Response of Lesser Grain Borer, *Rhizopertha dominica* (Fabr.) [Coleoptera: Bostrichidae] to Powders and Extracts of *Azadirachta indica* and *Piper guineense* Seeds

Kayode D. Ileke¹,* and Daniel S. Bulus²

¹Department of Environmental Biology and Fisheries, Faculty of Science, Adekunle Ajasin University, PMB 001, Akungba Akoko, Ondo State, Nigeria
²Department of Food Science and Technology, Federal Polytechnic, Kaura Namoda, Zamfara State, Nigeria

Received 14th June 2012; accepted 3rd August 2012

Abstract

The powders and extracts of *Azadirachta indica* A. Juss and *Piper guineense* (Schum and Thonn) seeds were bioassayed for their insecticidal potential against the lesser grain borer, *Rhizopertha dominica* (Fabr.) in the laboratory at 30±2°C and 70±5% relative humidity. The powders were applied at rates 0.5, 1.0, 2.0 and 4.0g/20g of wheat grains. The extracts of the plants were also applied at rates 1, 2, 3 and 4%/20g of wheat grains. The parameter studies were adult mortality, adult emergence, % reduction of adult emergence and weight loss in treated wheat grains. The results obtained shows that adult mortality of *R. dominica* increased as concentration of powders and extracts increased. The two plants powders were able to evoked 100% mortality of adult *R. dominica* at rates 1.0, 2.0 and 4.0g/20g of wheat grains after 72 hours of post treatment.

Adult emergence shows that more adult emerged from the control (46) which was significantly higher (*P*<0.05) than others. The extracts from the two plants seeds tested against *R. dominica* were able to caused 100% mortality of lesser grain borer within 48 hours of post treatment at all tested concentrations. There was no adult emergence of *R. dominica* in wheat treated with extracts compared to control (treated with solvent) which recorded 19 adult emergence and control (without solvent) which had 43 adult emergence. The extracts did not affect the weight of treated wheat grains. The results obtained from this study justified that powders and extracts of *A. indica* and *P. guineense* seeds can be used as biopesticides against *R. dominica*. The two plants are of medicinal values, biodegradable, readily available and poses no danger to man and other mammals.

Keywords: Adult emergence and biopesticides; *Rhizopertha dominica*; *Azadirachta indica*; *Piper guineense*

1. Introduction

Wheat is a cereal grain of the monocot plant *Triticum* spp (Belderkor *et al*., 2000) and it is the world’s most important cereal crop in relation to production and consumption (Ileke, 2011).

Wheat is grown on more land area than any other commercial crop. It is the most important staple food for humans. World trade in wheat is greater than all other crops combined (Curtis and Macpherson, 2002). Wheat is the leading source of protein in human foods, having a higher protein content than either maize or rice, the other major cereal grains. In terms of total production tonnages used for food, it is currently second to rice as the main human food crop and ahead of maize. As a cereal grains, it is the most proteinous grains consumed in developing countries to combat malnutrition in young children, especially in Nigeria (Ileke, 2011).

* Corresponding author. e-mail: kayodeileke@yahoo.com.
Presently, insect pests control in stored food products relies on the use of synthetic insecticides which has some hazards such as pollution of the environment, toxic residues on stored grains, development of resistance by target species, pest resurgence and lethal effects on non-target organisms in addition to direct toxicity to users and health hazard (Adedire and Lajide, 2003; Adedire et al., 2011; Ileke and Oni, 2011; Udo, 2011; Ileke and Olotuah, 2012; Ileke and Bulus, 2012). Recently, there is a steady increase in the use of medicinal plant products as a cheaper and ecologically safer means of protecting stored products against infestation by insects (Ivbijaro and Agbaje, 1986; Adedire and Ajayi, 1996; Adedire and Lajide, 2003; Ashamo and Odeyemi, 2001; Oni and Ileke, 2008; Adedire et al., 2011; Akinkurolere et al., 2006; 2009; Ileke et al., 2012) and the tropics is well endowed with these plant species some of which are also used for medicinal purposes (Adedire and Lajide, 2003; Ileke, 2008). Vegetable oils, plant powders and extracts have been used to reduce post harvest losses of cereals and grain legumes (Odeyemi, 1998; Adedire and Lajide, 1999; Ofuya et al., 2007; Nwaubani and Fasoranti, 2008). Therefore, this present study investigated the response of *R. dominica* to powders and extracts of *Azadirachta indica* and *Piper guineense* seeds in stored wheat grains. These plants have been investigated to be effective in protecting cowpea and maize seeds from infestation by cowpea bruchid, Callosobruchus maculatus and Sitophilus zeamais respectively (Lale and Abdulrahman, 1999; Adedire and Lajide, 1999; Ofuya et al., 2007; Ileke and Bulus, 2012).

