Jordan Journal of Biological Sciences

An International Peer-Reviewed Scientific Journal

Financed by the Scientific Research Support Fund

http://jjbs.hu.edu.jo/

ISSN 1995-6673

Editor-in-Chief

Professor Abu-Elteen, Khaled H.
Medical Mycology, The Hashemite University

Editorial Board (Arranged alphabetically)

Professor Abdalla, Shtaywy S
Human Physiology, Tafila Technical University

Professor Al-Hadidi, Hakam F.
Toxicology and Clinical Pharmacology
Jordan University of Science and Technology

Professor Bashir, Nabil A.
Biochemistry and Molecular Genetics
Jordan University of Science and Technology

Professor Lahham, Jamil N.
Plant Taxonomy, Yarmouk University

Professor Sallal, Abdul-Karim J.
Applied Microbiology, Jordan University of Science and Technology

Professor Tarawneh, Khaled A.
Molecular Microbiology, Mutah University

Professor Khyami-Horani, Hala
Microbial Biotechnology, The University of Jordan

Submission Address

Professor Abu-Elteen, Khaled H
The Hashemite University
P.O. Box 330127, Zarqa, 13115, Jordan
Phone: +962-5-3903333 ext. 5157
E-Mail: jjbs@hu.edu.jo

Editorial Board Support Team

Language Editor
Dr. Qusai Al-Debyan

Publishing Layout
Eng. Mohannad Oqdeh
International Advisory Board

Prof. Abdel-Hafez, Sami K.
Yarmouk University, Jordan

Prof. Abuharfeil, Nizar M
Jordan University of science and Technology, Jordan

Prof. Amr.Zuhair
Jordan University of science and Technology, Jordan

Prof. El Makawy, Aida, I
National Research Center, Giza, Egypt

Prof. Ghannoum, Mahmoud A.
University Hospital of Cleveland and Case Western Reserve University, U.S.A.

Prof. Hamad, Mawieh,
University of Sharjah, U.A.E

Prof. Hassanali, Ahmed
Kenya University, Nairobi, Kenya

Prof. Ismail,Naim
The Hashemite University, Jordan

Prof. Kilbane, John J
Intertek, Houston, Texas, U.S.A.

Prof. Martens, Jochen
Institute Fur Zoologie, Germany

Prof. Na'was, Tarek E
Lebanese American University, Lebanon

Prof. Sadiq, May Fouad George
Yarmouk University, Jordan

Prof. Shakhanbeh, Jumah Mutie
Mutah University, Jordan

Prof. Tamimi, Samih Mohammad
University of Jordan, Jordan

Prof. Wan Yusoff, Wan Mohtar
University Kebangsaan Malaysia, Malaysia

Prof. Abdul-Haque, Allah Hafiz
National Institute for Biotechnology and Genetic Engineering, Pakistan

Prof. Al-Najjar, Tariq Hasan Ahmad
The University of Jordan, Jordan

Prof. Bamburg, James
Colorado State University, U.S.A.

Prof. Garrick, Michael D
State University of New York at Buffalo, U.S.A.

Prof. Gurib-Fakim, Ameenah F
Center for Phytotherapy and Research, Ebene, Mauritius.

Prof. Hanawalt, Philip C
Stanford University, Stanford, U.S.A

Prof. Hunaiti, Abdelrahim A.
University of Jordan, Jordan

Prof. Kaviraj, Anilava
India University of Kalyani, Kenya

Prof. Matar, Ghassan M
American University of Beirut, Lebanon

Prof. Nasher, Abdul Karim
Sanna’ University, Yemen

Prof. Qoronfleh, Mohammad Walid
Director of Biotechnology Biomedical Research Institute Qatar

Prof. Schatten, Gerald
University of Pittsburgh School of Medicine, U.S.A

Prof. Stanway, Glyn
University of Essex, England

Prof. Waitzbauer, Wolfgang
University of Vienna, Austria

Associate Editorial Board

Professor Al-Hindi, Adnan I.
The Islamic University of Gaza, Palestine

Professor Al-Homida, Abdullah S.
King Saud University, Saudi Arabia

Professor Kachani, Malika
Western University of Health Sciences, USA

Dr. Fass, Uwe W.
Oman Medical College, Sultante of Oman

Dr. Gammoh, Noor
The University of Edinburgh, UK
Instructions to Authors

Scope
Study areas include cell biology, genomics, microbiology, immunology, molecular biology, biochemistry, embryology, immunogenetics, cell and tissue culture, molecular ecology, genetic engineering and biological engineering, bioremediation and biodegradation, bioinformatics, biotechnology regulations, gene therapy, organismal biology, microbial and environmental biotechnology, marine sciences. The JJBS welcomes the submission of manuscripts that meet the general criteria of significance and academic excellence. All articles published in JJBS are peer-reviewed. Papers will be published approximately one to two months after acceptance.

Type of Papers
The journal publishes high-quality original scientific papers, short communications, correspondence and case studies. Review articles are usually by invitation only. However, Review articles of current interest and high standard will be considered.

Submission of Manuscript
Manuscript, or the essence of their content, must be previously unpublished and should not be under simultaneous consideration by another journal. The authors should also declare if any similar work has been submitted to or published by another journal. They should also declare that it has not been submitted/published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher. The authors should also declare that the paper is the original work of the author(s) and not copied (in whole or in part) from any other work. All papers will be automatically checked for duplicate publication and plagiarism. If detected, appropriate action will be taken in accordance with International Ethical Guideline. By virtue of the submitted manuscript, the corresponding author acknowledges that all the co-authors have seen and approved the final version of the manuscript. The corresponding author should provide all co-authors with information regarding the manuscript, and obtain their approval before submitting any revisions. Electronic submission of manuscripts is strongly recommended, provided that the text, tables and figures are included in a single Microsoft Word file. Submit manuscript as e-mail attachment to the Editorial Office at: JJBS@hu.edu.jo. After submission, a manuscript number will be communicated to the corresponding author within 48 hours.

Peer-review Process
It is requested to submit, with the manuscript, the names, addresses and e-mail addresses of at least 4 potential reviewers. It is the sole right of the editor to decide whether or not the suggested reviewers to be used. The reviewers’ comments will be sent to authors within 6-8 weeks after submission. Manuscripts and figures for review will not be returned to authors whether the editorial decision is to accept, revise, or reject. All Case Reports and Short Communication must include at least one table and/ or one figure.

Preparation of Manuscript
The manuscript should be written in English with simple layout. The text should be prepared in single column format. Bold face, italics, subscripts, superscripts etc. can be used. Pages should be numbered consecutively, beginning with the title page and continuing through the last page of typewritten material.

The text can be divided into numbered sections with brief headings. Starting from introduction with section 1. Subsections should be numbered (for example 2.1 (then 2.1.1, 2.1.2, 2.2, etc.), up to three levels. Manuscripts in general should be organized in the following manner:

Title Page
The title page should contain a brief title, correct first name, middle initial and family name of each author and name and address of the department(s) and institution(s) from where the research was carried out for each author. The title should be without any abbreviations and it should enlighten the contents of the paper. All affiliations should be provided with a lower-case superscript number just after the author's name and in front of the appropriate address.

The name of the corresponding author should be indicated along with telephone and fax numbers (with country and area code) along with full postal address and e-mail address.
Abstract

The abstract should be concise and informative. It should not exceed 350 words in length for full manuscript and Review article and 150 words in case of Case Report and/or Short Communication. It should briefly describe the purpose of the work, techniques and methods used, major findings with important data and conclusions. No references should be cited in this part. Generally non-standard abbreviations should not be used, if necessary they should be clearly defined in the abstract, at first use.

Keywords

Immediately after the abstract, about 4-8 keywords should be given. Use of abbreviations should be avoided, only standard abbreviations, well known in the established area may be used, if appropriate. These keywords will be used for indexing.

Abbreviations

Non-standard abbreviations should be listed and full form of each abbreviation should be given in parentheses at first use in the text.

Introduction

Provide a factual background, clearly defined problem, proposed solution, a brief literature survey and the scope and justification of the work done.

Materials and Methods

Give adequate information to allow the experiment to be reproduced. Already published methods should be mentioned with references. Significant modifications of published methods and new methods should be described in detail. Capitalize trade names and include the manufacturer’s name and address. Subheading should be used.

Results

Results should be clearly described in a concise manner. Results for different parameters should be described under subheadings or in separate paragraph. Results should be explained, but largely without referring to the literature. Table or figure numbers should be mentioned in parentheses for better understanding.

Discussion

The discussion should not repeat the results, but provide detailed interpretation of data. This should interpret the significance of the findings of the work. Citations should be given in support of the findings. The results and discussion part can also be described as separate, if appropriate. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusions

This should briefly state the major findings of the study.

Acknowledgement

A brief acknowledgment section may be given after the conclusion section just before the references. The acknowledgment of people who provided assistance in manuscript preparation, funding for research, etc. should be listed in this section.

Tables and Figures

Tables and figures should be presented as per their appearance in the text. It is suggested that the discussion about the tables and figures should appear in the text before the appearance of the respective tables and figures. No tables or figures should be given without discussion or reference inside the text.

Tables should be explanatory enough to be understandable without any text reference. Double spacing should be maintained throughout the table, including table headings and footnotes. Table headings should be placed above the table. Footnotes should be placed below the table with superscript lowercase letters. Each table should be on a separate page, numbered consecutively in Arabic numerals.

Each figure should have a caption. The caption should be concise and typed separately, not on the figure area. Figures should be self-explanatory. Information presented in the figure should not be repeated in the table. All symbols and abbreviations used in the illustrations should be defined clearly. Figure legends should be given below the figures.
References

References should be listed alphabetically at the end of the manuscript. Every reference referred in the text must be also present in the reference list and vice versa. In the text, a reference identified by means of an author’s name should be followed by the year of publication in parentheses (e.g. (Brown, 2009)). For two authors, both authors’ names followed by the year of publication (e.g. (Nelson and Brown, 2007)). When there are more than two authors, only the first author's name followed by "et al." and the year of publication (e.g. (Abu-Elteen et al., 2010)). When two or more works of an author has been published during the same year, the reference should be identified by the letters "a", "b", "c", etc., placed after the year of publication. This should be followed both in the text and reference list. e.g., Hilly, (2002a, 2002b); Hilly, and Nelson, (2004). Articles in preparation or submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., Shtyawy, A., University of Jordan, personal communication). Journal titles should be abbreviated according to the system adopted in Biological Abstract and Index Medicus, if not included in Biological Abstract or Index Medicus journal title should be given in full. The author is responsible for the accuracy and completeness of the references and for their correct textual citation. Failure to do so may result in the paper being withdraw from the evaluation process. Example of correct reference form is given as follows:-

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Conferences and Meetings:

Theses and Dissertations:

Nomenclature and Units

Internationally accepted rules and the international system of units (SI) should be used. If other units are mentioned, please give their equivalent in SI.

For biological nomenclature, the conventions of the *International Code of Botanical Nomenclature*, the *International Code of Nomenclature of Bacteria*, and the *International Code of Zoological Nomenclature* should be followed.

Scientific names of all biological creatures (crops, plants, insects, birds, mammals, etc.) should be mentioned in parentheses at first use of their English term.

Chemical nomenclature, as laid down in the *International Union of Pure and Applied Chemistry* and the official recommendations of the *IUPAC-IUB Combined Commission on Biochemical Nomenclature* should be followed. All biocides and other organic compounds must be identified by their Geneva names when first used in the text. Active ingredients of all formulations should be likewise identified.
Math formulae
All equations referred to in the text should be numbered serially at the right-hand side in parentheses. Meaning of all symbols should be given immediately after the equation at first use. Instead of root signs fractional powers should be used. Subscripts and superscripts should be presented clearly. Variables should be presented in italics. Greek letters and non-Roman symbols should be described in the margin at their first use. To avoid any misunderstanding zero (0) and the letter O, and one (1) and the letter l should be clearly differentiated. For simple fractions use of the solidus (/) instead of a horizontal line is recommended. Levels of statistical significance such as, \(*P <0.05, **P <0.01 \) and \(***P <0.001 \) do not require any further explanation.

Copyright
Submission of a manuscript clearly indicates that: the study has not been published before or is not under consideration for publication elsewhere (except as an abstract or as part of a published lecture or academic thesis); its publication is permitted by all authors and after accepted for publication it will not be submitted for publication anywhere else, in English or in any other language, without the written approval of the copyright-holder. The journal may consider manuscripts that are translations of articles originally published in another language. In this case, the consent of the journal in which the article was originally published must be obtained and the fact that the article has already been published must be made clear on submission and stated in the abstract. It is compulsory for the authors to ensure that no material submitted as part of a manuscript infringes existing copyrights, or the rights of a third party.

Ethical Consent
All manuscripts reporting the results of experimental investigation involving human subjects should include a statement confirming that each subject or subject's guardian obtains an informed consent, after the approval of the experimental protocol by a local human ethics committee or IRB. When reporting experiments on animals, authors should indicate whether the institutional and national guide for the care and use of laboratory animals was followed.

Plagiarism
The JJBS hold no responsibility for plagiarism. If a published paper is found later to be extensively plagiarized and is found to be a duplicate or redundant publication, a note of retraction will be published, and copies of the correspondence will be sent to the authors' head of institute.

Galley Proofs
The Editorial Office will send proofs of the manuscript to the corresponding author as an e-mail attachment for final proof reading and it will be the responsibility of the corresponding author to return the galley proof materials appropriately corrected within the stipulated time. Authors will be asked to check any typographical or minor clerical errors in the manuscript at this stage. No other major alteration in the manuscript is allowed. After publication authors can freely access the full text of the article as well as can download and print the PDF file.

Publication Charges
There are no page charges for publication in Jordan Journal of Biological Sciences, except for color illustrations.

Reprints
Twenty (20) reprints are provided to corresponding author free of charge within two weeks after the printed journal date. For orders of more reprints, a reprint order form and prices will be sent with article proofs, which should be returned directly to the Editor for processing.

Disclaimer
Articles, communication, or editorials published by JJBS represent the sole opinions of the authors. The publisher shoulders no responsibility or liability what so ever for the use or misuse of the information published by JJBS.
Indexing
JJBS is indexed and abstracted by:

- DOAJ (Directory of Open Access Journals)
- Google Scholar
- HINARI
- Index Copernicus
- NDL Japanese Periodicals Index
- SCIRUS
- OASe
- ISC (Islamic World Science Citation Center)
- Directory of Research Journal Indexing (DRJI)
- CAS (Chemical Abstract Service)
- ETH-Citations
- Open J-Gat
- SCImago
- Zoological Records
- Scopus
- AGORA (United Nation's FAO database)
- SHERPA/RoMEO (UK)
- International Institute of Organized Research (I2OR) Database
Journal publishers and authors share a common interest in the protection of copyright: authors principally because they want their creative works to be protected from plagiarism and other unlawful uses, publishers because they need to protect their work and investment in the production, marketing and distribution of the published version of the article. In order to do so effectively, publishers request a formal written transfer of copyright from the author(s) for each article published. Publishers and authors are also concerned that the integrity of the official record of publication of an article (once refereed and published) be maintained, and in order to protect that reference value and validation process, we ask that authors recognize that distribution (including through the Internet/WWW or other on-line means) of the authoritative version of the article as published is best administered by the Publisher.

To avoid any delay in the publication of your article, please read the terms of this agreement, sign in the space provided and return the complete form to us at the address below as quickly as possible.

 ARTICLE T ITLED: --

Corresponding author: ---

To be published in the journal: Jordan Journal of Biological Sciences (JJBS)

I hereby assign to the Hashemite University the copyright in the manuscript identified above and any supplemental tables, illustrations or other information submitted therewith (the "article") in all forms and media (whether now known or hereafter developed), throughout the world, in all languages, for the full term of copyright and all extensions and renewals thereof, effective when and if the article is accepted for publication. This transfer includes the right to adapt the presentation of the article for use in conjunction with computer systems and programs, including reproduction or publication in machine-readable form and incorporation in electronic retrieval systems.

Authors retain or are hereby granted (without the need to obtain further permission) rights to use the article for traditional scholarship communications, for teaching, and for distribution within their institution.

☐ I am the sole author of the manuscript

☐ I am signing on behalf of all co-authors of the manuscript

☐ The article is a ‘work made for hire’ and I am signing as an authorized representative of the employing company/institution

Please mark one or more of the above boxes (as appropriate) and then sign and date the document in black ink.

Signed: __ Name printed: __

Title and Company (if employer representative) : __

Date: __

Data Protection: By submitting this form you are consenting that the personal information provided herein may be used by the Hashemite University and its affiliated institutions worldwide to contact you concerning the publishing of your article.

Please return the completed and signed original of this form by mail or fax, or a scanned copy of the signed original by e-mail, retaining a copy for your files, to:

Hashemite University
Zarqa 13115 Jordan
Fax: +962 5 3903338
Email: jjbs@hu.edu.jo
EDITORIAL PREFACE

Jordan Journal of Biological Sciences (JJBS) aims to publish high quality manuscripts and provide readers worldwide with high quality peer-reviewed scholarly articles on a wide variety of biological sciences such as Cell biology, developmental biology, structural biology, microbiology, entomology, toxicology, molecular biology & genetics, biochemistry, biotechnology, biodiversity, ecology, marine biology, plant biology, animal biology, physiology, and bioinformatics. JJBS is a refereed, peer reviewed quarterly international journal financed by the Scientific Research Support Fund, Ministry of Higher Education and Scientific Research in cooperation with the Hashemite University, Jordan. JJBS has been indexed by SCOPUS; CABI’s Full-Text Repository, EBSCO, Science Citation Index- Zoological Abstract and recently has been included in the UGC India approved journals. JJBS is currently under evaluation to be indexed in Thomson Reuters, National Library of Medicine’s MEDLINE/Pub Med system and others.

A group of highly valuable scholars have agreed to serve on the editorial board and this places JJBS in a position of most authoritative on biological sciences. I am honored to have five associate editors: Al-Hindi (Islamic University of Gaza, Palestine), Al-Homida, (King Saud University, Saudi Arabia), Kachani, (Western University of Health Sciences, USA), Fass, (Oman Medical College, Sultanate of Oman), and Gammoh (The University of Edinburgh). I am also delighted with our group of international advisory board members consisting from 15 countries worldwide. With our editorial board’s cumulative experience in various fields of biological sciences, this journal brings a substantial representation of biological sciences in different disciplines. Without the service and dedication of our editorial board, JJBS would have never existed.

In the coming year, it is my vision to have JJBS publish a combination of manuscripts documenting rigorous studies in the area of biological sciences, and one or more manuscripts from distinguished scholar on recent advances in molecular biology. As you read throughout this volume of JJBS, I would like to remind you that the success of our journal depends directly on the number of quality articles submitted for review. Accordingly, I would like to request your participation and colleagues by submitting quality manuscripts for review. One of the great benefits we can provide to our prospective authors, regardless of acceptance of their manuscripts or not, is the feedback of our review process. JJBS provides authors with high quality, helpful reviews to improve their manuscripts.

Moreover, and as always, my thanks are also extended to the Hashemite University and Jordanian Scientific Research Support Fund for their continuous financial and administrative support to JJBS. I would like to highlight and proudly thank the group of authoritative reviewers, both local and international, who have done an outstanding work. We are honored to have you on our review list and many thanks for your valuable mentorship and contributions you provided to authors. Indeed, we count on your excellent reviews to include only high quality articles worthy of publication in JJBS. Together, we strive to make JJBS reach a remarkable rank among other international journals. I very much appreciate your support to make JJBS one of the most authoritative journals in biological sciences.

