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Abstract 

Prediction of dihedral angles from amino acid sequences based on the neural network to predict protein structure is promising in the field of 
bioinformatics. The present proposed study presents a prediction tool for 3-Dimensional (3D) protein structure as a function of enzyme 
family types and amino acid sequences. 11 different families of enzymes were investigated amounting to 97 enzymes in total. Correlation 
of sequence with geometry coordinates as a function of amino acid descriptors and family class were generated through a neural network to 
predict coordinates. The structural-features of dissected triplets show significant influence on family type. R-values for the inter-family 
dataset as well as feature selection were not satisfying. In contrast, R-values around 0.8 were achieved in the case of intra-family 
prediction. Furthermore, about 55 % of features were eliminated with a limited negative influence of 13% on the R-value. We believe that 
the present study provides a promising prediction method that advance computational methods in bioinformatics, especially to predict 3D 
protein structure as a function of enzyme family type and amino acid sequences. However, intra-family prediction probability is higher 
while using only one type of analysis based on the dihedral angles of turn structures of enzyme families. 
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1. Introduction 

The complete genetic blueprint of a human being is now 
available for implementing new effective therapeutic strategies 
(Piccoli et al., 2013; Singh et al., 2013; Zini, 2005). Human DNA 
information is a powerful tool used to explore the role of genetic 
codes in pathogen formation and in the development of several 
diseases that form the majority of health problems worldwide, like 
cancer, diabetes, cardiovascular and others(Csermely et al., 2013; 
Mathkour and Ahmad, 2010; Oakley et al., 2008). This valuable 
trove of data has limitations in understanding higher order protein 
structures and particularly in translating protein molecular 
functionality from linear codes (Friedberg, 2006).   

 The knowledge of predicting three-dimensional structure of a 
protein can be used, on one hand, in drug design and in 
understanding biological mechanisms of protein function. X-ray, 
NMR, and, to some extent, electron microscopy are methods used 
to measure protein folding and surface topography. These 

methods however are limited in decoding the structure of many 
vital proteins classes (Pavlopoulou and Michalopoulos, 2011).  

 On the other hand, structure prediction from amino acid 
sequence requires the development of complex algorithms and is 
dependent on the millions of data points extracted experimentally 
to solve protein structures (Mills et al., 2015). In addition, 
algorithms should also be able to predict newly discovered or yet 
unrevealed structures (Kryshtafovych and Fidelis, 2009).  

 Deciphering algorithms of how protein structure is predicted 
as a function of primary sequence is no longer a purely academic 
problem, but can be used as a powerful method leading to 
effective drug design (Ahsanullah et al., 2012; El-Dahshan et al., 
2014; Pavlopoulou and Michalopoulos, 2011).  

 Although the level of complexity between the primary 
sequence and final structure is relatively high, integrity and 
synchronization of protein building blocks, i.e., utilization of 
amino acid sequence to determine the folding process and the 
final 3D structure (Babu et al., 2011; Dokholyan, 2006; Liu et al., 
2011). However, protein structure has been reported to be 
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classified on three levels: primary, secondary, and tertiary 
structure (Zhang, 2009).  

 The first level consists of the sequence of amino acids 
making a linear structure, whereas the secondary structures depict 
the kinks and folding process where alpha helices and beta sheets 
are formed (Sikder and Zomaya, 2005). Although, the tertiary 
structure can be understood by the means of algorithms to be 
generated that includes the "turns" weave secondary structure 
fragments and lay the orientation of a whole ribbon in 3D space 
(Kryshtafovych and Fidelis, 2009).  

 One of the challenges in science is to predict the coordinate 
of these structure fragments (Grana et al., 2005; Liwo et al., 
2011). In the present paper, "turns" that form the tertiary structure 
extracted from several enzyme families were investigated and 
correlated to structure of the description of the 3D structures of 
the studied proteins.  

 Correlation of sequence with geometry coordinates as a 
function of amino acid descriptors and family class were 
generated through a neural network tool to predict spatial 
configurations of the acids. 

2. Methods 

2.1. Database Mining 
Eleven different families of enzymes were selected and investigated 
including EC 1.1.1.X (were X = 1, 2, 3, 8, 9, 10, 14, 17, 18, 21, or 22) 
with a grand total of 97 enzymes. 