2. Materials and Methods

2.1. Insect culture

Adult lesser grain borer, *R. dominica* used for this study were obtained from an already existing culture in the Environmental Biology and Fisheries Research Laboratory, Adekunle Ajasin University, Akungba Akoko, Nigeria. They were reared on disinfested wheat grains, *T. aestivum* variety hard red winter collected from a seed warehouse in Akure, Ondo State, Nigeria. The grains were cleaned of foreign matter and disinfested by keeping in freezer at -5°C for 7 days. This is because all the life stages, particularly the eggs are very sensitive to freezing. The disinfested grains were then air dried in the laboratory to prevent mould growth (Adedire et al., 2011) before introduction of insects. They were placed in Kilner jars and covered with muslin cloth. The jars were placed in insect rearing cages at ambient temperature of 30±2°C and 75±5% relative humidity.

Wheat, *T. aestivum* grains used for the experiment were also disinfested as described above before it was stored in plastic containers with tight lids disinfested by swabbing with absolute ethanol.

2.2. Collection of plant materials and preparation of extracts

The plant materials used in this study were *Azadirachta indica* and *Piper guineense* seeds. These materials were sourced fresh from Akola farm at Igbara-Odo Ekiti, Ekiti State, Nigeria. The seeds were sun dried for 3 days before air dried in the laboratory. The cleaned dried seeds were pulverised into fine powders using a blender. The powder were further sieved to pass through 1mm mesh (Ileke and Bulus, 2012). The powders were packed in plastic containers with tight lids and kept in the dark (Udo, 2011). Acetone extracts of *A. indica* and *P. guineense* seeds powders were carried out using cold extraction method. About 150g of *A. indica* and *P. guineense* powders were soaked separately in an extraction bottle containing 100% acetone. The mixture was stirred occasionally with a glass rod and extraction was terminated after 72 hours. Filtration was carried out using a double layer of Whatman No. 1 filter papers and acetone evaporated using a rotary evaporator at 30 to 40°C with rotary speed of 3 to 6 rpm for 8 hours (Udo, 2011; Ileke and Olotuah, 2012). The resulting extract was air dried in order to remove traces of solvent. The crude extract obtained was stored in the refrigerator prior to use (Aina et al., 2009). From this stock solution, different extract concentration of 1%, 2%, 3% and 4% were prepared as follows: 1% concentration was made by diluting 0.1ml of extract in 9.9ml of acetone; 2% concentration was made by diluting 0.2ml of extract in 9.8ml of acetone; 3% concentration was made by diluting 0.3ml of extract in 9.7ml of acetone. Similarly, 4% concentration was made by diluting 0.4ml of extract in 9.6ml of acetone (Ashamo and Akinmawonu, 2012).

2.3. Toxicity of plant powders on mortality and adult emergence of *R. dominica*

The plant powders where thoroughly mixed with 20g of wheat grains in 250ml plastic containers at 0.0 (untreated), 0.5, 1.0, 2.0 and 4.0g corresponding to 2.5, 5, 10 and 20% w/w concentration (Fatope et al., 1995). The containers with their contents were gently shaken to ensure thorough admixture of the wheat grains and treatment powders. Twenty newly emerged adults *R. dominica* were randomly (unsexed) picked and introduced to each of the containers and covered. Four replicates of the treatments and untreated controls were laid out in Complete Randomized Design. Beetle mortality was observed daily for 4 days. After every 24 hours, the number of dead beetles were counted and recorded. The beetles were confirmed dead when there was no response to probing with sharp pin at the abdomen (Adedire et al., 2011). At the end of day 4, all insects, both dead and alive were removed from each container. The experiment was kept inside the insect cage for another 30 days to allow for the emergence of the first filial (F1) generation. The number of adults that emerged from each replicate was counted and recorded. The percentage reduction in adult emergence of F 1 progeny or inhibition rate (IR) was calculated according to the method described by Tapondju et al. (2002).

\[
\text{% IR} = \frac{C_n-T_n}{C_n} \times 100
\]

where \(C_n\) is the number of emerged insects in the control and \(T_n\) is the number of emerged insects in the treated containers.