March 2018

Prof. Khaled H. Abu-Elteen
Editor-in-Chief
The Hashemite University
Zarqa, Jordan
CONTENTS

Original Articles

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 8</td>
<td>First Record of Anilocra physodes (Isopoda, Cymothoidae) on the Phycis blennoides (Pisces; Phycidae) with Morphological Characters and Hosts Preferences</td>
<td>Ahmet Öktener, Ali Alaş and Dilek Türker</td>
</tr>
<tr>
<td>9 - 15</td>
<td>Karyomorphology of Five Allium species from Nagaland, North-Eastern Region of India</td>
<td>Sanjay Kumar and Tsipila Thonger</td>
</tr>
<tr>
<td>17 - 22</td>
<td>Utilization of Extracted Protein from Fish Fin and Chicken Feather Waste for Alkaline Protease Production by Indigenous Bacteria</td>
<td>Raid D. Thanoon, Rubaaini Subramaniam, Essam A. Makky and Masithah M. Yusoff</td>
</tr>
<tr>
<td>23 - 30</td>
<td>Antimicrobial and Antioxidant Activities of Crude Methanol Extract and Fractions of Andrographis paniculata leaf (Family: Acanthaceae) (Burm. f.) Wall. Ex Nees</td>
<td>Adaramola Banji, Benjamin Goodluck, Otuneme Oluchi and Fapohunda Stephen</td>
</tr>
<tr>
<td>31 - 36</td>
<td>Optimization of Factors Influencing Cellulase Production by Some Indigenous Isolated Fungal Species</td>
<td>Remaz M. M. Ahmed Abd Elrsool and Shami Elhaj A. Bakhiet</td>
</tr>
<tr>
<td>37 - 42</td>
<td>Growth Promotion and Phytopathogen Inhibition Potentials of Lemon Grass (Cymbopogon citratus) Endophytic Bacteria</td>
<td>Abdullahi B. Inuwa, Abdulahi H. Kawo and Hafsat Y. Bala</td>
</tr>
<tr>
<td>43 - 46</td>
<td>Comparing the Total Coliform and Fecal Coliform for Recreational Waters in Public Swimming Areas in the Kingdom of Bahrain</td>
<td>Ali S. Bin Thani, Sahar Baksh and Mariam Tanvir</td>
</tr>
<tr>
<td>47 - 56</td>
<td>Evaluation of Six Imported Accessions of Lupinus albus for Nutritional and Molecular Characterizations under Egyptian Conditions</td>
<td>Sherin A. Mahfouze, Heba A. Mahfouze, Dalia M. F. Mubarak and Ramadan M. Esmail</td>
</tr>
<tr>
<td>57 - 63</td>
<td>Direct Bioconversion of Sorghum Straw to Ethanol in a Single-step Process by Candida species</td>
<td>Blessing A. Adelabu, Sarafadeen O. Kareem, Abideen I. Adeogun and Kehinde O. Ademolu</td>
</tr>
<tr>
<td>57 - 63</td>
<td>Effect of Solanum nigrum Methanol Leaf Extract on Phenylhydrazine Induced Anemia in Rats</td>
<td>Umaru H. Aduwamai, Moses M. Abimbola and Zailani H. Ahmed</td>
</tr>
<tr>
<td>73 - 79</td>
<td>Antimicrobial Activity of Endophytic Fungi from Leaves and Barks of Litsea cubeba Pers., a Traditionally Important Medicinal Plant of North East India</td>
<td>Deepanwita Deka and Dhruba Kumar Jha</td>
</tr>
<tr>
<td>87 - 92</td>
<td>Lactobacillus rhamnosus Ability of Aflatoxin Detoxification</td>
<td>Nizar I. Abrabadi, Essa M. Al-Jubury, Karkaz M. Thalij and Jadoo M. Hajej</td>
</tr>
<tr>
<td>Page Range</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>93 - 98</td>
<td>Expression of Biotransformation and Antioxidant Genes in the Liver of Albino Mice after Exposure to Aflatoxin B1 and an Antioxidant Sourced from Turmeric (Curcuma longa)</td>
<td>Nemat J. Abdulbaqi, Batol I. Dheeb, and Rizwan Irshad</td>
</tr>
<tr>
<td>99 - 105</td>
<td>Molecular Phylogeny of Trametes and Related Genera from Northern Namibia</td>
<td>Isabella S. Etuhole Ueitele, Percy M. Chimwamurombe and Nailoke P. Kadhila</td>
</tr>
<tr>
<td>107 - 112</td>
<td>Determination of Water Quality and Detection of Extended Spectrum Beta-Lactamase Producing Gram-Negative Bacteria in Selected Rivers Located in Ibadan, Nigeria</td>
<td>Olutayo I. Falodun, Yetunde M. Morakinyo and Obasola E. Fagade</td>
</tr>
</tbody>
</table>

Short Communication

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
First Record of *Anilocra physodes* (Isopoda, Cymothoidea) on the *Phycis blennoides* (Pisces; Phycidae) with Morphological Characters and Hosts Preferences

Ahmet Öktener*1, Ali Alaş2 and Dilek Türker3

1Department of Fisheries, Sheep Research Institute, Çanakkale Street 7km., 10200, Bandırma, Balıkesir;
2Department of Biology, A.K.Education Faculty, Necmettin Erbakan University, 42090, Meram, Konya;
3Department of Biology, Science Faculty, Balıkesir University, Cagıs Campus, 10300, Balıkesir, Turkey.

Received July 10, 2017; Revised August 23, 2017; Accepted September 13, 2017

Abstract

Anilocra physodes (Linnaeus, 1758) (Isopoda, Cymothoidea) is reported for the first time on *Phycis blennoides* (Brünnich, 1768) (Pisces; Phycidae) from the North Aegean Sea Coasts of Turkey. The present paper aims to present the morphological characters of *Anilocra physodes* from Turkey. Some morphological characters of this parasitic isopod are illustrated. A new host species for *Anilocra physodes* and the host’s preferences with it, according to family characteristics, habitat selections, feeding habits, are presented.

Keywords: *Anilocra*, Cymothoidea, Isopoda, morphology, *Phycis*, Turkey.

1. Introduction

Cymothoids are ectoparasitic isopods on the body, fins, or inside the buccal or the branchial cavities of numerous freshwater and marine fishes. They are the protandrous hermaphrodite (Bariche and Trilles, 2005). Cymothoids are serious parasites currently affecting a number of fish farms in the World (Sarusic, 1999; Papapanagiotou et al., 1999; Papapanagiotou and Trilles, 2001).

The family Cymothoidea includes 43 genera according to Hadfield et al. (2017). Although that Cymothoidea family is well-known, there are some deficiencies from the taxonomic point of view. Studies concerned with molecular and morphological are needed on this family according to some researchers (Poore and Bruce, 2012; Martin et al., 2013; Hadfield et al., 2016).

Fifty-one species in the genus *Anilocra* were listed by The World Register of Marine Species (Bruce and Schotte, 2008). Two species (*Anilocra physodes* and *Anilocra frontalis*) were reported from Turkish waters, but these studies include limited information about the morphology of mouth-parts (Öktener and Trilles, 2004; Kirkım, 1998).

The present study aims to report a new host species for *Anilocra physodes* and its host preference according to family characteristics, habitat selections, feeding habits.

2. Material and Methods

Seventy greater forkbeard, *Phycis blennoides* (Brünnich, 1768) (Pisces; Phycidae) were collected from the North Aegean Sea in 2014. Collected parasites were fixed in 70% ethanol. Mouthparts and pleopods were dissected using a Wild M5 stereo microscope. The dissected parts were mounted on slides in a glycerin-gelatine mounting medium. The pleopods were stained with methylene blue. The appendages were drawn with the aid of a camera lucida (Olympus BH -DA). The photos were taken with the aid of Canon camera (EOS 1100D) attached to the microscope. Measurements were taken in millimeter (mm) with a micrometric program (Pro-way). Scientific names, synonyms were checked with the WoRMS Editorial Board (2018). The information of feeding habits, habitat characteristics of the host were prepared according to Froese and Pauly (2017). Specimens of *Anilocra physodes* were deposited in the collections of the Muséum National d’Histoire Naturelle (MNHN), Paris, France (MNHN-IU-2013-18754).

3. Results

Anilocra physodes (Linnaeus, 1758) (Figures 1-5)

Synonyms

Asellus physodes Olivier, 1789: 255

Cymothoa physodes Fabricius, 1793: 507

Idotea physodes Fabricius, 1798: 320

Figure 1. *Anilocra physodes* ♀

Figure 2. *Anilocra physodes* ♀, a) antenna (1.16mm), b) antennula (1.73mm), c) mandible (0.32mm), d) distal of mandible, e) maxilla (0.43mm), f) distal of maxilla, g) maxilliped (0.35mm), h) distal of maxilliped, i) maxillula (0.67mm), j) distal of maxillula.

Figure 3. *Anilocra physodes* ♀, a) antenna (1.16mm), b) antennula (1.73mm), c) mandible (0.46mm), d) maxilla (0.43mm), e) maxilliped (0.35mm), f) maxillula (0.18mm).

Figure 4. *Anilocra physodes* ♀, a) Pereopod I, b) Pereopod II, c) Pereopod III, d) Pereopod IV, e) Pereopod V, f) Pereopod VI, g) Pereopod VII (1.81mm), h) Uropod (0.72mm).

Figure 5. *Anilocra physodes* ♀, a) Pleopod I, b) Pleopod II, c) Pleopod III, d) Pleopod IV, e) Pleopod V (2.51mm).

4. Discussion

Anilocra physodes has been reported from North Atlantic Ocean, Mediterranean Sea, Adriatic Sea (Trilles, 1994). It is associated with Actinopterygii and Elasmobranchii (Table 1). The hosts’ parasitism with *Anilocra physodes* was examined according to family characteristics, 28% of 57 hosts belong to Sparidae, 30 to Carangidae, Mugilidae, Centracanthidae, Sciaenidae, Mullidae, Scorpaenidae, 44% to 25 different families. The host’s parasitism with *Anilocra physodes* was examined according to habitat selections; 40% of 57 species host fish species are demersal, 26% to benthopelagic, 16% to pelagic-neritic, 11% reef-associated, 5% pelagic-oceanic, 2% bathydemersal. The host parasitism with *Anilocra physodes* according to feeding habits; 68% of 57 species host fish species are carnivorous, 30% omnivorous, 2% herbivorous.

It may be said that this parasite selects the fishes with carnivorous and demersal character. In the present study, the examined *Phycis blennoides* is carnivorous and demersal character fish. It is fit as a preferred host for *Anilocra physodes*.
Table 1. Anilocra physodes and hosts

<table>
<thead>
<tr>
<th>Host species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boops boops</td>
<td>Balcells (1953); Berner (1969); Trilles and Raibaut (1973); Romestand et al. (1976); Trilles et al. (1989); Akmira (1998); Charfi-Cheikhrouha et al. (2000); Bariche and Trilles (2005); Perez-del-Olmo (2008).</td>
</tr>
<tr>
<td>Diplodus annularis</td>
<td>Berner (1969); Trilles and Raibaut (1973); Papoutsoglou (1976); Trilles et al. (1989); Akmira (2000); Charfi-Cheikhrouha et al. (2000); Innal et al. (2007).</td>
</tr>
<tr>
<td>Spondylissoma canthus</td>
<td>Holthuis (1972); Trilles and Raibaut (1973); Dollius and Trilles (1976); Akmira (2000); Charfi-Cheikhrouha et al. (2000); Ramdane et al. (2007).</td>
</tr>
<tr>
<td>Pagellus erythrinus</td>
<td>Balcells (1953); Berner (1969); Trilles et al. (1989); Akmira (2000); Bariche and Trilles (2005); Innal et al. (2007); Kirkm et al. (2008).</td>
</tr>
<tr>
<td>Lithoglyphus mormyrus</td>
<td>Charfi-Cheikhrouha et al. (2000); Bariche and Trilles (2005); Innal et al. (2007).</td>
</tr>
<tr>
<td>Merluccius merluccius</td>
<td>Balcells (1953); Trilles and Raibaut (1973); Trilles et al. (1989).</td>
</tr>
<tr>
<td>Spicara smaris</td>
<td>Demir (1952-1954); Berner (1969); Geldiay and Kocataş (1972); Trilles (1977); Trilles et al. (1989); Kirkm et al. (2008).</td>
</tr>
<tr>
<td>Diplodus vulgaris</td>
<td>Papoutsoglou (1976); Akmira (2000); Öktener et al. (2010).</td>
</tr>
<tr>
<td>Mullia surmuletus</td>
<td>Papoutsoglou (1976).</td>
</tr>
<tr>
<td>Scorpaena porcus</td>
<td>Papoutsoglou (1976).</td>
</tr>
<tr>
<td>Umbra cirrosa</td>
<td>Papoutsoglou (1976).</td>
</tr>
<tr>
<td>Solea solea</td>
<td>Papoutsoglou (1976).</td>
</tr>
<tr>
<td>Serranus scriba</td>
<td>Papoutsoglou (1976); Kirkm et al. (2008); Öktener et al. (2009).</td>
</tr>
<tr>
<td>Torpedo sp</td>
<td>Gibert i Olive (1919-1920).</td>
</tr>
<tr>
<td>Trigla sp</td>
<td>Gibert i Olive (1919-1920).</td>
</tr>
<tr>
<td>Lichia sp</td>
<td>Gibert i Olive (1919-1920).</td>
</tr>
<tr>
<td>Scorpaena sp</td>
<td>Gibert i Olive (1919-1920).</td>
</tr>
<tr>
<td>Nauicrates doctus</td>
<td>Gibert i Olive (1919-1920).</td>
</tr>
<tr>
<td>Sardina pilchardus</td>
<td>Gibert i Olive (1919-1920), Lee (1961).</td>
</tr>
<tr>
<td>Liza ramada</td>
<td>Trilles (1977).</td>
</tr>
<tr>
<td>Sciaena sp</td>
<td>Trilles (1977).</td>
</tr>
<tr>
<td>Lophius piscatorius</td>
<td>Stalio (1877).</td>
</tr>
<tr>
<td>Oblada melanura</td>
<td>Berner (1969); Papoutsoglou (1976); Akmira (2000); Öktener et al. (2010).</td>
</tr>
<tr>
<td>Pagellus sp</td>
<td>Montalenti (1948); Geldiay and Kocataş (1972).</td>
</tr>
<tr>
<td>Dentex dentex</td>
<td>Trilles and Raibaut (1973); Trilles and Öktener (2009).</td>
</tr>
<tr>
<td>Pagellus acantherus</td>
<td>Bariche and Trilles (2005).</td>
</tr>
<tr>
<td>Pagrus auriga</td>
<td>Trilles and Raibaut (1973).</td>
</tr>
<tr>
<td>Pomatomus saltatrix</td>
<td>Trilles and Raibaut (1973).</td>
</tr>
<tr>
<td>Pogrius caeruleostictus</td>
<td>Trilles et al. (1989); Bariche and Trilles (2005).</td>
</tr>
<tr>
<td>Sarpa salpa</td>
<td>Berner (1969); Papoutsoglou (1976).</td>
</tr>
<tr>
<td>Sciaena umbra</td>
<td>Charfi-Cheikhrouha et al. (2000); Kirkm et al. (2008).</td>
</tr>
<tr>
<td>Uranoscopus</td>
<td>Charfi-Cheikhrouha et al. (2000).</td>
</tr>
</tbody>
</table>

Scaber:
- **Serranus hepatus** - Trilles et al. (1989).
- **Trachinus draco** - Trilles et al. (1989).
- **Atherina boyeri** - Trilles et al. (1989).
- **Sparisoma cretense** - Thorsen et al. (2000).
- **Sigana luridus** - Shakman et al. (2009).
- **Sparus aurata** - Öğuz and Öktener (2007); Kirkm et al. (2008).
- **Spicara maena** - Berner (1969); Dollius and Trilles (1976); Akmira (2001); Öktener et al. (2010).
- **Spicara sp** - Montalenti (1948); Trilles and Raibaut (1973).
- **Squalina squatina** - Nierstrasz (1918).
- **Sphyraena chrysotaenia** - Innal et al. (2007).
- **Liza aurata** - Innal et al. (2007).
- **Trachurus trachurus** - Öğuz and Öktener (2007).
- **Dentex macrophthalmus** - Kirkm et al. (2008).
- **Dicentarchus labrax** - Kirkm et al. (2008).
- **Labrus merula** - Öktener et al. (2009).
- **Chromis chromis** - Öktener et al. (2009).
- **Belone belone** - Öktener et al. (2009).
- **Diplodus sargus** - Akmira (2000).
- **Mullus barbatus** - Roman (1970).
- **Mugil cephalus** - Roman (1970).
- **Scomber japonicus** - Akmira (1997).

Anilocra physodes was also reported in the cephalopod *Loligo vulgaris* from the northern Tyrrhenian Sea (western Mediterranean) by Gestal et al. (1999). There are the symbiotic associations of *Anilocra physodes*, such as that between *Obelia geniculata* and *Anilocra physodes* (Stechoow, 1921), between epiphytes and *Anilocra physodes* (Öktener et al., 2010). There are some reports as feeding source among diets of some fish (Pais, 2002; Navaez et al., 2015; Cháiri et al., 2016).

The number of articles on antennula and antenna found in the present study agree with findings of Schioedte and Meinert (1881), Montalenti (1948), Trilles (1975), Kussakin (1979), Kirkm (1998). The maxillula with four terminal spines found in the present study is compatible with Trilles (1975), while two spines found by Kussakin (1979). The medial lobe and lateral lobe with two spines of maxilla found in this study are compatible with the findings indicated by Kussakin (1979), while medial lobe with 2 spines and lateral lobe 4 spines found by Trilles (1975), medial lobe 1 spine and lateral lobe with 2 spines found by Montalenti (1948). The third article with setae on the lateral margin of the mandible palp found in this study are compatible with the descriptions of Trilles (1975), Kussakin (1979), while without setae found by Montalenti (1948). Three spines on article 3 of the maxilliped of...
ovigorous female observed in this study are compatible with the descriptions of Trilles (1975), while five spines found by Kussakin (1979).

References

Akmirza A. 2000. Seasonal distribution of parasites detected in fish belonging to the sparidae family found near Gökçeada. Turkish J Parasitol, 24-435-441.
Ellis J. 1981. Some type specimens of Isopoda (Flabellifera) in the British Museum (Natural History), and the isopods in the Linnaean Collection. Bull Br Mus Nat Hist Zool, 40:121-128.
Fabricius JC. 1793. Entomologia systematica emendate et aucta. II. I-VIII and 1-519.
Nierstrasz HF. 1931. _Isopoda genuina. II. Flabellifera_.
Nierstrasz HE. 1931. _De Oost-Indische 1899 -1900 aan boord H.M. Siboga onder Expedition. Siboga Expeditie (Uitkomsten op Zoölogisch, Botanisch, Oceanographisch en Geologisch Gebied verzameld in_(Leiden)_.