 Structures were extracted from the Expert Protein Analysis 
System (ExPASy) a bioinformatics resource as well as from the 
protein data bank (Artimo et al., 2012). Secondary structures 
consisting of α-helices and β-strands were removed from the 
Protein Data Bank (PDB) file leaving only the turns.  

 These turns were recorded as a PDB file format and 
processed with the Ramachandran algorithm to calculate and 
assign phi, psi, and omega angles. The resulting dataset under 
investigation consisted of 17225 amino acid turn-examples in 
total, from 11 families, with their corresponding phi, psi, and 
omega angles. Each of the 20 amino acid types were assigned an 
identification number from 1 to 20, and saved in the neural 
network input feature vector as a descriptor, i.e., feature. 

Figure 1.  A schematic illustration of Homoserine Dehydrogenase 
enzymes where turns (loops) attach beta-sheets and alpha helices. 

The present work's algorithm focuses on mapping the phi, psi, 
and omega angles of central amino acids in chains of 3 (triplets) in 
each of the 57 enzymes, i.e., amino acid chains, from the eleven 
families mentioned above.  

 The neural network input feature vector was constructed 
programmatically by scanning the enzyme chains for amino acid 
triplets, called (aai-1, ai, and aai+1) as shown in Fig.2. 

 
Figure 2.  A Flow diagram data processing. 

For each central amino acid ai found, a feature vector was 
constructed containing: Fifty descriptors of ai; class number of 
aai-1; class number of aai; class number of aai+1; family number of 
enzyme chain containing the triplet.  

 The output vector representing the central amino acid ai is 
composed of the phi, psi, and omega dihedral angles of the amino 
acid ai inside the enzyme turn as illustrated in Fig.3. The fifty 
descriptors of the triplet center amino acid ai consisted of three 
groups: 15 electronic properties, 17 steric properties, and 18 
hydrophobic properties which can be discussed later. 

Figure  3.  A schematic illustration ofneural network configuration. 
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2.2.  Artificial Neural Network 
The type of neural network (Bishop, 1995) implemented in the 

present work is a feed-forward Levenberg-Marquardt back 
propagation (Nawi et al., 2013), that illustrates using the gradient 
descent method with momentum weight and a bias learning 
function (Kumar and Minz, 2014). It consists of three layers of 
perceptrons, i.e., nodes: input; hidden; output. Each feature value 
in the input feature vector is connected to each of the input layer 
perceptron's by a multiplicative weight (Bishop, 1995).  

In Fig. 4, the weights are implied parts of the arches shown. 
This means that the number of input layer nodes equals the length 
of the input feature vector, which was 53 or 54 depending on the 
experiment conducted.  

 Each hidden layer node processes the weighted sum of inputs 
to produce an output, which in turn feeds, via weight into each 
output layer node. In the present work, the number of hidden layer 
nodes was chosen to be equal to the number of input nodes. The 
output layer consists of three nodes producing three outputs, 
which are the angles phi, psi, and omega. 

Figure 4.  A schematic illustration of Feed-forward back-propagation 
neural network structure. 

The data set was randomly divided into three parts: 60% for 
training the neural network; 20% for validating it and stop training 
before over fitting; and 20% for independent testing. The network 
performance was measured using the Mean Squared Error (MSE) 
(Kumar and Minz, 2014). 

3. Results 

3.1. Feature Descriptions 
Physical properties of amino acids are the foremost players in 

building the final or even the dynamic 3D structure of a protein. 
Classically, interactions were classified in three groups: 
electronic, steric, and hydrophobic.  

 Fifty features have been employed in the present work 
classified as follows: 15, 17, and 18 features represent electronic, 
the steric and the hydrophobic properties, respectively. Detailed 
description of these features can be found in the work conducted 
by Mei et al. (Mei et al., 2005).  

 The total number of amino acid features used to predict the 
three angles, i.e., 3D structure is 53. These include the 50 features 

described above in addition to the labels of the amino acid under 
investigation and its two sequence (before and after) neighbors. 

3.2. Enzyme Family Mapping  

In order to validate the utility of the 53 selected features, a test 
was performed to sort out family types based on the mentioned 
features. Eleven family labels were used as output of the pattern 
recognition network. The dataset was composed of around 10 
enzyme examples of each of the 11 family types. Each of the 
enzyme examples was processed to produce amino acid triplets 
with 53 features for each triplet's central amino acid, i.e., the 
neural network input vector. Thus, the neural network consisted of 
53 inputs and 11 outputs.  