The % loss in weight was determined and recorded using the method described by Odeyemi and Daramola (2000).
% Weight loss = \[
\frac{\text{Initial weight} - \text{final weight}}{\text{Initial weight}} \times 100
\]

2.4. Toxicity of acetone extracts on mortality and adult emergence of *R. dominica*

Extracts of *A. indica* and *P. guineense* seeds at rate of 1ml of each concentration 1%, 2%, 3% and 4% (Ashamo and Akinnawonu, 2012) was mixed with 20g of clean wheat grains in 250 ml plastic containers. The extracts were thoroughly mixed with the aid of a glass rod and agitated for 5-10 min to ensure uniform coating. The containers were left open for 30 min so as to allow traces of solvent to evaporate off (Ileke and Olotuah, 2012). Two control experiments were set up, one treated with solvent (Aramilewa et al., 2006) and another without solvent treatment (Ashamo and Akinnawonu, 2012). Twenty newly emerged adults *R. dominica* were randomly (unsexed) picked and introduced to each of the containers and covered. Four replicates of the treatments and untreated controls were laid out in Complete Randomized Design. Beetle mortality was observed daily for 4 days. After every 24 hours, the number of dead beetles were counted and recorded. The beetles were confirmed dead when there was no response to probing with sharp pin at the abdomen (Adedire et al., 2011). At the end of day 4, all insects, both dead and alive were removed from each container. The experiment was kept inside the insect cage for another 30 days to allow for the emergence of the first filial (F1) generation. The number of adults that emerged from each replicate was counted and recorded. The percentage reduction in adult emergence of F1 progeny was determined and re corded using the method described by Odeyemi and Daramola, 2000.

2.5. Statistical analysis

Data were subjected to analysis of variance and treatment means were separated using the New Duncan’s Multiple Range Test. Data were subjected to analysis of variance (ANOVA), and means were separated using New Duncan’s Multiple Range Test. The ANOVA were performed with SPSS 16.0 software (SPSS, Inc., 2007).

3. Results

3.1. Toxicity of plant powders to *R. dominica*

The effect of *A. indica* and *P. guineense* seeds powders on mortality of lesser grain borer, *R. dominica* is shown in Table 1. All the plants powders at all tested concentration had above 78.8% mortality after 72 hours of post treatment. Neem seed powders caused 49.3%, 77.5%, 100% and 100% mortality of adult *R. dominica* at rates 0.5/20g, 1/20g, 2/20g and 4/20g of wheat grains after 72 hours of application respectively. There was no significant difference (P>0.05) in mortality of adult *R. dominica* among the grain treated with *A. indica* and *P. guineense* powders causing 100% mortality at all concentration tested after 96 hours of post treatment.

<table>
<thead>
<tr>
<th>Plant powder</th>
<th>Conc. g/20g of wheat</th>
<th>Percentage mortality at hours post treatment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. indica</td>
<td>0.0</td>
<td>100.0+</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>78.8+</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>78.8+</td>
</tr>
<tr>
<td>P. guineense</td>
<td>0.0</td>
<td>100.0+</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>78.8+</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>78.8+</td>
</tr>
</tbody>
</table>

Each value is a mean ± standard error of four replicates. Means within the same column followed by the same letter(s) are not significantly different at P<0.05 using New Duncan’s Multiple Range Test.
3.3. Toxicity of plant extracts to *R. dominica*

Lesser grain borer mortality in wheat grains treated with *A. indica* and *P. guineense* extracts differed significantly (*P*>0.05) from the two controls experiment (Table 3). The two plants extracts showed that lesser grain borer, *R. dominica* mortality increased with increasing hour of exposure. The two plants oils were effective against *R. dominica* causing 100% mortality at all concentration tested after 48 hours of post treatment.

Table 3. Toxicity of plant extract on *R. dominica*.