Karyomorphology of Five Allium species from Nagaland, North-Eastern Region of India

Sanjay Kumar1* and Tsipila Thonger2

1Department of Botany, Banaras Hindu University, Varanasi, India
2Department of Botany, Nagaland University, Lumami 798627, Nagaland, India

Received July 16, 2017; Revised September 7, 2017; Accepted September 13, 2017

Abstract

The Allium species {A. chinense (2n=4x=32), A. tuberosum (2n=4x=32), A. hookeri (2n=22), A. ascalonicum (2n=2x=16) and A. sativum (2n=2x=16)} with basic chromosome number (x=8) were compared karyomorphologically using different quantitative and asymmetry parameters. The total sum of long arm (Σq) was observed high (61.70 µm) in A. hookeri followed by A. ascalonicum (58.44 µm), A. chinense (58.87 µm), A. tuberosum (57.87 µm) and A. sativum (56.78 µm), and an exact reverse trend was observed for total sum of short arm (Σp). The maximum mean value of arm ratio was observed in A. hookeri (1.75±0.144), covariance total chromosome length (A2=CVCL) in A. tuberosum (31.66). mean centromere asymmetry (MCA) in A. ascalonicum (1.10), and covariance centromere index (CVCI) in A. hookeri (21.10). The value of relative chromatin (VRC or ACL) was observed similar in tetraploids and diploids. Pearson correlation (p≤0.05 and p≤0.01), PcoA and cluster analysis showed the strong interrelationship of studied parameters among the Allium species. The karyotypic formula (KF) and chromosome categorization (on the basis of chromosome length) was drawn for the Allium species (A. chinense, A. tuberosum, A. hookeri, A. ascalonicum and A. sativum) as follows 26m+5sm+1st (B7+C19+D6), 25m+5sm+2st (B13+C19), 12m+9sm+1st (C19+D1), 12m+3sm+1st (C13+D1) and 14m+2sm (A2+B5+C6), respectively. Stebbin’s classification showed 2A and 1B type of chromosomal asymmetry among Allium species.

Key words: Karyotypic Formula, Principle Coordinate Analysis, Cluster Analysis, Inter or Intra Chromosomal Analysis, Stebbins Classification, A. chinense, A. tuberosum, A. hookeri, A. ascalonicum, A. sativum.

1. Introduction

The importance of chromosome investigation for basic dissimilarity has been transformed in modern periods. The qualitative or quantitative explanation of chromosome structure has been merged with molecular techniques for a better understanding of the structure, number and behaviour of chromosomes in an organism (genus or species). The interdisciplinary research approach of chromosome has revealed the possible types of karyotypic variation (within and between), systematic relationships, phylogeny and evolution of the related taxa.

The chromosomal symmetry or asymmetry leads to the symmetric or asymmetric differences in the genomic content of an individual and vice-versa. Therefore, the chromosome morphology (or chromosome karyotypes/idiograms) is an important tool to establish uniqueness among the plant or animal species. The unique quality of a plant or animal species may be improved for various needs through a hybridization program. There is a need to know the chromosome number and structure of every possible organism {especially crops and Rare, Endangered and Threatened (RET) species} for genetic improvement by development of hybridization program (conventional as well as molecular) where both chromosome number and structure can be manipulated.

Allium chinense and A. bakeri Regel are known as synonyms to each other and both belong to the Alliaceae family (Bah et al., 2012; Allardice, 1997). It has been reported that A. chinense supports sub-genus cepa in the section of sacciniferum (Datta and Bandyopadhyaya, 2014). It has been reported that A. chinense is a tetraploid (2n=4x=32) plant but some other plants with deviation in chromosome numbers (2n=3x=24; 2n=24 and 2n=33) were also reported (Dubouzet et al., 1993; Gohil and Kaul, 1980). Mukherjee and Roy (2012) reported that A. tuberosum is a tetraploid (2n=4x=32) plant. A. hookeri (subgenus Amerallium) is an important member of family Alliaceae. A. hookeri recorded chromosome number 2n=22, which is the most common, except for a few (33 and 44 chromosome number) as reported from Yunnan (Sen, 1974; Jha and Jha, 1989; Yi-Xiang et al., 1990; Rui-Fu et al., 1996). Both A. ascalonicum and A. sativum were reported as diploid (2n=2x=16) species.

Although very few studies are found on the karyomorphology (not from the Nagaland) of the A. hookeri (Ved Brat, 1965; Sharma et al., 2011; Toijam et al., 2013), A. tuberosum (Mukherjee and Roy, 2012; Ramesh, 2015) and A. sativum (Konvicka and Levan, 1972), we did not come across reports on A. chinense and A. ascalonicum from Nagaland as well as adjoining North-Eastern region of India and at National level. The present paper aims to conduct a karyomorphological study of five
Allium species (A. chinense, A. tuberosum, A. hookeri, A. ascalonicum and A. sativum), collected from the different parts of the Nagaland, India which may provide additional information to the published data on the Allium karyomorphology at world, national or regional levels.

2. Materials and Method

Bulbs of Allium species (A. chinense, A. tuberosum, A. hookeri, A. ascalonicum and A. sativum) were collected from the different parts of the Nagaland and maintained in the Department for root tips. The chromosomal analysis was done according to the conventional root tip squash method (Sharma and Sharma, 1980). The root tips were pre-treated with saturated PDB for 3 h then fixed in carnoy’s l (3:1 ethanol: glacial acetic acid) solution for 24 h and stored in preservative (70% v/v ethanol) at 4°C for further use.

2.1. Preparation of slides

Each root tip was washed with distilled water (5 min) and then treated with 1N HCl (15 min). The hydrolysed root tips washed repeatedly with distilled water and stained (5 min) with aceticarm (2% w/v) and then squashed. Approximately, 10 slides were analysed for each species and the best three slides were observed for number, size and morphology of the chromosomes. The metaphase stages were photographed by Leica digital microscope. The SPSS ver. 16 and ImageJ was used to analyse and measure the long and short arms (µm) of chromosomes and idiograms were prepared. The chromosome classification was done according to the Levan et al. (1964).

2.2. Karyotype variation study

The following are the different parameters used to study the karyotypic variations: chromosome number (2n), total chromosome length (TCL), basic chromosome number (x), total haploid chromosome length (THL), mean centromere asymmetry (MCA), covariance of centromere index (CVCI), covariance of total chromosome length (CVCL), mean (qMean) and summation (Σq) of long arm (q), mean (pMean) and summation (Σp) of short arm (p), mean arm ratio (ARMean), mean (RCLMean) and summation (ΣRCL) of relative chromosome length (RCL), average chromosome length (ACL), mean (p+qMean), summation (Σp+q), difference summation (Σp-q), standard deviation (p+q S.D.), variance (Vp+q) and covariance (CVp+q) of total chromosome length (p+q), mean (CIMean) and standard deviation (CIS.D.) of centromeric index (CI), karyotypic formula (KF), chromosome categorization and Stebbins classification.

The other indices were also used to analyse the karyotype asymmetry, such as A, A1, A2, AI, AsK%, SYi, Rec, TF%, Value of Relative Chromatin (VRC), Centromeric Gradient (CG), Dispersion Index (DI) and Disparity Index (Dis. I).

The detailed formulas for calculations of the different parameters are presented in the form of a table (Table 1).

<table>
<thead>
<tr>
<th>Formula</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF% = Total sum of short arm lengths</td>
<td>Huziwara, 1962</td>
</tr>
<tr>
<td>Total sum of chromosome lengths</td>
<td></td>
</tr>
<tr>
<td>Length of long arm in chromosome complements</td>
<td></td>
</tr>
<tr>
<td>Mean length of short arms</td>
<td>Arano, 1963</td>
</tr>
<tr>
<td>Mean length of long arms</td>
<td>Greilhuber and Speta, 1976</td>
</tr>
<tr>
<td>SYi = Total sum of each chromosome/Longest chromosome</td>
<td>Greilhuber and Speta, 1976</td>
</tr>
<tr>
<td>Rec = Number of chromosomes</td>
<td>Romero-Zarco, 1986</td>
</tr>
<tr>
<td>Mean length of short arms</td>
<td>Romero-Zarco, 1986</td>
</tr>
<tr>
<td>Mean length of long arms</td>
<td>Watanabe et al., 1999</td>
</tr>
<tr>
<td>A1 = 1 -</td>
<td>Arano and Saito, 1980</td>
</tr>
<tr>
<td>Mean chromosome length</td>
<td></td>
</tr>
<tr>
<td>Standard deviation of chromosome length</td>
<td>Arano and Saito, 1980</td>
</tr>
<tr>
<td>Mean chromosome length</td>
<td>Arano and Saito, 1980</td>
</tr>
<tr>
<td>A2 = Mean chromosome length</td>
<td>Lavania and Srivastava, 1999</td>
</tr>
<tr>
<td>Difference of long and short arms</td>
<td>Lavania and Srivastava, 1999</td>
</tr>
<tr>
<td>ΣSum of long and short arms</td>
<td>Lavania and Srivastava, 1999</td>
</tr>
<tr>
<td>A = Number of homologous chromosome pairs</td>
<td>Peruzzi and Eroglu, 2013; Peruzzi and Alkinordu, 2014</td>
</tr>
<tr>
<td>Coverage of chromosome length × Coverage of centromeric index</td>
<td>Mohanty et al., 1991</td>
</tr>
<tr>
<td>MCA = A × 100</td>
<td>Dutta and Bandyopadhyaya, 2014</td>
</tr>
<tr>
<td>Disparity Index (Dis. I) =</td>
<td></td>
</tr>
<tr>
<td>Largest chromosome – Shortest chromosome</td>
<td></td>
</tr>
<tr>
<td>Longest chromosome + Shortest chromosome</td>
<td></td>
</tr>
<tr>
<td>VRC = ΣTotal Length of chromosomes/n</td>
<td></td>
</tr>
</tbody>
</table>
2.3. Chromosome categorization

Chromosomes were categorized on the basis of their length as follows: Type A=5.00µm and above, Type B=4.00µm-4.99µm, Type C=3.00µm-3.99µm, Type D=2.00µm-2.99µm, Type E=1.00µm-1.99µm, and Type F=0.99µm and below.

3. Results

The *Allium* species were collected locally from the different regions of the Nagaland (North Eastern region of India) and the chromosome number from mitotic metaphase images and karyomorphology (karyotype and idiogram) were studied (Figure 1).

The quantitative parameters, such as Chromosome Number, CN (2n=2x), mean length and summation (Σ) of short arm (p), mean length and summation (Σ) of long arm (q), mean Arm Ratio (AR), Average Chromosome Length (ACL), mean and summation (Σ) Relative Chromosome Length (RCL) of *Allium* species (*A. chinense, A. tuberosum, A. hookeri, A. ascalonicum* and *A. sativum*), were analysed and reported in Table 2. The quantitative parameters, such as mean, Standard Deviation (SD), Variance (V), Covariance (CV) and summation (Σ) of total chromosome length (p+q), summation (Σ) of difference between short and long arm (p-q), mean and Standard Deviation (SD) of Centromeric Index (CI), Karyotypic Formula (KF), THL and chromosome categorization, were recorded and presented in Table 3. The inter- and intra-chromosomal quantitative asymmetric indices were calculated and presented for all *Allium* species in Table 4. The Pearson correlation between the inter and intra-chromosomal asymmetry indices was performed and the indices, such as A2, AI, SYi, TF%, CG, Dispersion index and Disparity index showed negative correlation and the indices AsK%, Rec, VRC, CVCI showed positive correlation but not significant for all the indices (Table 5).

The Stebbins classification, based on the ratio of longest and shortest chromosome and the proportion of their arm ratio, was provided (Table 6), and, based on that, 2A type of karyotype asymmetry was observed in all the species except *A. ascalonicum* (Table 7).

![Figure 1. Idiograms (a,c,e,g,i) and Mitotic metaphase (b,d,f,h,j). A) A. chinense, B) A. tuberosum, C) A. hookeri, D) A. ascalonicum, E) A. sativum.](image)
Table 5. Pearson correlation among the different quantitative chromosomal asymmetry indices.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A1</th>
<th>A2-CVCL</th>
<th>AI</th>
<th>AsK%</th>
<th>SYi</th>
<th>Rec</th>
<th>TF%</th>
<th>VRC</th>
<th>CVCL</th>
<th>CG</th>
<th>Dispersion Index</th>
<th>Disparity Index</th>
<th>MCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.922*</td>
<td>-0.527</td>
<td>-0.304</td>
<td>0.373</td>
<td>0.449</td>
<td>0.173</td>
<td>0.468</td>
<td>0.800</td>
<td>0.159</td>
<td>-0.295</td>
<td>-0.628</td>
<td>-0.610</td>
<td>1.000**</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>1</td>
<td>0.575</td>
<td>0.485</td>
<td>-0.022</td>
<td>0.086</td>
<td>-0.369</td>
<td>0.111</td>
<td>-0.969</td>
<td>0.192</td>
<td>0.004</td>
<td>0.565</td>
<td>0.677</td>
<td>-0.922*</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0.931*</td>
<td>0.177</td>
<td>-0.034</td>
<td>-0.778</td>
<td>-0.028</td>
<td>-0.591</td>
<td>0.489</td>
<td>-0.118</td>
<td>0.922*</td>
<td>0.983**</td>
<td>-0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>1</td>
<td>0.504</td>
<td>-0.385</td>
<td>-0.887*</td>
<td>-0.378</td>
<td>-0.589</td>
<td>0.772</td>
<td>-0.392</td>
<td>0.751</td>
<td>0.918*</td>
<td>-0.304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsK%</td>
<td>1</td>
<td>-0.985**</td>
<td>-0.696</td>
<td>-0.987**</td>
<td>-0.224</td>
<td>0.863</td>
<td>-0.940*</td>
<td>0.191</td>
<td>0.222</td>
<td>0.373</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYi</td>
<td>1</td>
<td>0.566</td>
<td>0.999**</td>
<td>0.164</td>
<td>-0.835</td>
<td>0.905*</td>
<td>0.315</td>
<td>-0.076</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rec</td>
<td>1</td>
<td>0.569</td>
<td>0.513</td>
<td>-0.727</td>
<td>0.711</td>
<td>-0.475</td>
<td>-0.819</td>
<td>0.173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF%</td>
<td>1</td>
<td>0.139</td>
<td>-0.826</td>
<td>0.912*</td>
<td>0.323</td>
<td>-0.069</td>
<td>-0.468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRC</td>
<td>1</td>
<td>-0.407</td>
<td>0.218</td>
<td>-0.496</td>
<td>-0.700</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVCL</td>
<td>1</td>
<td>-0.672</td>
<td>0.219</td>
<td>0.483</td>
<td>0.159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>1</td>
<td>0.274</td>
<td>-0.204</td>
<td>-0.295</td>
<td></td>
</tr>
<tr>
<td>Dispersion Index</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Disparity Index</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCA</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Stebbins classification based on ratio of longest and shortest chromosome and arm ratio of longest and shortest chromosome.

<table>
<thead>
<tr>
<th>Ratio longest/shortest chromosome</th>
<th>Proportion of arm ratio of longest chromosome and shortest chromosome</th>
<th>Stebbins karyotype asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 (1)</td>
<td>0.99-0.51 (2)</td>
<td>2A</td>
</tr>
<tr>
<td><2:1</td>
<td>0.50-0.01 (3)</td>
<td>2A</td>
</tr>
<tr>
<td>2:1:1</td>
<td>3A</td>
<td>2A</td>
</tr>
<tr>
<td>2:1:4:1</td>
<td>4A</td>
<td>2A</td>
</tr>
<tr>
<td>>4:1:1</td>
<td>4C</td>
<td>2A</td>
</tr>
</tbody>
</table>

Table 7. Karyotype asymmetry in Allium species based on Stebbins classification.

<table>
<thead>
<tr>
<th>Allium species</th>
<th>Ratio longest/shortest chromosome</th>
<th>Proportion of arm ratio of longest chromosome and shortest chromosome</th>
<th>Stebbins karyotype asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>chinense</td>
<td>1.72</td>
<td>0.74</td>
<td>2A</td>
</tr>
<tr>
<td>tuberosum</td>
<td>1.57</td>
<td>0.87</td>
<td>2A</td>
</tr>
<tr>
<td>hookeri</td>
<td>1.40</td>
<td>0.88</td>
<td>2A</td>
</tr>
<tr>
<td>ascalonicum</td>
<td>1.39</td>
<td>1.94</td>
<td>1B</td>
</tr>
<tr>
<td>sativum</td>
<td>1.39</td>
<td>0.80</td>
<td>2A</td>
</tr>
</tbody>
</table>

Recently, statistically correct six parameters (2n, x, THL, MCA, CVCL and CVCI) have been suggested to analyse principle coordinates (PcoA) and chromosome asymmetry. In the present study, we used seven parameters including Total Chromosome Length (TCL) in the earlier parameters to analyse PcoA and phylogram (UPGMA) (Figures 2-3). The inter- (CVCL) and intra- (MCA) chromosomal asymmetry were performed and reported (Figure 4).

Figure 2. Principle coordinates analysis (PcoA) using six parameters among Allium species.

Figure 3. Two Way Euclidean Paired Group Cluster Analysis using six parameters among Allium species.

Figure 4. Quantitative inter and intra chromosomal asymmetry among the Allium species.
4. Discussion

The chromosome count of Allium species was similar as reported by the other studies (Dutta and Bandypadhyaya, 2014; Mukherjee and Roy, 2012; Sharma et al., 2011). Some other studies suggested different chromosome count for presented species (Dubouzet et al., 1993; Gohil and Kaul, 1980; Sen, 1974; Jha and Jha, 1989; Yi-Xiang et al., 1990; Rui-Fu et al., 1996; Sharma and Gohil, 2013; Gohil and Koul, 1973; Talukdar and Sen, 2000). Therefore, doubt continues to remain for the chromosome count in the species analyzed as well as many other Allium species (Figure 1).

The mean short arm (p_{mean}) and long arm (q_{mean}) observed maximum in A. ascalonicum and A. sativum, on the other hand, total sum of long arm (2q) and Arm Ratio (AR) was maximum in A. hookeri which suggests that chromosomes of A. hookeri are longer than others. The Average Chromosome Length (ACL) and Value of Relative Chromatin (VRC) are exactly similar and increases from polyploidy to A. hookeri to diploids. It may suggest the origin and speculation of the species from dipsoids to A. hookeri to ploids which was supported by the phylogram of the species (Table 2).