 The numbers of hidden layer nudes were 10 and the dataset 
was divided into three parts: 70% for training; 15 % for validation 
and prevention of over training; and 15 % for independent 
performance testing.  

 Performance was evaluated using two measures: Mean 
Square Error (MSE) between outputs and targets and the 
confusion matrix percentage of correct classification, these were 
0.078 and 76.4 %, respectively. 

3.3. Intra-Family Structure Prediction 
The original dataset was divided by family type and inside 

each family, neural networks were trained to predict the dihedral 
angles phi, psi, and omega of the central amino acid in the triplets 
based on 53 descriptors. Structural elements were predicted for 
each family in a separate training set.  

 Table 1 shows the regression coefficient (R) as a measure of 
alignment validation. In general, EC 1.1.1.X families where X = 
1, 2, 8, 9, 10, 14, 17, and 18 shows an R-value above 0.5. EC 
1.1.1.X with X=10 shows the highest value of 0.8 where the 
poorest value was recorded for X=21. The training regression is 
shown in Fig. 5 for the best Enzyme family. 

Figure 5.  Training regression result for EC 1.1.1.10 with 53 features as 
input and 53 hidden layer nodes 
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Table. 1.  Final results of neural network training before feature extraction 
(sorted by performance) 

Enzyme's 
family R-value Number of 

iterations 
Training time 
(min) 

EC 1.1.1.10 0.84147 131 7:22 

EC 1.1.1.9 0.79310 124 6:20 

EC 1.1.1 14 0.75090 132 6:20 

EC 1.1.1.1 0.74688 196 14:48 

EC 1.1.1.2 0.69972 95 4:52 

EC 1.1.1.8 0.55979 74 3:33 

EC 1.1.1.18 0.52505 89 6:34 

All Families 0.50942 131 25:11 

EC 1.1.1.17 0.50326 74 3:44 

EC 1.1.1.3 0.48436 73 3:32 

EC 1.1.1.22 0.35053 52 2:30 

EC 1.1.1.21 0.31822 69 2:53 

3.3.1.  Inter-Family Structure Prediction 
Based on the intra-family result, additional training was 

performed where the family labels were added to the input 
features (making 54 features in total), and the amino acid triplets' 
structures were predicted across all families.  

 Results are summarized in row number eight in Table 1 that 
shows low performance, which may indicate the demand to 
extend the size of the input feature vector. In addition, the 
structure of the central element of the amino acid triplets varies 
with family type.  

3.3.2. Feature Selection  
Feature selection can be defined as a process of feature-

selection, or an applicant subset of features. In order to set the 
evaluation criteria, few feature subsets are used. The present study 
enables a promising method that predicts the dihedral angles of 
turn structures by the means of feed-forward Levenberg-
Marquardt neural network. Feed-Forward selection enable finding 
weaker subset of features, due to the face that weaker features are 
not assessed while subset selection (Kumar and Minz, 2014). 

 Several neural networks have been trained to predict the 
structure of the central element of amino acid triplets across 
variable number of features and hidden layer nodes. All of the 
networks employ an input vector length of 54 features as in the 
intra family structure prediction described earlier.  

 Results are summarized in Table 2 and show no significant 
configuration that outperforms the base case of 54 with 50 hidden 
layer nodes. As and additional effort, the training parameters were 
modified for two cases to test whether the results could be 
improved.  

 The number of training epochs was raised from 1000 to 2000, 
and the failure checks were changed from 66 to 2000. The results 
were R = 0.33062 for 32 features and 50 hidden layer nodes, R = 
0.47658 for 43 features and 50 hidden layer nodes. 

 In the first case, the performance (relative to 54 features and 
50 nodes) decreased probably due to over fitting. In the second 
case, the performance is slightly worse than the base case, 
probably due to the elimination of 10 features. 

