrate less mutagenic in mammalian cells 
(Waalkes, 2003). Ashmawy et al. (2015) demonstrated that 
micronuclei formation was lower at low concentrations 
and shorter exposure times of Cd than at higher 
concentrations and longer exposure times. Toxic effects of 
heavy metal are generally produced at high exposure 
concentrations. In contrast, Cd exhibits both acute and 
chronic toxicity at very low exposure levels (NCM-WHO, 
2003). In this study, Cd could demonstrate acute toxicity 
in term of CA at relatively low concentrations (5 mg/L) in 
the Nile tilapia fish. Similarly, Parveen and Shadab (2012) 
found that 5 mg/L of CdCl2 caused genotoxicity as CA in 
Channa punctatus specimen. This provided evidence that 
duration of exposure of treatment can affect the genomic 
system of O. niloticus exposed to Cd at several 

concentrations (16, 18, 20 and 22 mg/L) and at different 
time periods (1, 7, 14, 21 and 28 days). Similarly, Jindal 
and Verma (2015) reported that a comet assay showed a 
greater value of mean percentage of DNA collected from 
the tail of the freshwater fish, Labeo rohita, after contacted 
to 0.37 and 0.62 mg/L CdCl2 for 100 days. The 
genotoxicity of Cd has been described by indirect 
mechanisms involving in cell proliferation, free radical 
reactivity, tumor-suppression functions and DNA-
repairing processes (Stohs et al., 2001; Pagliuca et al., 
2003; Lutzen et al., 2004; Youn et al., 2005; Valko et al., 
2006). Furthermore, Cd inhibited DNA repair 
mechanisms, including excision of nucleotide, default of 
nuclotide repair and deletion of the DNA precursor 
(Asmuss et al., 2000; Achanzar et al., 2002; Hartwig and 
schwerstle, 2002; Fatur et al., 2003; Jin et al., 2003; Potts 
et al., 2003). Cd reacted to signal transduction pathways, 
mainly with mitogenic signaling. Submicromolar levels of 
Cd have induced DNA synthesis and caused cell divisions 
of myoblast and macrophage (Misra et al., 2002). In 
addition, on an experimental scale, Cd stimulates a release 
of the secondary messenger of calcium, mitogenic kinases, 
factors related to transcription and translation, and 
oncogene expression (Waisberg et al., 2003). These 
mechanisms could be the major roles in the CA formation 
in tilapia fish cells. 

5.  Conclusion 

Acute exposure at different concentrations of CdCl2 
causes significant difference in the numbers of cells 
with CA and the percentages of cell with CA between O. 
niloticus in the control and the treatments. The CA could 
be as potential indicator of acute Cd cytotoxicity in the 
tilapia fish. Further investigations coping with cytotoxic 
effects of CdCl2 at various exposure times and at more 
variable concentrations are required.  
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