The total mean chromosome length (p₄+q₄ mean±SE) of Allium species (A. chinense and A. tuberosum) and (A. ascalonicum and A. sativum) was recorded similar (3.12±0.087 and ±0.174) and (6.25±0.263 and ±0.219), respectively. The earlier species were tetraploid and, later, diploid. The mean chromosome length was high for A. ascalonicum (2n=16) and A. sativum (2n=16) than A. hookeri (2n=22), A. chinense (2n=32) and A. tuberosum (2n=32). It suggests that the diploid species (A. ascalonicum and A. sativum) have more compact and larger chromatin and may be involved in the formation of the tetraploids (A. chinense and A. tuberosum). The diploid and polyploidy Allium species might have taken the same evolutionary process during the evolution in time and space. The maximum variance (V_p) and covariance (CV_p) in chromatin length were observed in A. ascalonicum and A. hookeri, respectively. A. ascalonicum showed more variations between the chromosomes while A. hookeri varied within the chromosomes. The mean centromeric index (CI) was recorded 43.03±0.922 (A. sativum), 41.53±1.119 (A. chinense), 41.48±1.324 (A. tuberosum), 41.17±1.807 (A. ascalonicum) and 38.16±1.717 (A. hookeri), respectively. The high centromeric index suggests that most of the chromosomes are in median region as the chromosomal arms are not exactly equal to make strict metacentric chromosomes (M). The position of centromere is variable in chromosomal arm which depends on the centromeric index of chromosome and suggest the symmetry or asymmetry among the chromosomes. The Allium species were recorded with sub-telocentric chromosomal region (st) (centromere near to the terminal region of the chromosomal arm) except A. sativum. The Karyotypic Formula (KF) and chromosome categorization (on the basis of chromosome length) were drawn for the Allium species (A. chinense, A. tuberosum, A. hookeri, A. ascalonicum and A. sativum) as follows 26m+5m+1st (B₁+C₁₉+D₃), 25m+5m+2st (B₁+C₁₉), 12m+9m+1st (C₁₉+D₃), 12m+3m+1st (C₁₉+D₃) and 14m+2sm (A₁+B₃+C₃), respectively. The method of measurement of chromosome arms may affect the karyotype asymmetry or symmetry. The chromosomal categorization suggested that A. sativum (2n=2x=16) shared its maximum genome with the tetraploids, A. chinense (2n=4x=32) and A. tuberosum (2n=4x=32) while A. ascalonicum and A. hookeri shared their maximum genome with A. chinense (2n=4x=32) (Table 3).

The inter- or intra-chromosomal asymmetry may be measured from the shifting of centromeric position from median to subterminal or it may be the difference in relative size between the individual chromosome. Stebbins (1971) classified the chromosomal asymmetry on the basis of variation in chromosome length and centromeric position. The higher value of the indices suggested the more asymmetric chromosome complement, while the lower value indicates towards less asymmetric or more symmetric chromosome complement.

The intra-chromosomal asymmetry (AI) was recorded maximum in A. tuberosum and A. chinense followed by A. hookeri, A. sativum and A. ascalonicum. The approximate similar chromosomal asymmetry between (A. tuberosum and A. chinense) and (A. sativum and A. ascalonicum) indicates the similar genome size or chromosome numbers. The inter-chromosomal asymmetry (A₂) was recorded with maximum chromosome variation in A. tuberosum followed by A. hookeri, A. ascalonicum, A. chinense and A. sativum. The covariance of the total chromosome length which is a variation within the chromosome of a complement recorded maximum for the A. tuberosum with maximum variable chromosomes than others. The measurement of the chromosomal variation with other species (A₂) did not follow the pattern of chromosomal variation within the same species (A₁). The asymmetry index (AI) of chromosomes of a species exactly followed the chromosomal variation with other species (A₂). It also suggests that the total asymmetry of chromosomes of a species is the measure of the covariance of the total chromosome length of a species. Also, the asymmetry indices (SYi, Rec and TF%) provides an average degree of symmetry over whole karyotype of a species. The Value of Relative Chromatin (VRC) ranged from 3.12-6.25µm in all the species, which is very little as compared to the earlier reports in A. chinense (27.38 and 26.89) and A. tuberosum (26.31 and 26.03) (Dutta and Bandypadhyaya, 2014) (Table 4).

In the present study, the index A₁ and M_{CA} showed highly negative correlation (-0.922*) and perfect positive correlation (1.000**) with the index A at p<0.05 and p<0.01, respectively. The intra-chromosomal asymmetry index may not be dependent on the centromeric asymmetric position variation; the inter-chromosomal asymmetry index (A₁) however, may be fully or partially dependent on the centromeric position variation in a chromosome. The index A₁ showed highly negative correlation with VRC (-0.969**) and M_{CA} (-0.922*) at p<0.01 and p<0.05, respectively. It suggests that A₁ does not depend on the VRC and M_{CA} for the chromosomal asymmetry. The index A₂ showed highly positive correlation with AI (0.931*), dispersion index (0.922*) and disparity index (0.983**) at p<0.05 and p<0.01, respectively. AI showed highly negative (-0.887*) and positive (0.918*) correlation with Rec and disparity index.
The Stebbins classification, based on the ratio of longest and shortest chromosome and the proportion of their arm ratio, was provided (Table 6) and, based on that, ratio (1.72, 1.52, 1.40, 1.39 and 1.39) and proportion of their arm ratio (0.74, 0.87, 0.88, 1.94 and 0.80), among the Allium species (A. chinense, A. tuberosum, A. hookeri, A. ascalonicum and A. sativum), were recorded respectively, and 2A type of karyotype asymmetry was observed in all the species except A. ascalonicum (Table 7). The Stebbins chromosomal asymmetry (2A) for A. chinense in present study supported the earlier reports of A. chinense collected from the other parts of North Eastern region (Shillong, Meghalaya) as well as the rest of India (Dutta and Bandyopadhyaya, 2014). The resemblance of karyotype asymmetry may be due to similar type of geographical and climatic conditions in Meghalaya and Nagaland as both are hilly states and near to each other. The earlier reports on A. tuberosum (collected from Kolkata, India) and A. hookeri (Darjeeling, West Bengal and NBGPR, Uttarakhanda) suggested 2B and 3B type of Stebbins karyotype asymmetry, but in present result it showed 2A type of karyotype asymmetry in both the cases (Dutta and Bandyopadhyaya, 2014; Sharma et al., 2011). The difference in the karyotype asymmetry may be because of the distance factor in collection site, climate conditions and growth factor of States Kolkata, West Bengal and Uttarakhanda which are very far from each other. A. ascalonicum and A. sativum showed 1B and 2A type of karyotype asymmetry, respectively.

The karyotypic formula, Stebbins classification and value of relative chromatin may differ in the species because of the different methods and application used to measure long and short arm of the chromosomes.

Recently, it has been reported that the karyological characters should be described by quantitative parameters which are statistically correct and without redundancy (Peruzzi et al., 2009). The quantitative parameters, such as chromosome number (2n), basic chromosome number (x), Total Haploid Length (THL) of the chromosome (rough estimation of genome size), mean centromeric asymmetry (M_{CA}), covariance of total chromosome length (CV_{CL}) and covariance of centromeric index (CV_{CI}), were suggested for karyomorphological calculation and its study. The suggested parameters were statistically correct and measures three different features of a karyotype without redundancy. The quantitative parameters measure the intra-chromosomal variation (M_{CA}), heterogeneity in the centromere position (CV_{CI}) and inter-chromosomal variation or asymmetry (CV_{CL}).

In present study, we used seven parameters including Total Chromosome Length (TCL) in the earlier parameters to analyse PcoA, phyllogram (UPGMA), and inter- and intra-chromosomal asymmetry. The seven parameters as suggested (including TCL) were used to locate the coordinates on the x and y axis of principle coordinates (PcoA) of the five Allium species. All the Allium species were well distributed in all the quadrates of x and y axis. The distribution indicated that the taken species are not redundant and belong to different species; they also differ karyomorphologically (Figure 2). The same parameters were also used to draw the phyllogram (UPGMA) and A. ascalonicum and A. sativum grouped or placed together in the phyllogram. It seems that other species evolved, diverged and speculated from them in time and space (Fig. 3). The covariance of the chromosome length (CV_{CL}) was compared with mean centromeric asymmetry (M_{CA}) and suggested a variation in the species from each other. Intra-chromosomal variation was observed but the centromere variation seems to be near to the axis (Figure 4).

5. Conclusion

The other Allium species, such as A. wallichii Kunth. (2n=2x=16), A. roylei Stearn (2n=2x=16), A. angelooprasum L. (2n=2x=16), A. schoenoprasum L. (2n=2x=16), A. cepa var. cepa Helm. (2n=2x=16), A. cepa var. aggregatum G. Don (2n=2x=16), A. fistulosum L. (2n=2x=16), A. pratii Wight (2n=2x=16), A. stracheyi Baker (2n=2x=14), A. macranthum Baker (2n=4x=28), A. cepa var. viviparum (Metzger) Alefeld (2n=3x=24; 8^2+8^1), A. porrum L. (2n=4x=32) and A. griffithianum Boiss. Synt. A. rubellum M. Bieb. (2n=4x=32), has been observed around the North-Eastern region as well as Eastern Himalaya of the Indian sub-continent; therefore, it may be suggested that Allium species may be collected, maintained and preserved in these regions to be scientifically identified at molecular level to reduce the chance of misidentification and redundancy of the species.

Acknowledgement

The authors acknowledge the special assistance programme (SAP), University Grant Commission (UGC), New Delhi granted to the Department for financial support and the Leica digital Microscope (purchased from SAP grant) used to capture the metaphase chromosome images of different Allium species. I would thank my research scholar (Tsipila Thonger) for collecting metaphase stages of Allium species and rest of the things such as analysis and writing of the paper done by her Ph.D. supervisor and guide (Dr. Sanjay Kumar).

References

Utilization of Extracted Protein from Fish Fin and Chicken Feather Waste for Alkaline Protease Production by Indigenous Bacteria

Raid D. Thanoon, Rubaaini Subramaniam, Essam A. Makky, and Mashitah M. Yusoff

Faculty of Industrial Sciences & Technology; Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia

Received August 16, 2017; Revised September 13, 2017; Accepted September 16, 2017

Abstract

Microbial Alkaline Proteases (APs) are of considerable interest in view of their activity and stability at alkaline pH. The present study aims to utilize keratin and collagen extracted from Fish Fin (FF) and Chicken Feather (CF) waste, respectively, for the production of AP enzyme by indigenous bacteria. Both wastes can be sources of solid waste contamination; hence, they were investigated for AP production through microbial degradation. The proteins extracted were added into the production medium containing the bacterial suspension, and assayed for AP production. The process parameters were optimized by One Factor At a Time (OFAT) and the optimum conditions for CF and FF were pH 9.0, temperature of 28°C for CF and 40°C for FF, incubation period was 6 and 10 days for CF and FF, respectively. The optimum carbon source was galactose and glucose for CF and FF, respectively, and the optimum nitrogen source was ammonium chloride and beef extract, respectively. The inoculum size of 1.5 mL and a protein volume of 0.5 and 2.0 mL for CF and FF, respectively, was recorded. The present study indicates that the protein was successfully extracted from the waste used and degraded by AP enzyme that produced and optimized using OFAT by indigenous bacterial isolates.

Keywords: Animal waste; Environmental pollution; Indigenous bacteria; Protein Extraction.

1. Introduction

Proteases are a group of enzymes that hydrolyze the peptide bond of proteins, breaking them into polypeptides or free amino acids. They constitute 59% of the global market for industrial enzymes (Deng et al., 2010). They have a wide range of application in detergents, leather, food and pharmaceutical industries (Bhaskar et al., 2007 and Jellouli et al., 2009). The sources of proteases include all forms of life, including plants, animals, and microorganisms. Based on their acid-base behavior, proteases are classified into three groups which are acid, neutral and alkaline proteases. The acid proteases perform best at a pH range of 2.0 - 5.0 and are mostly produced by fungi. Proteases with pH optima of 7.0 are called neutral proteases, mainly of plant origin. Proteases that have optimum activity at a pH range of 8 and above are classified as APs, mostly produced by microorganisms. Proteases produced from microorganisms play an important role in several industries, such as detergent, tanning, photographic and pharmaceutical industries (Gupta et al., 2002). However, the high cost and lack of long-term stability under storage and process conditions often hampered their applications (Binod et al., 2013; Cavaco-Paulo and Gubitz, 2003). Pollution can be described as the introduction of contaminants which may harm or discomfort living beings into the environment. Pollutants can be in the form of naturally occurring substances or energies; however, they are considered contaminants when in excess of the natural levels (Santos, 1990). The decomposition of nutrients is facilitated by gastrointestinal bacteria through the secretion of physiologically active enzymes, amino acids, and vitamins (Sugita et al., 1997). Besides, few proteolytic bacteria have been previously reported to be related to fresh water and marine fish processing wastes (Sudeepa et al., 2007; Triki-Ellouz et al., 2003). The catalytic properties of AP proved that it is a suitable candidate for industrial applications as in tannery and detergent formulations (Fouzia et al., 2017).

The present study aims to extract, utilize and optimize the keratin and collagen from CF and FF, respectively, for the production of AP enzyme by indigenous bacteria. The process was optimized to achieve zero solid waste from animal sources.

2. Materials and Methods

2.1. Samples Collection and Preparation

Two types of solid waste, namely Chicken Feather (CF) and Fish Fin (FF) were collected from the wet market, Kuantan area, Pahang, Malaysia, from Sept. 2015.
to April 2016. The wastes moved to the lab immediately, washed, dried at room temperature, and blended into small pieces to a size range of about 2-3 mm (Raid et al., 2017).

2.2. Extraction of Keratin from Chicken Feathers

The extraction of keratin from the CF was done as described by Gupta et al. (2012). About 25 g of ground CF was added into 1 L of 0.5M sodium metabisulphite (pH 5.0) and incubated at 30 °C with continuous stirring for 6 h. After the incubation period, the solution was filtered and centrifuged at 10,000 rpm for 5 minutes. The supernatant was collected and filtered again using filter paper (Whatman 125 mm Ø). Then, 100 mL of the CF filtrate was added into a beaker and placed on a magnetic stirrer before adding 100 mL of ammonium sulfate drop wise. The mixture was later kept in the chiller at 4 °C for further experiments.

2.3. Extraction of Collagen from Fish Fin Wastes

The extraction of collagen from the FF was done as described by Hashemi-jokar (2014). About 5 g of the ground FF was added in 100 mL of 1M NaOH and stirred continuously using magnetic stirrer for 6 h. To get rid of the stirred non-collagen proteins, the suspension was centrifuged at 7000 rpm for 5 minutes. The pellets obtained were washed with distilled water and mixed by vortex before centrifuging again. Then, 0.5M of acetic acid was added to the pellets and kept for 3 days before centrifuging at 2000 rpm for 1 h. The supernatant was removed and the pellets washed with distilled water. The insoluble materials were soaked in 0.5M EDTA at pH 8.0 for 5 days to remove calcium. After 5 days, the pellets were washed with distilled water by centrifuging at 10,000 rpm for 1 hour. The distilled water was discarded and 0.5M of acetic acid was added until it covered the insoluble pieces. Then, ammonium sulfate was added at a ratio of 1:1 and the mixture centrifuged again at 8000 rpm for 5 minutes. The protein content of the pellets was determined using Lowry et al. (1951) method.

2.4. Ammonium Sulfate Precipitation

The crude protein filtrate (100 mL) was poured into a beaker and stirred before slowly adding particles of 80% ammonium sulfate into the filtrate. The calculation of the solid ammonium sulphate to be added at any concentration was obtained by the chart of (Gomori, 1955) as mentioned by (Dixon and Webb, 1964). The solution was centrifuged at 10,000 rpm for 5 minutes; the formed solids were carefully gathered by rinsing with distilled water. More precipitates were formed by the addition of more ammonium sulfate into the supernatant. The protein content was determined by Lowry method of protein assay.

2.5. Inoculum and Production Media Preparation

The bacterial suspension was prepared by mixing 1 g of the waste with autoclaved distilled water. The solution was shaken for three to five minutes; 1 mL of the clear supernatant from the waste suspension was inoculated into 50 mL nutrient broth and incubated for 48 h at 37°C. M9 minimal salts stock solution (5X) (Sigma-Aldrich) was used (g/L): \(\text{Na}_2\text{HPO}_4, 7\text{H}_2\text{O}, 64; \text{KH}_2\text{PO}_4, 15; \text{NaCl}, 2.5; \text{NH}_4\text{Cl}, 5 \) (Stukus, 1997), after autoclaving, the media was mixed uniformly and cooled down. Then, 2 mL of 1M MgSO\(_4\), 0.1mL of 1M CaCl\(_2\), and 20 mL of 20% glucose was added to the autoclaved stock solutions. 200 mL of the M9 medium was mixed with 0.5 mL of the extracted protein from CF and FF and inoculated with 1 mL of the bacterial suspension in a conical flask before incubating at 37 °C for 48 h. After the incubation period, the solution was centrifuged to get the Cell-Free Filtrate (CFF) used for AP assay (Raid et al., 2017).

2.6. Alkaline Protease Assay

Alkaline protease was determined using the Folin-Lowry method as described by Nisha and Divakaran (2014). A 1.25 mL of Tris buffer (100 mM, pH 9) and 0.5 mL of 1% aqueous casein solution was added into 0.25 mL of CFF and incubated for 30 minutes at 30 °C. Next, 3 mL of 5% Trichloroacetic Acid (TCA) was added and incubated for 10 minutes at 4 °C before centrifuging at 5000 rpm for 15 minutes. The supernatant (0.5 mL) was added to 2.5 mL of 0.5M of sodium carbonate, mixed and incubated for 20 minutes. Thereafter, 0.5 mL of Folin reagent was added and analyzed under UV-Vis at 660 nm. The concentration of protease was measured using a tyrosine standard graph (Takami et al., 1989). One unit of protease activity was defined as the amount of enzyme required to liberate 1 µg of tyrosine per milliliter per minute under the stated experimental conditions.

2.7. Optimization of the Parameters

To optimize the culture conditions for maximum AP production, different process parameters, such as initial pH-values (5.0, 6.0, 7.0, 8.0 and 9.0), temperature (20, 30, 40, room temperature (RT) and 50°C), carbon sources (glucose, starch, maltose, galactose, xylose, lactose and fructose), nitrogen sources (yeast extract, beef extract, peptone, urea, ammonium chloride, sodium nitrate and ammonium sulfate), incubation periods (2, 4, 6, 8 and 10 days), extracted protein volume (0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mL), and bacterial inoculum sizes (0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 mL), were studied using One Factor At a Time method (OFAT). The effect of these parameters on the production of AP was investigated. All statistics were performed as shown means ± standard deviations (SD) with sample size (n) indicating the number of independent experiments, and analysis of variance (ANOVA) was used to analyze the observed differences (p<0.05).

3. Results and Discussions

3.1. Total Protein Determination

Different quantities of FF and CF samples were used for the extraction of protein content. Table 1 shows the protein contents of the extracted samples determined by the Lowry method of protein estimation. A high protein content was observed in the supernatants of all the samples. The waste pellets were completely dissolved during the extraction steps, leaving no waste from the FF and CF. However, the protein content of FF was lower (0.852 ± 0.050 mg/mL) compared to that of CF (1.183 ± 0.035 mg/mL). The protein content of the samples was higher compared to the control. This may be due to the higher surface area of waste pellets which made more room for the interaction of the chemicals with the small pieces of FF waste. The indigenous bacteria grew well in
the minimal salt medium containing CF as the only carbon source, and degraded 91% of the CF in a period of 7 days (Avinash et al., 2011). Similar results were reported for other bacterial isolates (Williams et al., 1991) and fungal strains (Kaul and Sumbali, 1999). The pH of the medium was continuously monitored during the course of CF degradation; a gradual increase was observed from an initial value of 7.0 to 8.5; which suggests the possible deamination of peptides and amino acids resulting in the production of ammonia. Such alkalization of media was also reported in the case of keratolytic fungi (Avinash et al., 2011).

3.2. Alkaline Protease Assay

The AP activity of the extracts was determined in the presence of the extracted protein by the indigenous bacteria. The concentration of AP was slightly higher in CF (0.254 ± 0.001 U/mL) compared to FF (0.246 ± 0.014 U/mL). This might be due to the amount and/or the type of protein present in each sample (Table 1). The higher the protein content in the sample, the higher the production of AP enzyme. Casein served as the substrate; tyrosine was liberated during the enzymatic degradation of the Casein either as amino acids or peptide fragments. Folin’s reagent was used to develop the color from the reaction with free tyrosine. Hence, the higher the amount of tyrosine from casein, the higher the produced chromophores, and the stronger the protease activity.