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Concentration %</th>
<th>Percentage mortality at hours post treatment (%)</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>72.5±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>86.3±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>91.3±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>P. guineense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>58.8±5.2</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>62.5±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>76.3±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>88.8±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Control (TS)</td>
<td>0.0</td>
<td>10.0±4.6</td>
<td>26.3±4.6</td>
<td>38.8±4.6</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Control (WS)</td>
<td>0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
</tbody>
</table>

Each value is a mean ± standard error of four replicates. Means within the same column followed by the same letter(s) are not significantly different at *P*>0.05 using New Duncan’s Multiple Range Test.

Table 4. Effect of plant extract on adult emergence and weight loss of wheat grains.

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Concentration %</th>
<th>Percentage mortality at hours post treatment (%)</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>72.5±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>86.3±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>91.3±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0±0.0</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>P. guineense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>58.8±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>62.5±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>76.3±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>88.8±2.4</td>
<td>100.0±0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4. Discussion

The results obtained in this study showed that powders and extracts of *A. indica* and *P. guineense* seeds tested were toxic to the lesser grain borer, *R. dominica* and suppressed their population growth in treated wheat grains. Neem, *A. indica* seed powder and extract completely killed adult *R. dominica* in stored wheat grains. Some researchers who had earlier evaluated *A. indica* powder and extract as botanical insecticides and grains protectant had found them to be effective against maize weevil, *S. zeamais* and cowpea bruchid, *C. maculatus* (Butterworth and Morgan, 1968; Jackai and Oyediran, 1991; Onu and Baba, 2003; Ileke and Oni, 2011; Ileke and Bulus, 2012). The toxicity of neem to stored products insects has been attributed by various authors to the presence of many chemical ingredients such as triterpenoids, which includes azadirachtin, salanin, meliantriol (Butterwoth and Morgan, 1968; Mbailao et al., 2006; Ileke and Oni, 2011). Black pepper, *P. guineense* caused 100% mortality of adult *R. dominica* within 4 days of application. The biosticide activity of *P. guineense* could be attributed to the presence of chavicin and piperine, an unsaturated amide (Lale, 1992). Black pepper has been found to be effective against the adults of yam moth, *Dasyxodes rugosella* (Ashano 2004). Oluwa and Dawodu (2002) observed a significant reduction in adult emergence of *C. maculatus* when *P. guineense* seed powder was applied at five rates 0.1, 0.2, 0.3, 0.4 and 0.5/20g of cowpea seeds.
Asawalam and Emosaire, 2006; Ileke, 2008; Ileke and Bulus, 2012 also observed that fine particle sizes of P. guineense seed powder completely protected maize, sorghum and cowpea seeds respectively. The lethal effect of these plant powders and extracts could be as a result of contact toxicity (Adedire et al., 2011). Most insects breathe by means of trachea which usually leads to the surface of the body called spiracle. These spiracles might have been blocked by the powders and extracts thereby leading to suffocation.

The percentage reduction in adult emergence and no adult emergence observed in all treated seeds with extracts could be as a result of high mortality of adult insects. The extracts inhibit locomotion which disrupt mating and sexual communication as well as deterring females from laying eggs and complete suppression of the developmental stages of insect an effect that had been reported by many researchers (NRC, 1992; Adedire, 2002; Akinkurolere et al., 2006; Ileke, 2008; Oni and Ileke, 2008; Akinkurolere et al., 2009; Adedire et al., 2011; Ileke and Oni, 2011; Ileke and Olotuah, 2012). The lower F1 adult R. dominica in wheat grain treated with A. indica and P. guineense powders at rates 0.5/20g and 1.0/20g of wheat may be as a result of concentration used. However, the bioactive constituents of the plant materials may be more available in the extract which may be responsible for the higher mortality of adult insect within a very short time of exposure (Ashamo and Akinnawonu, 2012). The results obtained from this study justified that powders and extracts of A. indica and P. guineense seeds can be used as biopesticides against R. dominica. The two plants are of medicinal values, biodegradable, readily available and poses no danger to man and other mammals.

Acknowledgements

The authors would like to thank the technologists at Industrial Chemistry Department, Adekunle Ajasin University, Akungba Akoko, Ondo State for their assistance during preparation of plant extracts. The comments by two anonymous reviewers towards improving the quality of this paper are acknowledged.

References

Ashamo MO. Akinnawonu O. 2012. Insecticidal efficacy of some plant powders and extracts against the Angoumois moth, Sitotroga cerealella (Olivier) [Lepidoptera: Gelechiidae]. Arch Phytopathol and Crop Protect.,45 (9): 1051-1058.