Table. 2.  Network performance with varying feature node and number 
(Shown is the total R-value) 

 No. of Features 

No. of  
Nodes 5 16 22 32 43 54 

25 0.46448 0.46619 0.46643 0.46893 0.46488 0.49363 

50 0.47322 0.46858 0.47634 0.46514 0.47146 0.49657 

100 0.47517 0.47678 0.47509 0.46804 0.28371 0.50777 

200 0.42271 0.25977 0.46628 0.31304 0.44277 0.51903 

 The results of inter-family predictions in Table 2 indicate 
dependence of the amino acid triplet structures on the family type 
of which they belong. Thus, the potential of feature reduction was 
investigated from the EC 1.1.1.10 family only, using 53 features 
(with family label removed) and 50 hidden layer nodes. The R-
value for this case was 0.80192. The objective was to reduce the 
number of features, without significantly lowering the R-value. 

 In order to reduce the number of features, the sum of absolute 
perceptron weights for each of the 53 inputs was computed. A 
threshold of 15 was chosen (as shown in Fig. 6) to discard all 
features with an absolute sum of feature weights below this 
threshold. 

Figure 6.  Feature extraction based on the sum of absolute perceptron 
weights for each of the 53 inputs where 15 was used as a threshold 

 The number of discarded, i.e., minor features, was 29, which 
is about 54.7% of the original 53 features. The R-value was 
0.69366, which can be considered good because it represents a 
performance degradation of only about 13.5% when compared to 
the R value of 0.80192 for the 53 feature case.  

 The major features that remained are listed in the input 
vector: 

[3, 4, 6, 10, 12, 13, 15, 17, 18, 19, 20, 22, 26, 27, 28, 30, 32, 
34, 35, 43, 44, 45, 48, 52] 

These major features are summarized descriptively as follows: 
9 features were found in the hydrophobic properties including:  
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• solvation free energy 
• Melting point 
• Number of full nonbonding orbitals 
• Retention coefficient in HPLC, pH 2.1 
• Retention coefficient at pH 2,  
• Rf for 1-N-(4-nitrobenzofurazono)-amino acids in ethyl 

acetate/pyridine/water 
• Hydration potential or free energy of transfer from vapor phase 

to water 
• Log D 
• Partition coefficient at pH 7.1 for acetylamide derivatives of 

amino acids in octanol/water  
• dG = ¼RT ln f  , where f = ¼fraction buried/accessible amino 

acids.  
 
Other 10 features appeared in steric properties:  

• Average volume of buried residue 
• Residue accessible surface area in tri-peptide 
• Normalized van der Waals volume 
• Average accessible surface area 
• Distance between Cα and centroid of side chain 
• Side-chain angle 
• Radius of gyration of side chain 
• van der Waals parameter epsilon 
• value of θ (i)  
• Substituent van der Waals volume. 

 
And four features originated from electronic properties:  

• Negative charge 
• Polarity 
• Net charge  
• Electron-ion interaction potential values 

Furthermore, one of the major features was the type of central 
amino acid in the sub group (ai). 

4. Conclusions 

The present study gives a method to predict the dihedral angles 
of turn structures by feed-forward Levenberg-Marquardt neural 
network. The datasets for training and testing the network are 
PDBs of eleven different families of enzymes from Expert Protein 
Analysis System (ExPASy) and protein data bank. Secondary 
structures consisting of α-helices and β-strands were removed 
from the PDB file leaving only the turns.  

 A feature vector containing around 53 parameters was 
constructed for each central amino acid of amino acid triplets. 
This vector is used as input for neural network.  

 Ninety-seven enzyme families were selected and 
preconditioned to be an input vector for a feed forward back 
propagation neural network. The dihedral angles of only the turns 
in the 3D structures were predicted after training.  

 The structural features of dissected triplets show significant 
influence on family type. R-values for the inter-family data set as 
well as feature selection were not satisfying. In contrast, the R-
values of about 0.8 were achieved in the case of intra-family 
prediction.  

 In addition, it is believed that the structural features of 
dissected triplets show significant influence on family type. About 

55 % of features can be eliminated with relatively less negative 
influence of 13% on the R value. The present paper can provide 
promising useful prediction method that can advance the 
computational methods in bioinformatics, especially about the 
prediction of 3D protein structure as a function of enzyme family 
type and amino acid sequences.  

 To the best of our knowledge, many researchers have 
established various methods to predict protein structure. However, 
the intra-family prediction probability is higher when only one 
type of analysis based on the dihedral angles of turn structures of 
enzyme families is used. Therefore, biochemical experiments can 
be used for validation of the proposed prediction method that will 
enable reliable and shorter time experiments in the field of 
bioinformatics.  
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