Table 1. Screening of AP production and extracted protein content by indigenous bacterial isolates in both FF and CF waste samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>AP activity (U/mL)</th>
<th>Protein content (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.0273 ± 0.002</td>
<td>0.058 ± 0.004</td>
</tr>
<tr>
<td>CF</td>
<td>0.254 ± 0.001</td>
<td>1.183 ± 0.035</td>
</tr>
<tr>
<td>FF</td>
<td>0.246 ± 0.014</td>
<td>0.852 ± 0.050</td>
</tr>
<tr>
<td>F-value</td>
<td>3099.706</td>
<td>33.619</td>
</tr>
<tr>
<td>P-value</td>
<td>0.00*</td>
<td>0.03*</td>
</tr>
</tbody>
</table>

Each value represents the AP activity and protein content extracted from CF and FF waste by indigenous bacterial isolates in column of means compared to control. P-values* Significant at p < 0.05.

3.3. Optimization of Enzyme Production

The effect of temperature on AP enzyme activity was determined at different temperatures, as presented in Figure 1. The AP enzyme was active at the temperature range of 20–50°C, with an optimum at RT (27 ± 2°C) and 40°C for both CF (0.362 ± 0.016 U/mL) and FF (0.342 ± 0.030 U/mL), respectively. The activity decreased rapidly above this temperature range.

Earlier reports have shown that protease production is maximum at 30°C, and there is a reduction in the enzyme production above this range as the enzyme undergoes thermal inactivation. The enzyme production can be affected by temperature through changes in the physical properties of the cell membrane (Goma, 2013). Nisha and Divakaran (2014) also reported that protease production was highest at 40°C using Bacillus subtilis. The incubation temperature to be used generally depends on the microorganisms (Gomaa, 2013). However, in the present study, a mixed culture was used, which explained why the highest temperature for alkaline protease production from the extracted proteins was different. At high temperatures, the enzyme was inactivated, resulting in the low enzyme activity at 50°C for both CF (0.195 ± 0.000 U/mL) and FF (0.201 ± 0.002 U/mL). The effect of temperature on the enzyme production was studied by varying the temperature from 24 to 39°C, with an increment of 3°C while keeping the other parameters constant. It was found that protease production was maximum (397.19 U/g) at 33°C. Also, the enzyme production was favored at a temperature range of 30 to 39°C, showing the ability of the organism to reduce protease enzyme over a wide range of temperature (Renganath et al., 2017).

![Figure 1](image1.png) Effect of temperature on AP activity against extracted proteins of CF and FF samples.

Media pH strongly affects many enzymatic processes and transport of compounds across cell membranes. The maximum AP production was achieved at pH 9.0 in both CF (0.217 ± 0.013 U/mL) and FF (0.277 ± 0.034 U/mL) as substrates (Figure 2). The enzymes were inactivated in the acidic medium, resulting in low enzymatic activity. In addition, as the pH deviates from the optimal level, the enzymatic process can be altered. This indicates the low level of enzyme saturation due to pH effect on their stability (Dixon and Webb, 1979). The organism was efficient in protease production at alkaline pH conditions compared to neutral pH (Renganath et al., 2017). The maximum protease production was achieved at medium pH 9, while the least was recorded at medium pH 5. The production of protease increased as the pH of the medium increased towards pH 9. After pH 9, there was a decrease in the enzyme production, suggesting a stimulation of enzyme production at alkaline pH. This could be indicative of the alkalophilic nature of the microorganism (Sunita et al., 2016).

![Figure 2](image2.png) Effect of initial pH-value on AP activity produced by indigenous bacterial isolates from protein extracted based waste.
medium was substituted with equal amounts of complex or simple carbon sources. It was observed that galactose showed the highest AP production (0.230 ± 0.011 U/mL), followed by glucose and starch (0.206 ± 0.008 U/mL) in the presence of CF as substrate. Meanwhile, glucose showed the highest AP production (0.233 ± 0.004 U/mL), followed by lactose (0.169 ± 0.010 U/mL) in the presence of FF as substrate (Figure 3). A similar effect of galactose on AP production was observed by Pant et al. (2015) who found that galactose gave the maximum amount of alkaline protease, while sucrose gave the lowest amount. The present study shows that the lowest enzyme activity was in the presence of maltose for CF (0.201 ± 0.004 U/mL) and starch for FF (0.148 ± 0.007 U/mL). Generally, the results obtained indicate that monosaccharide sources produced a higher amount of alkaline protease compared to disaccharide and polysaccharides. The difference in enzymatic activities on the carbon sources between CF and FF may be due to the different types of protein present in each sample. Since a mixed culture of microorganisms was used for both samples, different types of microbes utilized different carbon source to produce alkaline protease. The production of alkaline protease was dependent on the available carbon and nitrogen sources in the medium. The addition of carbon sources in the form of either monosaccharides or polysaccharides could influence the production of an enzyme (Sudharshan et al., 2007).

Various types of nitrogen sources (including organic and inorganic) were evaluated in the M9 medium containing the extracted proteins (Figure 4). The nitrogen source in the M9 medium was substituted with a nitrogen equivalent. It was found that beef extract (0.350 ± 0.000 U/mL) and ammonium chloride (0.414 ± 0.050 U/mL) served as the best organic and inorganic sources for enhancing AP activity in presence of both CF and FF extracted proteins, respectively. Nisha and Divakaran (2014) reported that beef extracts gave the highest alkaline protease production compared to yeast extract, ammonium sulfate, ammonium chloride, urea, and peptone. The requirement for a specific nitrogen source for protease production differs from organism to organism, and also, the alkaline protease biosynthesis depends on the presence of both nitrogen and carbon sources in the production medium (Kole et al., 1988). The outcome of the present study is in the line with the findings of Shafee et al. (2005) who reported that beef extract, among the different organic nitrogen sources and ammonium chloride among the inorganic nitrogen sources, leads to a high proteolytic activity by Bacillus sp. after 48 h of incubation.

The optimum volume of the extracted protein required for maximum activity of AP was 0.5 mL (0.364 ± 0.016 U/mL) in CF and 2.0 mL (0.251 ± 0.060 U/mL) in FF (Figure 5). The production of alkaline protease was higher when 0.5 mL of the protein was inoculated. This may be due to the presence of more active sites for more substrate binding. Hence, more alkaline protease enzyme can be produced from lesser enzyme volumes compared to higher protein volume. Conclusively, the lowest enzymatic activity can be observed in the absence of proteins due to the reduced rate of substrate binding. Chandran et al. (2016) reported an increase in the protein content at 0.5% (w/v) protein volume. The proteins isolated from 0.1-0.5% (w/v) of the substrates were used as the substrate for the production of protease. The maximum protein content of 0.5% contrasted with our results at 5% protein content (the equivalent of 2.5 mL); though, 2 mL was found as the highest level for AP enzyme production.

To investigate the effect of incubation period on the production of AP enzyme, the M9 medium was inoculated and incubated at different periods ranging from 2-10 days. The maximum AP production was found after 6 and 10 days of incubation, with enzymatic activities of 0.290 ± 0.001 U/mL and 0.336 ± 0.019 U/mL in the presence of CF and FF, respectively (Figure 6). As for the CF, the production of protease declined at 10 days of incubation because, the enzyme production could have ended with auto proteolysis (Nisha and Divakaran, 2014). However, the production of AP was high after 10 days of incubation with FF likely due to the different proteins in FF compared to CF. The proteins in the FF can yield more alkaline protease when incubated for 10 days. In addition, Kaur et al. (1998) reported that the synthesis of enzymes can be associated with the growth of the cell and the incubation period.
The effect of various inoculum sizes (0.25-1.5 mL) was tested and the results are presented in Figure 7. The maximum AP activities of 0.308 ± 0.001 U/mL and 0.450 ± 0.013 U/mL were found with 1.5 mL of the indigenous bacterial inoculum in the presence of CF and FF extracted protein, respectively. Generally, it can be concluded in the present study that large sizes of bacterial inoculum produced the maximum amounts of protease in the presence of both CF and FF. This is because the increased bacterial concentration can increase AP production as more bacteria will be available to degrade the protein in the production medium. On the other hand, smaller inoculum sizes gave the lowest AP production because of the lack of enough bacteria to degrade the protein. Moreover, an upgraded distribution of dissolved oxygen and high nutrient uptake can increase AP production. However, 0.5 mL of the inoculum gave considerable results for FF as AP synthesis with small inoculum size had larger surface areas which contributed to more protease production (Shafee et al., 2005). Renganath et al. (2017) reported the highest the protease activity with an inoculum size of 15% after studying a concentration range of 5 to 25%. Furthermore, Divakar et al. (2006) reported a higher protease activity with inoculum a concentration of 20% using Wheat bran as the substrate.

Figure 6. The effect of incubation period on AP activity by indigenous bacteria

Figure 7. The effect of inoculum size on AP activity by indigenous bacteria

4. Conclusion

The ability to produce AP from waste chicken feathers and fish fins using indigenous bacteria was investigated. The M9 minimal media efficiently supported the production of AP from the extracted CF and FF proteins. The process parameters were optimized for optimum AP production and to reduce the cost of the AP production process industrially. Furthermore, the protein extraction process completely utilized the waste materials, leaving no solid waste afterward. Moreover, CF and FF are inexpensive protein sources for keratin and collagen needed for the cost-effective production of AP. It is revealed that CF and FF can be a potential source of alkaline proteases for use as bacterial additives in many industrial applications. These proteases have good activities at high alkaline pH levels and wide temperature ranges; thereby, permitting their wide biotechnological application potentials in many industries.

Acknowledgment

The present work was supported by Faculty of Industrial Sciences & Technology (FIST), Universiti Malaysia Pahang (UMP) for technical assistance during this study. Moreover, the financial support from RDU160333 and PGRS170313 is highly acknowledged and appreciated.

Authors’ Contributions

Study Design-Raid D. Thanoon and Essam A. Makky; Data Collection-Raid D. Thanoon and Rubaaini Subramaniam; Statistical Analysis-Essam A. Makky; Data Interpretation- Raid D. Thanoon, Rubaaini Subramaniam and Essam A. Makky; Manuscript Preparation and Literature Search-Raid D. Thanoon and Rubaaini Subramaniam; Funds Collection-Essam A. Makky; Manuscript Revision and Supervision-Essam A. Makky, Masihita M. Yusoif.

Conflict of Interest Disclosure

The above-mentioned manuscript has not been published before and is not under consideration for publication anywhere else. The publication of this article was approved by all authors, as well as by the responsible authorities.

References

Antimicrobial and Antioxidant Activities of Crude Methanol Extract and Fractions of *Andrographis paniculata* leaf (Family: Acanthaceae) (*Burm. f.*) Wall. Ex Nees

Adaramola Banji¹*, Benjamin Goodluck², Otuneme Oluchi³ and Fapohunda Stephen⁴

¹Department of Basic Sciences, ², ⁴Department of Microbiology, ³Department of Medical Laboratory Science, Babcock University, Ilishan-Remo, Ogun state, Nigeria

Received May 7, 2017; Revised September 6, 2017; Accepted September 16, 2017

Abstract

Assessment of the antimicrobial and antioxidant activities of different solvent fractions of crude methanol extract of *Andrographis paniculata* leaf was carried out to investigate their medicinal properties. The test samples, crude methanol extract and its n-hexane, ethyl acetate, chloroform and water soluble fractions were tested against five clinical isolates: *Enterobacter cloacae*, *Escherichia coli*, *Salmonella typhi*, *Staphylococcus aureus* and *Candida albicans*. All the test samples showed antimicrobial activity against the test organisms, except for *Escherichia coli* which showed resistance to all the samples at the studied concentrations and *Candida albicans* which showed resistance to all the samples except for ethyl acetate with diameter zones of inhibition ranging from 11.5-17.5 mm and water soluble fractions with diameter zones of inhibition ranging from 11.5-13.0 mm; both in concentration dependent manner. The highest flavonoid content (41.79±0.44 μg QE/mg) and phenolic content (26.79±0.66 μg GAE/mg) were shown by the crude methanol extract and the n-hexane fraction, respectively while the chloroform fraction showed the least concentrations for both flavonoid (11.66±0.12 μg QE/mg) and phenolic (16.17±0.61 μg GAE/mg). *In vitro* antioxidant study using 2, 2-diphenyl-1-picrylhydrazyl scavenging assay showed that the crude methanol extract had the highest free radical scavenging activity with average percentage inhibition of 54.50±0.10 while the hexane fraction showed the least with average percentage inhibition of 11.36±0.10. Conclusively, the various solvent fractions of crude methanol extract of *Andrographis paniculata*; especially the ethyl acetate fraction could be considered a remedy for various infections and diseases which are associated with both the test organisms and free radicals.

Key words: *Andrographis paniculata*, Fractions, Antimicrobial, Antioxidant, Phenolic, Flavonoid.

1. **Introduction**

Andrographis paniculata Nees, commonly called “King of Bitters or Creat or Green Chirayta,” is an important medicinal plant which belongs to the family Acanthaceae. It is a renowned annual traditional herbaceous crop with immense therapeutic properties (Datta *et al.*, 2012) and it is widely cultivated and used in South Asia, India and China. In Ayurvedic formulations, it is one of the most extensively used plants (Okeke *et al.*, 2001). It is a hardy and erect herb which grows mainly as an under-shrub in tropical, moist deciduous forest. It has glabrous leaves, about 8.0cm long and 2.5cm broad and white flowers with rose-purple spots on the petals (Nirlep, 2016). The stem is dark green, about 0.3-1.0m in height and 2-6mm in diameter (Zhang, 2004; Niranjan *et al.*, 2010). Some of its vernacular names include; Chuan xin Lian (Chinese), Kalmegh (Urdu), Kirayat (Hindu), Aluy (Philippines), Andrograhis (Spanish/Russian), Senshinren (Japanese) and India echinacea (Indian) (Jarukamjorn and Nemoto, 2008; Mishra *et al.*, 2007; Sharma and Sharma, 2013). It is known as Bhui-neem, meaning “neem of the ground,” since the plant, though being a small annual herb, has a similar strong bitter taste as that of the large Neem tree (Neha, 2016) and in Malaysia, it is known as Hempedu Bumi, which literally means ‘bile of earth’ since it is one of the most bitter plants which are used in traditional medicine. It is sometimes locally referred to as ‘Ewe Jogbo’ (Jogbo leaf) because of its bitterness but popularly called ‘Mejemeje’ (seven-seven) among ‘Yoruba’ speaking natives in Nigeria because an average dosage comprises of seven leaves eaten raw once or twice daily for about five days in the treatment of febrile illness or chronic debility and in the treatment of hypertension (Dada-Adegbola *et al.*, 2014). The whole part of *A. paniculata* as well as its roots and aerial parts have been found useful for medicines over the years (Agbolahor *et
al., 2014) although (Aniel et al., 2010) have stated that the parts of the plant mostly used for medicinal purpose are the leaves and roots. Some of the chemical constituents that have been found in *A. paniculata* are: diterpenes, flavonoids, terpenoids, lactones, alkaloids, glycoside, tannins, saponins, ketones, aldehydes, paniculides, farnesols, polyphenols, arabinogalactan, and several sub-units of andrographolides (Niranjan et al., 2010; Akbar, 2011; Sharma and Joshi, 2011).

A. paniculata has been reportedly used for many years to successfully combat various diseases, such as skin infections, herpes, dysentery, fever, sore throat, lower urinary tract infections, gastrointestinal tract and upper respiratory tract infections, inflammation, diarrhea, pneumonia, tonsillitis, gastroenteritis, pyelonephritis and laryngitis (Shalini and Narayanan, 2015; Wangboonskule, 2010). In recent times, the main alkaloid in *A. paniculata* has been reportedly confirmed for its anti-HIV activity (Nirlep, 2016). It has been used as an immune system booster and for the treatment of many chronic infections (Nirlep, 2016; Chandrasekaran et al., 2009). Its hepatoprotective effect has also been reported (Abdulaziz et al., 2014). It has been reported as an antidote for snakebite and poisonous insects (Dhiman et al., 2012; Samy et al., 2008), anti-diabetes and anti-malarial agent (Agarwal et al., 2007; Sharma M and Joshi, 2011; Dhiman et al., 2012). It has been used as an immune system booster and for the treatment of many chronic infections (Nirlep, 2016; Chandrasekaran et al., 2009).

2. Materials and Methods

2.1. Collection, Preparation and Extraction of Sample

Fresh and healthy leaves of *Andrographis paniculata* were obtained from its plant in a local farm in Ibadan, Oyo state, Nigeria and identified by a specialist in the Botany department of the University of Ibadan, Oyo state, Nigeria. These included *Staphylococcus aureus*, *Escherichia coli*, *Enterobacter cloacae*, *Salmonella typhi* and *Candida albicans*. The already prepared agar plates were inoculated with 24 hour-old culture by uniformly streaking the surface of the agar in order to achieve uniform distribution of the test organism. A heat sterilized 10 mm cork borer was then used to make wells in the already inoculated medium with the number of wells bored and labelled corresponding to the number of concentrations of plant samples to be tested against each test organism. 100 µL of each concentration of the plant samples was then dispensed into corresponding wells of each set of organisms and allowed to stand for 30 minutes before being incubated at 37 °C for 24 hours. The inhibitory effect of the crude methanol extract of *A. paniculata* and its fractions on organism growth was assessed after 24 hours of incubation by visual analysis of the growth in each well and values were recorded. Dimethyl sulfoxide (DMSO) was used as the blank while 0.05 % ciprofloxacin was used as the positive control for bacteria while 0.05 % fluconazole for the fungus. All analyses were performed in triplicate. Minimum Inhibitory Concentration (MIC) of the extracts on the test organisms was done at varying concentrations and the results were recorded. The work benches were disinfected while the pathogenic organisms and the materials were autoclaved after use to avoid any form of contamination. Gloves and laboratory coats were also won as personal protective measures against the pathogenic organisms.

2.2. Fractionation of Crude Methanol Extract

A portion of the crude methanol extract of *A. paniculata* leaves was reconstituted in distilled water and then fractionated successively (by liquid-liquid extraction method) into n-hexane, chloroform and ethyl acetate. Each of the resulting solvent fractions; n-hexane, chloroform, ethyl acetate as well as the water soluble fraction was collected and concentrated under reduced pressure at about 40 °C with the use of a vacuum rotary evaporator (Eyela N-1001). The methanol extract of *A. paniculata* and its fractions were immediately assayed for their antimicrobial and antioxidant activities using various standard methods.

2.3. Media Preparation

Nutrient agar and Potato Dextrose agar (Rapid Labs) were prepared following manufacturers instruction. The media were sterilized in the autoclave at 121 °C for 15 minutes.

2.4. Antimicrobial Activity

Clinical isolates from stock cultures from Babcock University Teaching Hospital, Illesan-Remo, Ogun State, Nigeria were used. These included *Staphylococcus aureus*, *Escherichia coli*, *Enterobacter cloacae*, *Salmonella typhi* and *Candida albicans*. The already prepared agar plates were inoculated with 24 hour-old culture by uniformly streaking the surface of the agar in order to achieve uniform distribution of the test organism. A heat sterilized 10 mm cork borer was then used to make wells in the already inoculated medium with the number of wells bored and labelled corresponding to the number of concentrations of plant samples to be tested against each test organism. 100 µL of each concentration of the plant samples was then dispensed into corresponding wells of each set of organisms and allowed to stand for 30 minutes before being incubated at 37 °C for 24 hours. The inhibitory effect of the crude methanol extract of *A. paniculata* and its fractions on organism growth was assessed after 24 hours of incubation by visual analysis of the growth in each well and values were recorded. Dimethyl sulfoxide (DMSO) was used as the blank while 0.05 % ciprofloxacin was used as the positive control for bacteria while 0.05 % fluconazole for the fungus. All analyses were performed in triplicate. Minimum Inhibitory Concentration (MIC) of the extracts on the test organisms was done at varying concentrations and the results were recorded. The work benches were disinfected while the pathogenic organisms and the materials were autoclaved after use to avoid any form of contamination. Gloves and laboratory coats were also won as personal protective measures against the pathogenic organisms.

2.5. Antioxidant Activity

2.5.1. Free Radical Scavenging Activity

The ability of the crude methanol extract of *A. paniculata* and its fractions to scavenge free radicals was determined according to the DPPH (2,2-diphenyl-1-picrylhydrazyl-hydrazyl) spectrophotometric method of Mensor et al. (2001). One mL of a 0.3 mM DPPH methanol
solution was added to a 2.5 mL solution of the plant sample of various concentrations (200, 400, 600, 800 and 1000 μg/mL) or standard (2, 4, 6, 8 and 10 μg/mL), shaken thoroughly for one minute and allowed to react in the dark at room temperature for 30 minutes. The absorbance of the resulting mixture was measured at 518 nm on a UV-Visible spectrophotometer (JENWAY 6305) and converted to percentage antioxidant activity (AA %), using the formula:

\[AA \% = \left(\frac{Abs_{control} - Abs_{sample}}{Abs_{control}} \right) \times 100 \]

Methanol (1.0 mL) plus extract solution (2.5 mL) was used as blank. 1mL of 0.3 mM DPPH plus methanol (2.5 mL) was used as a negative control. Standard solutions of Gallic acid served as positive controls. This assay was carried out in triplicates for each sample and concentration. The IC\(_{50}\) value represented the concentration of the plant sample (extract/ fraction) which scavenged 50 % of the DPPH free radical and this was obtained from the linear regression analysis (Stoilova et al., 2007).

2.5.2. Total Phenolic Content

The concentration of phenolics in plant sample (extract/fraction) of A. paniculata was determined using the method of Singleton et al. (1999). The reaction mixture was prepared by mixing 0.5 mL of methanol solution of extract/fraction (containing 100 μg/mL), 2.5 mL of 10 % Folin-Ciocalteu’s reagent dissolved in water and 2.5 mL 7.5 % NaHCO\(_3\). Blank containing 0.5 mL methanol, 2.5 mL 10 % Folin-Ciocalteu’s reagent dissolved in water and 2.5 mL of 7.5 % of NaHCO\(_3\) was concomitantly prepared. The samples were thereafter incubated in a thermostat at 45 °C for 45 minutes. The absorbance was determined using spectrophotometer (JENWAY 6305) at a wavelength of 765 nm. The samples were prepared in triplicate for each analysis and the mean value of absorbance was obtained. The same procedure was repeated for the standard solutions of Gallic acid to obtain a calibration curve (R\(^2\) = 0.8752). Based on the measured absorbance, the concentration of phenolics was read from the calibration curve and expressed in terms of Gallic acid equivalent (mg of GA/g of extract/fraction).

2.5.3. Total Flavonoid Content

Analysis of total flavonoid content of the plant sample (extract/fraction) was done by using aluminum trichloride spectrophotometric method of (Dewanto et al., 2002). Quercetin was used as the reference substance. One milliliter of each sample in methanol (containing 100 μg/mL) was diluted with distilled water (4 mL) in a 10 mL volumetric flask. 5 % NaNO\(_2\) solution (0.3 mL) was then added to each flask. At 5 minutes, 10 % AlCl\(_3\) (0.3 mL) was added and at 6 minutes, 1.0 M NaOH (2 mL) was added. Distilled water (2.4 mL) was then added to the reaction flask and shaken thoroughly. Absorbance of the resulting reaction mixture was then read on a UV-Visible spectrophotometer (JENWAY 6305) at 510 nm. Reagent blank; containing 1 mL methanol in place of the extract was simultaneously prepared and treated in the same manner as the samples. A calibration curve was also prepared by repeating the same procedure for standard solutions of Quercetin (2 to 10 μg/mL, R\(^2\) = 0.986). Based on the measured absorbance of the sample, the total Flavonoid Content was determined from Quercetin calibration curve and results expressed as mg Quercetin Equivalent per gram (mg QE g\(^{-1}\) of the sample on a dry weight basis. The analysis was carried out in triplicates for each sample.

3. Results

The results of the percentage yield of methanol extract of A. paniculata as well as its various solvent fractions are shown in Table 1. The results showed that the yield of the methanol extract was 21.10 % of the extracted leaves while its solvent fractions; hexane, ethyl acetate, chloroform and water soluble were 13.10 %, 37.72 %, 11.87 % and 34.16 %, respectively.

| Table 1. Percentage yield of methanol extract of Andrographis paniculata leaf and its fractions |
|---------------------------------|------------------|
| Test sample | Percentage yield (%) |
| MEE | 21.10±0.03 |
| NHF | 13.10±0.99 |
| CHF | 11.87±0.07 |
| EAF | 37.72±0.76 |
| WSF | 34.16±1.21 |

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction

Table 2 shows the results of the zones of inhibition of methanol extract of A. paniculata leaf and its fractions. E. coli showed resistance to all the test samples at the respective concentrations used. Enterobacter cloacae also showed resistance to the n-hexane fraction but showed susceptibility to methanol extract and the remaining fractions.

Table 3 shows the antimicrobial effect of 0.05 % Ciprofloxacin and 0.05 % fluconazole on the test organisms. The standard antibiotic, Ciprofloxacin, was found to inhibit the growth of all the test bacteria except Salmonella typhi which showed resistance to the antibiotic while Candida albicans showed significant susceptibility to 0.05 % fluconazole.

The results presented in Table 4 shows the zones of inhibition of Candida albicans by methanol extract of A. paniculata leaf and its fractions. Candida albicans was resistant to methanol extract, n-hexane and chloroform fractions but was susceptible to ethyl acetate and water soluble fractions. The best inhibition of Candida albicans was, however, shown by the ethyl acetate fraction.

The results presented in Table 5 shows the MIC of the methanol extract and its fractions against the bacteria and Candida albicans. All the extracts showed MIC of 1 mg/mL for Staphylococcus aureus except chloroform which was 5 mg/mL. For Salmonella typhi, the MICs of methanol extract and chloroform fraction were 2 mg/mL and 4 mg/mL, respectively, while the MICs of other fractions was 1 mg/mL. All the extracts showed MIC of 1 mg/mL for Enterobacter cloacae except n-hexane and water soluble fractions with MIC values of > 20 and 5 mg/mL, respectively. On Escherichia coli all the samples
showed MIC of > 20 mg/mL. For Candida albicans, MIC values of ethyl acetate and water soluble fractions were 5 and 10 mg/ml, respectively. Meanwhile, methanol extract, n-hexane fraction and chloroform fraction did not show any inhibitions at concentrations lower than 20 mg/ml against Candida albicans.

The results of the total flavonoid and phenolic contents of the crude methanol extract of A. paniculata leaves and its fractions are represented in Table 6. The crude methanol extract showed the highest flavonoid content (41.79 μg QE/mg) while the least was shown by the chloroform fraction (11.66 μg QE/mg). The flavonoid contents of the others are: 28.77 μg QE/mg, 19.42 μg QE/mg and 17.11 μg QE/mg for water soluble fraction, ethylacetate fraction and n-hexane fraction respectively.

However, n-hexane fraction showed the highest phenolic content (26.79 μg GAE/mg) while chloroform fraction showed the least (16.17 μg GAE/mg). The crude methanol extract, ethylacetate fraction and water soluble fraction showed phenolic content of 24.96 μg GAE/mg, 20.54 μg GAE/mg, and 20.50 μg GAE/mg, respectively.

Meanwhile, the DPPH scavenging activity of the extract and its fraction are presented in Table 7. From the results, the crude methanol extract gave the best activity with an average percentage inhibition of 54.50 of the DPPH free radical. The ethyl acetate and water soluble fraction showed about the same DPPH scavenging activity while the least was shown by the n-hexane fraction with an average percentage inhibition of 11.36 of the DPPH free radical.

Table 2. Bacterial susceptibility pattern to methanol extract of Andrographis paniculata leaf and its fractions

<table>
<thead>
<tr>
<th>Organism</th>
<th>Fraction</th>
<th>Diameter zones of inhibition (mm) at various concentrations of extract/ fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 mg/mL</td>
</tr>
<tr>
<td>S. aureus</td>
<td>MEE</td>
<td>16±0.02</td>
</tr>
<tr>
<td></td>
<td>NHF</td>
<td>13±0.12</td>
</tr>
<tr>
<td></td>
<td>CHF</td>
<td>12±0.11</td>
</tr>
<tr>
<td></td>
<td>EAF</td>
<td>14±0.02</td>
</tr>
<tr>
<td></td>
<td>WSF</td>
<td>13±0.04</td>
</tr>
<tr>
<td>S. typhi</td>
<td>MEE</td>
<td>13±0.14</td>
</tr>
<tr>
<td></td>
<td>NHF</td>
<td>11±0.02</td>
</tr>
<tr>
<td></td>
<td>CHF</td>
<td>14±0.01</td>
</tr>
<tr>
<td></td>
<td>EAF</td>
<td>17±0.22</td>
</tr>
<tr>
<td></td>
<td>WSF</td>
<td>14±0.04</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>MEE</td>
<td>15±0.01</td>
</tr>
<tr>
<td></td>
<td>NHF</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>CHF</td>
<td>15±0.12</td>
</tr>
<tr>
<td></td>
<td>EAF</td>
<td>15±0.02</td>
</tr>
<tr>
<td></td>
<td>WSF</td>
<td>12±0.02</td>
</tr>
<tr>
<td>E. coli</td>
<td>MEE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>NHF</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>CHF</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>EAF</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>WSF</td>
<td>R</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction, R= Resistant

Table 3. Antimicrobial activities of 0.05 % Ciprofloxacin and 0.05 % fluconazole against the test organisms

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Diameter zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>22±1.43</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>R</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>19±1.22</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>20±1.12</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>21±0.55</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction, R= Resistant
Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction

Table 4. Susceptibility pattern of *Candida albicans* to the methanol extract of *Andrographis paniculata* leaf and its fractions

<table>
<thead>
<tr>
<th>Test sample</th>
<th>20 mg/mL</th>
<th>40 mg/mL</th>
<th>60 mg/mL</th>
<th>80 mg/mL</th>
<th>100 mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>NHF</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>CHF</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>EAF</td>
<td>11.5±0.51</td>
<td>12.5±0.51</td>
<td>13±0.13</td>
<td>14±0.66</td>
<td>17.5±0.81</td>
</tr>
<tr>
<td>WSF</td>
<td>11.5±0.81</td>
<td>12±0.11</td>
<td>12.1±0.21</td>
<td>12.2±0.02</td>
<td>13.0±0.02</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction, R= Resistant

Table 5. Minimum Inhibitory Concentration (mg/ml) of the methanol extract of *Andrographis paniculata* leaf and its fractions

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Staphylococcus aureus</th>
<th>Salmonella typhi</th>
<th>Enterobacter cloacae</th>
<th>Escherichia coli</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE</td>
<td>1</td>
<td>2</td>
<td>> 20</td>
<td>> 20</td>
<td>> 100</td>
</tr>
<tr>
<td>NHF</td>
<td>1</td>
<td>1</td>
<td>> 20</td>
<td>> 20</td>
<td>> 100</td>
</tr>
<tr>
<td>CHF</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>> 20</td>
<td>> 100</td>
</tr>
<tr>
<td>EAF</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>> 20</td>
<td>5</td>
</tr>
<tr>
<td>WSF</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>> 20</td>
<td>10</td>
</tr>
</tbody>
</table>

MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction

Table 6. Phenolic and Flavonoid contents of methanol extract of *Andrographis paniculata* leaf and its fractions

<table>
<thead>
<tr>
<th>Extracts (1000 μg/ml)</th>
<th>Flavonoid (μg QE/mg)</th>
<th>Phenolic (μg GAE/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>41.79±0.44</td>
<td>24.96±1.00</td>
</tr>
<tr>
<td>Hexane fraction</td>
<td>17.11±0.51</td>
<td>26.79±0.66</td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>19.42±0.21</td>
<td>20.54±0.51</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>11.66±0.12</td>
<td>16.17±0.61</td>
</tr>
<tr>
<td>Residual fraction</td>
<td>28.77±0.35</td>
<td>20.50±0.43</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction

Table 7. DPPH Scavenging activity of methanol extract of *Andrographis paniculata* leaf and its fractions

<table>
<thead>
<tr>
<th>Extract</th>
<th>Average % inhibition of DPPH</th>
<th>IC50 (μg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>54.50±0.10</td>
<td>536.04±1.11</td>
</tr>
<tr>
<td>N-Hexane</td>
<td>11.36±0.10</td>
<td>4422.38±1.24</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>42.61±0.21</td>
<td>703.34±1.44</td>
</tr>
<tr>
<td>Chloroform</td>
<td>26.97±0.20</td>
<td>1166.17±1.34</td>
</tr>
<tr>
<td>Residual</td>
<td>42.60±0.71</td>
<td>1203.24±1.11</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard error of three replicates. MEE= Crude methanol extract, NHF= n-Hexane fraction, CHF= Chloroform fraction, EAF= Ethyl acetate fraction, WSF= Water soluble fraction

4. Discussion

The emergence of multi-drug resistance in human pathogens which threatens the efficacy of commonly used antibiotics (Bandow et al., 2003) and the increasing cost of synthetic drugs have necessitated a search for new antimicrobial substances from other sources, especially plants, by pharmaceutical industries. Plants are known to possess a variety of compounds to protect themselves against a variety of their own pathogens and can therefore be considered as potential sources of different classes of pharmaceutical substances. Many synthetic drugs are usually accompanied with a number of side effects when compared with medicinal plants which on the other hand are natural and are perceived to have little or no side effects; they are considered safer, easily accessible and of lower cost (Ghosh et al., 2008; Kumar and Pandey, 2012). However, others have argued that determining the precise pharmacological activity and side effects or toxicity of a singular active chemical compound usually present in synthetic drugs is considerably easier as against numerous chemicals normally contained in medicinal plants (Philomena, 2011). This may be attributed to the complexity of interactions and synergies that might occur amongst the numerous chemicals found in crude plant extracts (Philomena, 2011). Several studies have reported that medicinal plants have one or more of their parts which...
contain substances that can be used for therapeutic purposes or which are precursors for the synthesis of useful drugs (Sofo\-wora, 2008). However, the selective extraction or isolation of each individual pharmaceutical compound from medicinal plants could be time consuming, stressful and capital intensive.

In the present study, leaves of *A. paniculata* were extracted with methanol. The crude methanol extract of the leaves was then reconstituted in water and successively partitioned with n-hexane, chloroform and ethyl acetate to give n-hexane, chloroform, ethyl acetate and water soluble fractions. The crude methanol extract and its fractions were analyzed for their antimicrobial and antioxidant activities. The results of the present study revealed that the extract of *A. paniculata* leaf and its resulting fractions had a significant antimicrobial activity on the test organisms as well as considerably promising antioxidant potential. This could be due to the presence of significant amount of polyphenolic compounds determined in the extract and fractions of *A. paniculata*. Polyphenolic compounds have been reported to serve many functions in plants; some of which are cell wall strengthening, antibacterial and antifungal activities (Furiga et al., 2008). Due to the complexity of compound mixture in the plant extract, antioxidant and antimicrobial potential of its fractions did not follow a particular order. This may also be due to the difference in the polarity of the partitioning solvent which may result in extraction of compounds of varied properties in the different fractions.

Andrographis paniculata has been reported to have antibacterial effect on both Gram positive and Gram negative bacteria (Aniel et al., 2010; Neha, 2016). In the present study, all the test organisms were susceptible to the test samples except *E. coli* which showed complete resistance to the crude methanol extract and its entire fractions at the studied concentrations. This is in consonant with the findings of (Suparna et al., 2014) who also reported strong resistance of *E. coli* to leaf extracts of *A. paniculata*. *Salmonella typhi* on the other hand showed the highest susceptibility to the crude extract as well as its fractions especially at 20 mg/mL concentration. Other studies, carried out on the leaf of *A. paniculata*, used higher concentrations: 100, 200 and 500 mg/mL (Suparna et al., 2014) and 750 mg/mL (Aniel et al., 2010). It is generally known that the activities of antimicrobials increase with concentration. The results of the present study, however, showed that the inhibitory activity of the crude extract and its fractions against the test organisms was slightly concentration dependent. It is important to note also that *C. albicans* showed strong resistance to all the test samples except the ethyl acetate and water soluble fractions. Ethyl acetate fraction, however, showed the best anti-*Candida* activity. This may imply that ethyl acetate was the most suitable solvent for the extraction of compounds with good anti-*Candida* activities from the crude methanol extract of *A. paniculata*. *Salmonella typhi* showed resistance to the standard substance; 0.5 % Ciprofloxacin, but was susceptible to all the test samples. This might be due to the large array of compounds in the complex mixture of the fractions which may work synergistically to enhance the antimicrobial potency of the fractions. Meanwhile, the importance of efficient liquid-liquid separations has been pointed out to be critical in achieving optimum plant performance (Cusack et al., 2009) especially for pharmacological purposes.

The relatively high yield obtained for crude methanol extract in the present study may be due to the ability of methanol to extract both polar and non-polar compounds from plants. Previous authors (Siddhuraju and Becker, 2003) reported the efficiency of methanol for extracting high amount of pharmaceutically important phytochemicals, such as the polyphenolic compounds from plants. However, the highest and lowest fraction yields were obtained for ethyl acetate and chloroform fractions of the crude methanol extract, respectively. This variation in yield may also be due to variations in polarity of the partitioning solvents used as well as differences in extractability of bioactive compounds. The polarity of extraction solvents has been suggested to play an important role in the ability of plant extracts to exhibit potential antimicrobial activities (Siddhuraju and Becker, 2003; Jigna et al., 2006; Sultana et al., 2007).

Antioxidants protect the body from the damaging effect of free radicals either by suppressing the formation of the free radicals, scavenge them before they do damage to body cells or repair damage that has been done by them. Medicinal plants are known to contain loads of phytochemicals with outstanding antioxidant properties. One of the most important groups of these phytochemicals is the polyphenolics which are renowned for their free radical scavenging ability (Ravipati et al., 2012; Ogasawara et al., 2007). In the present study, the free radical scavenging ability of the crude methanol extract and fractions was determined through the degree of discoloration of the methanol solution of DPPH. In the presence of an active free radical scavenger, the absorption vanishes and the resulting discoloration is stoichiometric at a selected range with respect to the degree of reduction (Janaina et al., 2009). The solution loses color with increase in concentration of antioxidant as electrons are taken up by DPPH radical from the antioxidant (Calliste et al., 2001). The present study reveals that the best antioxidant activity in terms of DPPH scavenging strength was displayed by methanol extract. This could be attributed to its possession of the highest flavonoid content. Flavonoids are a group of polyphenols with known properties which include free radical scavenging, inhibition of hydrolytic and oxidative enzymes and anti-inflammatory actions (Wang et al., 2006; Frautchy et al., 2001; Clavin et al., 2007). However, even though the n-hexane fraction contained the highest phenolic content, it showed the least free radical scavenging strength. It is therefore important to note that flavonoid and phenolic are not the only phytochemicals that confer antioxidant properties on plants. Other classes of phytochemicals, such as carotenoids, tannins, volatile oils, α-tocopherols, and ascorbic acid have also been reported to enhance the antioxidant ability of plants (Javanmardi et al., 2003; Amarowicz, 2007). Recent findings suggest that diets rich in polyphenolic substances play an important role in combating oxidative stress related disorders due of their antioxidant activities. Hence, polyphenolic constituents of *A. paniculata* could possess the capability to counteract oxidative stress related disorders.
5. Conclusion

The crude methanol extract of *A. paniculata* leaf and its fractions showed considerable antimicrobial and antioxidants activities. The Ethyl acetate fraction in comparison with other fractions showed the best antimicrobial activities. It was therefore concluded that the ethyl acetate fraction of the leaves’ crude methanol extract contained most of the bioactive components with both antibacterial and anti-Candida activities. However, the best antioxidant activity was exhibited by the crude methanol extract and this was attributed to its possession of highest flavonoid content. The present study further supports the traditional use of this plant for the treatment of various infections and diseases, such as food poisoning, typhoid, diarrhea, urinary tract infection, boil, skin rashes, inflammation, aging, heart disease, cataracts etc. for which flavonoid content . The present study further supports the extract and this was attributed to its possession of highest antioxidant activity was exhibited by the crude methanol extract and this was attributed to its possession of highest flavonoid content. The present study further supports the traditional use of this plant for the treatment of various infections and diseases, such as food poisoning, typhoid, diarrhea, urinary tract infection, boil, skin rashes, inflammation, aging, heart disease, cataracts etc. for which the test organisms (bacteria and fungus) and free radicals may be implicated or associated with. The present study of antioxidant and antimicrobial evaluation of the different fractions of methanol extract of *A. paniculata* leaves forms a primary platform for further phytochemical and pharmacological studies. In addition to carrying out researches on the phytotoxicity of the plant as well as establishing a safe dosage regime, further works on the characterization, isolation and purification of the active compounds from the extract is imperative. This would pave way for further evidence based investigations to ascertain whether whole plant extracts are better for pharmacological purposes than pure compounds extracted from them or vice versa.

References

Optimization of Factors Influencing Cellulase Production by Some Indigenous Isolated Fungal Species

Remaz M. M. Ahmed Abd Elrsoul and Shami Elhaj A. Bakhiet*

Department of Microbiology and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan.

Received June 16, 2017; Revised September 7, 2017; Accepted September 17, 2017

Abstract

The aim of the present study is to isolate and characterize efficient cellulose degrading fungi from their common natural habitats and optimize the factors influencing the production of cellulase enzyme. Fungi were isolated from soil, tomatoes and oranges samples which were collected from different sites in Khartoum and Khartoum North. Cellulase production was studied after cultivation of fungi in cellulose containing media. The conditions were optimized by using production media containing Carboxymethyl Cellulose (CMC) and inoculated by fungi with different biotechnological parameters, such as temperatures (28 °C, 37 °C, and 50 °C), pH (3.0, 5.0 and 9.0) and substrate specificity of carbon (lactose, maltose and sucrose) & nitrogen sources (urea, yeast extract and sodium nitrate). Among eight initial isolates, three isolates (A, B, and C) were finally screened as the most efficient cellulase producer fungal isolates. These isolates were confirmed as (A) Aspergillus niger (B) Fusarium solani and (C) Trichoderma viride. Out of these isolates, the maximum zone of hydrolysis (54.33±1 mm) was obtained for ‘isolate A, whereas the minimum zone of clearance (19.67±1mm) was recorded for Trichoderma viride. Cellulase activity and amount of cellulase produced by the three test microorganisms were determined and compared. The results obtained from the fermentations showed that Aspergillus niger produced the highest amount of cellulase among the test microorganisms (2.9 IU/ml) at pH 5 and temperature of 50 °C on Day 5 of fermentation.

Key words: Cellulase, Cellulose, Trichoderma, Fusarium, Aspergillus.

1. Introduction

Cellulose is the most abundant component of plant biomass, exclusively in plant cell walls (Lee et al., 2002). Cellulose is totally insoluble in water (Lederberg, 1992). It is a linear, unbranched homopolysaccharide consisting of glucose subunit joined together via 1-4 glycosidic linkages. Individual cellulose molecules (polymer) vary widely in length and are usually arranged in bundles or fibrils (Walsh, 2015). Within the bundles, cellulose molecules can occur in crystalline or paracrystalline (amorphous) structures (Walter, 1998).

The hydrolysis of cellulose can be done by using enzymes known as cellulases to produce glucose, which can be used for the production of ethanol, organic acids and other chemicals (Koomnok, 2005). Cellulase refers to a class of enzyme that catalyze the hydrolysis of 1, 4 β-D glycosidic linkages in cellulose. These enzymes are mainly produced by fungi, bacteria and protozoans (Jagdish and Pawandeep, 2012).

Cellulases can convert world’s most abundant biopolymer, ‘cellulose’ into reducing sugars and used in many biotechnological applications (Bhat, 2000). A hefty portion of these applications are accounted for instance cotton handling, paper reusing and as creature encourage added substances. (Yano et al., 2012). It is used for bioremediation, wastewater treatment and also for single cell protein (Alam et al., 2005). Cellulases are likewise utilized for deinking of fiber surfaces in paper ventures and to improve mash seepage in material businesses. (Penttila et al., 2004).

This compound is significant in nourishment sciences, like sustenance handling in espresso, drying of beans by for effective cleansing of juices when utilized blended with pectinases. It is also useful in plant protoplast isolation, plant viruses’ investigations, metabolic and genetic modification studies (Chandara et al., 2005; Shah, 2007). This enzyme has also pharmaceutical importance, treatment of phytobezons - a type of bezoar cellulose existing in human’s stomach - (Ali and Saad, 2008).

Fungi are the main natural agents of cellulose degradation; they are widely distributed in nature and used for commercial production of cellulases. Most of the fungi elaborate one or more cellulolytic enzymes including endoglucanase, exoglucanase and β-glucosidase (Bhat and Hazlewood, 2003). Amongst fungi, species of Trichoderma and Aspergillus are well known for cellulolytic potential (Lee et al., 2002).
Generation of cellulases by fungal isolates requires ideal conditions for their development which prompts the obtaining of extracellular chemical molecules. The development conditions and additionally extracellular protein generation conditions are probably going to shift among test microorganisms. The real parts of generation medium, like carbon and nitrogen sources and physical parameters like temperature, pH and brooding time, were observed to be basically influencing the cellulase creation consequently should be enhanced for each isolate (Polyanina et al., 2011).

Therefore, the present study aims to investigate high level production of extracellular Cellulases by *Trichoderma, Aspergillus* and *Fusarium* and optimizing cultural parameters to enhance cellulase enzyme production.

2. Materials and Methods

2.1. Area of Study

The present study was conducted at the Department of Microbiology and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum – Sudan. All experiments were done aseptically in the laboratory of microbiology.

2.2. Collection of Sample

Five random soil, tomatoes and oranges samples were collected from different areas in Khartoum and Khartoum north. The samples were then brought to the laboratory of Microbiology.

2.3. Isolation of Test Microorganisms

Potato Dextrose Agar (PDA) (Hi-media, India) was prepared according to the manufacturers’ recommendations with pH 5.6, sterilized at 121 °C and 15 lbs for 15 minutes and poured into the pre-sterilized Petri dishes, the plates were let to solidify at room temperature. One gram of soil was transferred to aliquots of 10 mL sterile distilled water in test tube. It was shaken vigorously at constant speed for 10 min. The soil suspension was then subjected to serial tenfold dilutions. An amount of 0.1 ml soil suspension from the appropriate dilution (10^-2) was transferred to Petri dish containing PDA medium. While an infected spot in tomato and orange samples were swabbed and placed on the middle of the plate of PDA media. The plates were incubated for 5 days at 28°C. The well-growing spread single colonies were picked up and further sub-cultured on potato dextrose agar (Aneja, 2005).

To confirm their purity and their viability, the isolates were examined macroscopically by determination their culture characteristics. Also they examined microscopically using Lactophenol cotton blue stain technique and compared with those listed in standard reference books (Domsch et al., 1980).

2.4. Screening for Cellulase Enzyme Production

Associated fungi were tested for their ability to produce cellulase enzyme by the plate assay method using 1% carboxymethyl cellulose in a modified basal salt media. According to Hankin and Anagnostakis, (1977) at the incubation period, 0.1% Congo red solution was added and counterstained with 1 M NaCl for 15 minutes. The zone of cellulose hydrolysis appears as a clear area around the colony.

2.5. Production of Cellulase Enzyme

Cellulase production was carried out by using cellulose as the sole carbon source in 250ml an Erlenmeyer flask containing broth media. The composition of the medium was in (g/l in distilled water peptone (0.1%), urea (0.03%), MnSO₄.7H₂O (0.0016%), ZnSO₄.7H₂O (0.0014%), (NH₄)₂SO₄ (0.14%), MgSO₄.7H₂O (0.03%), FeSO₄.7H₂O (0.05%), CaCl₂ (0.01%), CON₂.O6H₂O (0.0029%), KH₂PO₄ (0.2%) and cellulose (1%), the pH value of the media was 5. For the cellulolytic fungi test, 1% CMC, 1.5% agar and 1 ml of Triton-X-100 were also added to the media.

An Erlenmeyer flask (250ml) containing this media was autoclaved at 121°C and 15 lbs for 15 minutes. The cellulose medium was inoculated with two plugs (5mm diameter) of fungi isolates from 5 days old culture and incubated on a shaker (Orbital shaker, Gerhardt, Bonn) at 121rpm. After 5 days of cultivation the culture filtrates were filtered off (Whatman filter paper No.1) and transferred into falcon tube to centrifuge (China), at 10,000 rpm for 15 minutes to remove cell debris. The supernatants were used to determine the cellulolytic activity by the standard assay method (Jadhav et al., 2013).

2.6. Cellulase Assay for Enzyme Production

Filter paper activity (FPase) for total cellulase activity in the culture filtrate was determined according to the standard method (Eveleigh et al., 2009). Aliquots of appropriately diluted cultured filtrate as enzyme source were added to Whatman no. 1 filter paper strip (1 × 6 cm; 50 mg) immersed in one milliliter of 0.05 M sodium citrate buffer of pH 5.0. After incubation at 50°C for 1 hour, the reducing sugar released was estimated by dinitrosalicylic acid (DNS) method (Ghose, 1987). One unit of filter paper (FPU) activity was defined as the amount of enzyme required to release 1 μmole reducing sugars from filter paper per ml per min under standard assay condition (Gilna and Khaleel, 2011).

2.7. Optimization of Culture Conditions for Cellulase Enzyme Production under Submerged State Fermentation (SmF)

Certain factors were examined and optimized to obtain the highest enzymatic yields, those include:

2.7.1. Effect of pH on Cellulase Enzyme Production:

To determine optimal pH, fungus cultures were cultivated in a 250 mL flask containing 50 mL optimized medium with different pH values 3.0, 5.0 and 9.0. The pH of the medium was adjusted by using 1 N HCl and 1 N NaOH. The flasks were kept in stationary stage at 28 °C for 5 days of cultivation. After 5 days of incubation the culture broths were filtered off (Whatman No.1 filter paper) and transferred into falcon tube to centrifuge at 10,000 rpm for 15 minutes to remove cell debris. The supernatants were used to assay cellulase enzyme activity by using DNS method (Ghose, 1987). The absorbance was measured using UV-Spectrophotometer at 540nm.
2.7.2. Effect of Temperature on Cellulase Enzyme Production:

In order to determine the optimum temperature for cellulase production by the fungal species, fermentation was carried out at 28 ºC, 37 ºC, and 50 ºC. The flasks were incubated for 5 days of cultivation. After 5 days of incubation the culture broths were filtered off (Whatman No.1 filter paper) and transferred into falcon tube to centrifuge at 10,000 rpm for 15 minutes to remove cell debris. The supernatants were used to assay cellulase enzyme activity by using DNS method (Ghose, 1987). The absorbance was measured using UV-Spectrophotometer at 540nm.

2.7.3. Effect of Carbon Sources on Cellulase Enzyme Production:

Various carbon compounds namely, sucrose, lactose and maltose were used. The broth was distributed into different 250 ml flasks and 1% of each carbon sources were then added before inoculation of the strain and after culture inoculation, the flasks were incubated for 5 days at 28 ºC. After 5 days of incubation the culture broths were filtered off (Whatman No.1 filter paper) and transferred into falcon tube to centrifuge at 10,000 rpm for 15 minutes to remove cell debris. The supernatants were used to assay cellulase enzyme activity by using DNS method (Ghose, 1987). The absorbance was measured using UV-Spectrophotometer at 540 nm.

2.7.4. Effect of Nitrogen Sources on Cellulase Enzyme Production:

The fermentation medium was supplemented with organic and inorganic compounds (Sodium nitrate, urea and yeast extract) replacing the prescribed nitrogen source of the fermentation medium. After 5 days of incubation the culture broths were filtered off (Whatman No.1 filter paper) and transferred into falcon tube to centrifuge at 10,000 rpm for 15 minutes to remove cell debris. The supernatants were used to assay cellulase enzyme activity by using DNS method (Ghose, 1987). The absorbance was measured using UV-Spectrophotometer at 540 nm.

3. Results and Discussion

3.1. Test Microorganisms

Eight initial fungal isolates including molds (Aspergillus, Trichoderma, Fusarium, Penicillium, Alternaria, and Curvularia) and yeasts (Two Candida species) were isolated from soil samples, tomatoes and oranges. Three isolates were selected as active cellulase producers, namely Aspergillus niger, Trichoderma viride and Fusarium solani. Other excluded either as saprophytes or non-cellulase producers.

3.2. Screening of Fungi for Cellulase Enzyme Activity

Screening of fungi for their cellulase activity was carried out by the hydrolysis of substrate incorporated in the basal salt medium. After an incubation for 15 minutes, enzyme activities were detected by the appearance of zones either by substrate clearances or coloration and discoloration around the fungal colonies. Three fungal isolates, Aspergillus niger, Trichoderma viride and Fusarium solani, showed the highest zone around the colony (Figure 4 (a-d)), used for further study. All the fungal isolates exhibited cellulase activity.

3.3. Cellulase Enzyme Assay

The cellulase enzyme was detected as yellow coloration after the addition of 3 ml DNS reagent to mixture of sodium citrate and metabolite filtrate of pre-inoculated basal medium (Figure 5).
3.4. Optimization of Culture Conditions for Cellulase Enzyme Production

3.4.1. Effect of pH on Cellulase Enzyme Production

Among physical parameters, pH of the growth medium plays an important role by inducing morphological changes in microbes and in enzyme secretion. The pH change observed during the growth of microbes and affects product stability in the medium. The optimal pH varies with different microorganisms and enzymes. All the three isolates were allowed to grow in media of different pH values 3, 5, and 9. The maximum enzyme activity was observed in medium of pH 5.0 in case of *Aspergillus niger* (1.3 U/ml) (Figure 6, Table 1). The findings of the present study are in agreement with many scientists, such as Beldman et al. (1985) who reported that *Aspergillus* species grow and metabolize well in acidic pH medium between pH 3.0 – 5.0. Their study investigated that maximum cellulase production from *A. oryzae* was reported when the pH of the medium was adjusted to 5. Ali et al. (1991) also stated similar results and he noted that some certain fungal genera have an ability to produce cellulases include *Aspergilli*. Also the present findings were in line with Pothiraj et al. (2006) who determined that the *Aspergillus niger* and *Aspergillus terreus*, *Rhizopus stolonifer* and *Trichoderma* species have an ability to produce cellulases. Shafique and Bajwa, (2009) revealed that pH was the key factor that affects the production of cellulases enzymes from *T. harzianum*. The findings of the present study are more than the findings of Lee et al. (2002) who noted that CMCase, Avicelase and FPase activities exhibit a pH optimum of approximately 4.

Table 1. Yield of cellulase enzyme U/ml under different pH value

<table>
<thead>
<tr>
<th>pH value</th>
<th>3</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger</td>
<td>0.91</td>
<td>1.3</td>
<td>0.53</td>
</tr>
<tr>
<td>F. solani</td>
<td>1.14</td>
<td>1.25</td>
<td>0.16</td>
</tr>
<tr>
<td>T. viride</td>
<td>0.35</td>
<td>0.46</td>
<td>0.18</td>
</tr>
</tbody>
</table>

3.4.2. Effect of Temperature on Cellulase Enzyme Production

The results of the test made at different temperatures value (28 °C, 37 °C, and 50 °C) showed that the optimal temperature for cellulase activity (2.9 U/ml) produced by *A. niger* at 50 °C (Table 2, Figure 7). Many researchers have reported different temperatures for maximum cellulase production either in flask or in fermenter studies using *Aspergillus* sp. and *Trichoderma* sp. suggesting that the optimal temperature for cellulase production also depends on the strain variation of the microorganism (Lu et al., 2003). The present results disagreed with Immaneul et al. (2007) who estimated the optimum temperature for cellulase enzyme production by *A. niger* and *A. fumigatus* at 40 °C.

Table 2. Yield of cellulase enzyme U/ml under different temperature

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Test microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. niger</td>
</tr>
<tr>
<td>28</td>
<td>2.3</td>
</tr>
<tr>
<td>37</td>
<td>2.19</td>
</tr>
<tr>
<td>50</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Figure 5. Production of cellulase indicated by the yellow color (Right), the clear solution indicates the negative control which was mixture of sodium citrate and metabolite filtrate of pre-inoculated basal medium without the addition of DNS reagent (Left)

Figure 6. Effect of pH on enzyme production, the most effective pH value was 5. *A. niger* and *F. solani* produce pronounced cellulase at acidic pH and less at alkaline pH

Figure 7. Effect of temperature on enzyme production, *A. niger* and *F. solani* have a wide range of temperature to produce cellulases while *T. viride* produces cellulases with very good amount at ambient temperature 37 °C. The production of cellulase was reduced when *T. viride* grown at high temperature (50 °C)
3.4.3. Effect of Carbon Sources on Cellulase Enzyme Production

Various sources of carbon, such as lactose, maltose and sucrose, were used to replace glucose which was the original carbon source in growth media. Results obtained showed that *Fusarium solani* in presence of sucrose brought about the maximum cellulase production compared to other carbon sources (Table 3, Figure 8). This result is in line with Asma *et al.* (2012) who reported that sucrose was the most effective as a sole carbon source for the cellulolytic enzymatic activity. Also, the findings of the present study are in line with Kilikian *et al.* (2014) who estimated that the production of cellulases by certain species of *Trichoderma* was enhanced by the presence of sucrose as a carbon source. Findings of the present study are contrary to those of Vinod *et al.* (2014) who observed that glucose was a sole carbon source.

Table 3. Yield of cellulase enzyme U/ml under different carbon sources

<table>
<thead>
<tr>
<th>Carbon source</th>
<th>Test microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. niger</td>
</tr>
<tr>
<td>Sucrose</td>
<td>1.44</td>
</tr>
<tr>
<td>Lactose</td>
<td>2.09</td>
</tr>
<tr>
<td>Maltose</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Figure 8. Effect of Carbon sources on enzyme production, the best Carbon source for cellulase production by all test fungi was sucrose; *A. niger* and *F. solani* have an ability to utilize other Carbon sources (lactose and maltose) and produce cellulases but *T. viride* affected negatively when subjected to medium containing lactose and maltose

3.4.4. Effect of Nitrogen Sources on Cellulase Enzyme Production

Results indicate that the sources of nitrogen greatly affected the production of cellulase enzyme. Sodium nitrate was the best nitrogen source for *Aspergillus niger* (Table 4, Figure 9). The current results are in accordance with Swati *et al.* (2014) who reported that inorganic nitrogen source sodium nitrate was found to enhance mean activities. Also similar results were reported by different workers with *Alternaria* spp, including *Alternaria helianthi*, *Alternaria triticina* and *Alternaria sesamse* Jha and Gupta, (1988). But the finding is in disagreement with the work of Pothiraj and Eynini (2007) who reported that good cellulase production can be obtained with the organic nitrogen sources, such as yeast extract and peptone.

Table 4. Yield of cellulase enzyme U/ml under different nitrogen source

<table>
<thead>
<tr>
<th>Nitrogen source</th>
<th>Test Microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. niger</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>0.43</td>
</tr>
<tr>
<td>Urea</td>
<td>0.99</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Figure 9. Effect of Nitrogen sources on enzyme production, production of cellulase by *T. viride* was not affected by the different sources of nitrogen and the amount almost similar. *A. niger* produces cellulase significantly when grown in NaNO₃ and less significant when use urea and yeast extract as nitrogen sources. *F. solani*, significantly produces cellulases when grown in NaNO₃ and yeast extract while produces less amount when grown in medium use urea as nitrogen source

4. Conclusion

The results of the present study showed that all isolated fungi which were confirmed as (A) *Apergillus niger* (B) *Fusarium solani* and (C) *Trichoderma viride* have cellulolytic enzymatic activity. The best result obtained from the fermentations showed that *Aspergillus niger* produced the highest amount of cellulase among the test microorganisms (2.9 IU/ml) at pH 5 and temperature of 50°C on Day 5 of fermentation.

References

Koomnak C. 2005. Selection of cellulose producing thermophilic fungi. 31st congress on Science and Technology of Thailand.

Growth Promotion and Phytopathogen Inhibition Potentials of Lemon Grass (Cymbopogon citratus) Endophytic Bacteria

Abdullahi B. Inuwa*, Abdullahi H. Kawo and Hafsat Y. Bala

Department of Microbiology, Bayero University Kano, PMB 3011, Kano, Kano state, Nigeria

Received August 3, 2017; Revised September 15, 2017; Accepted September 20, 2017

Abstract

Fresh and apparently healthy leaves and roots of lemon grass were collected and surface sterilized using 70% (v/v) Ethanol, 3% (v/v) sodium hypochlorite solution and sterile distilled water. Isolation of endophytic bacteria was achieved using culture technique while, characterization was done based on morphological, biochemical and microscopic characteristics. Growth promotion potentials of some selected isolates were tested using tomato and millet seeds. Similarly, antagonistic potentials against Fusarium oxysporum were evaluated. A total of 16 endophytic bacteria were isolated and identified as Bacillus spp (3 isolates), Escherichia coli (1 isolate), Klebsiella pneumoniae (3 isolates), Micrococcus spp (3 isolates), Pseudomonas spp (1 isolate), Rhizobium spp (2 isolates) and Staphylococcus aureus (3 isolates). Growth promotion test showed that, only K. pneumoniae significantly improved (P < 0.05) the germination time, germination percentage, shoot length and fresh weight of tomato seeds. None of the bacteria showed evidence of improving any of the parameters of germination of millet seeds. All the endophytic bacteria significantly inhibited (P < 0.05) the growth of F. oxysporum. S. aureus yielded the largest (21.30 mm) while, Bacillus cereus yielded the smallest (17.2 mm) zone of inhibition. Moreover, all the isolates especially S. aureus significantly inhibited (P < 0.05) the growth of F. oxysporum. In conclusion, Lemon grass harbours a variety of endophytic bacteria some of which showed potentials of enhancing the emergence and development of tomato seedling, and also have antagonistic activity against F. oxysporum.

Keywords: Endophytic bacteria, Lemon grass, Fusarium oxysporum, Growth promotion, Biocontrol.

1. Introduction

The recent surge in the need to exploit the health benefits that microbial inoculants may give to plants as well as, the desire to reduce the use of chemicals due to health and ecological concerns, has fuelled interests in studying an array of bacteria and fungi called “Endophytes”. Hallmann et al. (1997) defined endophytic bacteria as all bacteria that can be detected inside surface-sterilized plant tissues or extracted from inside plants and having no visibly harmful effect on the host plants. This definition includes internal colonists with apparently neutral behaviour as well as symbionts. It also includes bacteria, which migrate back and forth between the surface and inside of the plant during their endophytic phase.

Bacterial endophytes are found in a variety of plants, ranging from herbaceous plants, such as maize and beet, to woody plants (Ryan et al., 2007). Bacteria belonging to the genera Bacillus and Pseudomonas are easy to culture, and the cultivation-dependent study has identified them as frequently occurring endophytes (Seghers et al., 2004). Bacillus sp. and Enterobacter sp. were found in maize (Surette et al., 2003; McNlroy and Kloepper, 1995), Klebsiella pneumoniae in soybean (Kuklinsky-Sobral et al., 2004), Rhizobium leguminosarum in Rice (Yanni et al., 1997), Rhizobium in carrot and rice (Surette et al., 2003), Escherichia coli in Lettuce (Ingham et al., 2005). Indeed, numerous reports have shown that endophytic microorganisms can have the capacity to control plants (Sturz et al., 1997; Duijff et al., 1997; Krishnamurthy and Gnanamaniickam, 1997), insects (Azavedo et al., 2000) and nematodes (Hallmann et al., 1997, 1998). In some cases, they can also accelerate seedling emergence, promote plant establishment under adverse conditions (Chanway, 1997) and enhance plant growth (Bent and Chanway, 1998).

Cymbopogon citratus, commonly known as the Lemon grass, is a tropical herb that is popular in South East Asia and Africa. The plant has a plenty of medicinal uses, prominent among which is its application as antihelmintic, aphrodisiac, appetizer and laxative. It is used in Ayurvedic medicine in the treatment of epilepsy, leprosy and bronchitis (Parrotta, 2001).

Strobel et al. (2004) reported that, close to 300,000 different plant species exist on the earth each of which hosts one or more endophytes. Only a fraction of these plants have been fully explored relative to their endophytic biology. In view of the medicinal and other uses of C. citratus, a study on its endophytic microorganisms would be of great impact. In an earlier study, Deshmukh et al. (2010) reported 24 different fungal species belonging to 21 genera isolated from the leaves and rhizomes of C.
citratus. To the best of our knowledge, no previous studies have been done regarding the endophytic bacteria of the same plant, hence the need for this study. The current study, therefore, aims at evaluating the plant growth promotion and biocontrol potentials of endophytic bacteria isolated from C. citratus.

2. Materials and Methods

2.1. Sample Collection

For the isolation of endophytic bacteria, fresh and apparently healthy leaves and roots of C. citratus were collected using a sterile scissors, during the rainy season from the Botanical Garden of the Department of Biological Sciences Bayero University Kano Nigeria. All samples were immediately transported in sterile bags to the Microbiology laboratory of Bayero University Kano for analysis.

2.2. Sample Pre-Treatment and Surface Sterilization

Upon the arrival of the samples at the laboratory, they were processed immediately without any delay as follows: The leaves and roots of the plant were washed separately under running tap water to remove adhering soil particles, and the majority of microbial surface epiphytes. The samples were then subjected to surface sterilization procedure as follows: An initial wash in sterile distilled water to remove adhering soil particles, 1 minute immersion in 70% (v/v) ethanol, followed by a 2 minute immersion in 3% (v/v) sodium hypochlorite and finally, a three times rinse in sterile distilled water (Hallman et al., 1997).

2.3. Isolation of Endophytic Bacterial Isolates

To target a wide range of endophytes, five different isolation media were used, i.e., Yeast extract sucrose agar (Yeast extract 4.0 g; Sucrose 20.0 g; KH2PO4 1.0 g; MgSO4 0.5 g; Agar 15.0 g in 1.0 L distilled water, pH adjusted to 6.2 ± 0.2 and autoclaved at 121 °C for 15 minutes) which is selective for the isolation of Rhizobium species, Nutrient agar (Oxoid), MacConkey agar (Oxoid), Nutrient broth (Oxoid), yeast extract agar (Sigma-Aldrich) and Brain heart infusion agar (Oxoid).

The isolation followed the protocol of Sheng et al. (2008) with some modifications. Each of the collected C. citratus samples was aseptically homogenized in a sterile blender (Panasonic MS-337N) and a three-fold serial dilution was carried out after which, 1 mL aliquot from each dilution was inoculated in triplicates on the various growth media using pour plating method. The cultures were then placed in an incubator (Gallenkamp series) at room temperature for 48 hours. Individual colonies were picked and streaked on fresh culture media for purification to generate pure cultures. Control cultures of the surface-sterilized but unhomogenized leaves of the plant were also prepared and incubated at similar conditions with the test culture plates.

2.4. Morphological and Biochemical Characterization of the Bacterial Isolates

Cell morphology of the pure cultures obtained was determined by the Gram staining method (Bartholomew, 1962). Biochemical tests, such as catalase, coagulase, oxidase, indole, methyl red, Voges-Proskauer urease activity, citrate utilization, cellulose hydrolysis, starch hydrolysis and triple sugar iron tests were done according to the procedures described by Cappuccino and Sherman (2000). Endospore staining and capsule staining were also carried out.

2.5. Evaluation of Plant Growth Promoting Effects of the Endophytic Bacteria on Tomato and Millet Seeds

A total of nine isolates were randomly selected and tested using Petri plate trials in order to evaluate their growth promotion effects on tomato and millet seedlings. A loopful growth of each bacterial isolate was inoculated in 10 mL of Luria-Bertani (LB) broth (HIMEDIA) in a test tube, and incubated for 24hrs. Tomato and millet seeds were obtained from the Department of Crop Protection, Bayero University Kano. The seeds were surface-sterilized by immersing in 70% ethanol (1 minute) and 2% sodium hypochlorite (2 minutes) and then rinsed thoroughly in sterile distilled water. The surface-sterilized seeds were added to the inoculated LB medium (ten per test tube), and incubated for 24 hrs to allow bacterial penetration. Another set of ten surface sterilized seeds of tomato and millet each, were inoculated in sterile LB broth for 24 hrs in order to serve as negative control. The culture fluid was then aseptically decanted and the treated seeds from the test tubes were then planted in Petri dishes layered with moistened cotton wool. Seedlings were grown at room temperature with regular watering. After 10 days of nursing, growth parameters, such as height, fresh weight, number of leaves of the seedlings, and time of germination of the seeds, were both measured. The test was conducted in triplicates as adopted by Ji et al. (2014).

2.6. Evaluation of Antagonistic Effect of the Endophytic Bacteria against F. Oxysporum

Fusarium oxysporum, a soil-borne fungal pathogen of plants was collected from the culture collections of the Plant Biology Department of Bayero University Kano. The identity of the fungus was authenticated by sub-culturing on potato dextrose agar (BIOMARK Laboratories). The culture was incubated at room temperature for five days. Morphological characteristics and reverse pigmentation of the fungus on PDA were noted and recorded. A sterile needle was used to pick a small portion of the mycelium of the test fungus, and this was transferred on to a drop of lacto phenol cotton blue on a clean glass slide. The preparation was then carefully emulsified so as to disperse the inoculum. A cover slip was placed carefully and finally; the preparation was viewed under the microscope using × 100 oil immersion objectives. Features, such as the nature of hyphae, spore types and spore attachment, were observed and recorded. Final authentication was done by making reference to Benson (1998). A needle-full mycelial mat of freshly cultured F. oxysporum was picked using a straight wire loop, and placed on one side of a Petri dish containing PDA and the fresh culture of the endophytic bacterial isolate was streaked on the other side of the plate. A minimum of 35 mm separation was maintained between the organisms. The PDA plates were incubated at 28°C for 7 days. The antagonistic effects of the bacterial endophytes against the fungus were confirmed by inhibition zones
formed between the bacterial endophytes and the fungus. A PDA plate inoculated with *F. oxysporum* only, served as the control. The test was carried out in triplicates (Ji et al., 2014).

2.7. Statistical Analysis

All data obtained (in triplicates) were tested for statistical significance using the Statistical Package for Social Science (SPSS) version 21.0. General linear model multivariate analysis was used to test the data obtained from the germination tests of tomato and millet seeds and means were separated using Least Significant Difference (LSD). Data from the antagonistic tests of the endophytic bacteria on *F. oxysporum* were tested using one-way ANOVA. Means were separated using LSD. All analyses were carried out at 5% level of significance.

3. Results

3.1. Occurrence and Morphological Characteristics of Endophytic Bacteria of Lemon Grass

The various endophytic bacteria and their frequency of occurrence are represented in Table 1. A total of 16 endophytic bacteria were isolated. Among these, 10 (62.5%) were isolated from the roots, while the remaining 6 (37.5%) were isolated from the leaves of the plant. The bacteria belong to the genera *Bacillus*, *Escherichia*, *Klebsiella*, *Micrococcus*, *Pseudomonas*, *Rhizobium* and *Staphylococcus*.

Table 1. Distribution of Endophytic Bacterial Genera in the Roots and Leaves of Lemon Grass

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>Root</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Escherichia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Micrococcus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rhizobium</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>10 (62.5%)</td>
<td>6 (37.5%)</td>
</tr>
</tbody>
</table>

3.2. Growth Promotion Potentials of the Endophytic Bacteria

This was carried out to evaluate the potentials of the isolates in enhancing tomato and millet seeds germination. The effects of the bacteria on the germination of tomato seeds are presented in Table 2. Statistical analysis of the result showed significant difference between the mean values of all the germination parameters when tested jointly (*P < 0.05*). A separate ANOVA conducted between subjects showed significant difference (*P < 0.05*) between the mean values of germination time, germination percentage, length of shoot, fresh weight. No significant difference (*P > 0.05*) was observed between the mean values of the number of leaves. Multiple comparison tests showed that, only the mean germination time of *K. pneumoniae* (2.0 days), and *E. coli* (3.3 days) were shorter than the corresponding value yielded by the control (3.7 days). However, it is only the mean germination time of *K. pneumoniae*-treated seeds that was statistically different (*P < 0.05*) from all others including the control. Similarly, the germination percentage of 100 and 96.7 were recorded for *K. pneumoniae*, and *E. coli*-treated seeds, respectively. As with germination time, only the germination percentage of *K. pneumoniae*-treated seeds was statistically greater (*P < 0.05*) than that of all others, including the control. For shoot length, only *K. pneumoniae*-treated seeds (4.80 cm) yielded better than the control (4.20 cm). The values were also found to be statistically different (*P < 0.05*). The mean fresh weight yielded by *K. pneumoniae*-treated seeds (0.050 g) and *S. aureus* (0.040 g) were greater than the value yielded by the control (0.033 g). However, only the mean fresh weight of *K. pneumoniae*-treated seeds was statistically different (*P < 0.05*) from that of the control.

The result of the germination test of millet seeds, as presented in Table 3, show the control yielding the mean germination time, mean germination percentage, number of leaves and shoot length of 2.6 days, 45.3%, 1 leaf, and 4.0 cm, respectively. None among the endophytic bacteria-treated seeds yielded better results in all the parameters tested. However, the mean fresh weight results showed yields of 0.040, 0.033 and 0.033 g from *E. coli*, *K. pneumoniae*, and *Micrococcus* spp treated seeds, respectively, and these were higher than the fresh weight of 0.030 g yielded by the control. However, the values were not significantly different (*P < 0.05*) from one another and the control.

Table 2. Effects of Endophytic Bacteria on Tomato Seeds Germination

<table>
<thead>
<tr>
<th>Endophytic Bacterium</th>
<th>Germination Time (Days)</th>
<th>Germination Percentage</th>
<th>Number of Leaves</th>
<th>Length of Shoot(cm)</th>
<th>Average Fresh Weight(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>5.5 ± 0.29</td>
<td>90 ± 0.00</td>
<td>2 ± 0.00</td>
<td>3.4 ± 0.31</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>4.0 ± 0.00</td>
<td>46.7 ± 3.33</td>
<td>2 ± 0.33</td>
<td>4.2 ± 0.10</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>3.3 ± 0.33</td>
<td>96.7 ± 3.33</td>
<td>2 ± 0.00</td>
<td>3.1 ± 0.03</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>2.0 ± 0.00</td>
<td>100 ± 0.00</td>
<td>2 ± 0.33</td>
<td>4.8 ± 0.42</td>
<td>0.050 ± 0.00</td>
</tr>
<tr>
<td>Micrococcus spp</td>
<td>6.3 ± 0.33</td>
<td>53.3 ± 3.33</td>
<td>2 ± 0.00</td>
<td>3.1 ± 0.35</td>
<td>0.020 ± 0.00</td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>7.0 ± 0.33</td>
<td>53.3 ± 3.33</td>
<td>2 ± 0.00</td>
<td>4.2 ± 0.09</td>
<td>0.031 ± 0.00</td>
</tr>
<tr>
<td>Rhizobium spp</td>
<td>4.3 ± 0.33</td>
<td>26.7 ± 3.33</td>
<td>1 ± 0.00</td>
<td>2.7 ± 0.15</td>
<td>0.022 ± 0.00</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6.3 ± 0.33</td>
<td>63.3 ± 3.33</td>
<td>2 ± 0.33</td>
<td>4.2 ± 0.20</td>
<td>0.040 ± 0.00</td>
</tr>
<tr>
<td>Control</td>
<td>3.7 ± 0.33</td>
<td>93.3 ± 6.67</td>
<td>2 ± 0.33</td>
<td>4.2 ± 0.17</td>
<td>0.033 ± 0.00</td>
</tr>
</tbody>
</table>

Results are values of three replicates ± the S.E (Standard error)
Table 3. Effects of the Endophytic Bacteria on Millet Seeds Germination

<table>
<thead>
<tr>
<th>Endophytic Bacterium</th>
<th>Germination Time (Days)</th>
<th>Germination Percentage</th>
<th>Number of Leaves</th>
<th>Length of Shoot (cm)</th>
<th>Fresh Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>8.4 ± 0.18</td>
<td>23.6 ± 0.89</td>
<td>1.0 ± 0.00</td>
<td>3.6 ± 0.03</td>
<td>0.020 ± 0.02</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>8.3 ± 0.10</td>
<td>24.0 ± 0.58</td>
<td>1.0 ± 0.00</td>
<td>2.9 ± 0.03</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>5.4 ± 0.10</td>
<td>34.3 ± 1.20</td>
<td>1.0 ± 0.00</td>
<td>3.7 ± 0.05</td>
<td>0.040 ± 0.00</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>6.3 ± 0.10</td>
<td>34.0 ± 1.00</td>
<td>1.0 ± 0.00</td>
<td>3.7 ± 0.03</td>
<td>0.033 ± 0.00</td>
</tr>
<tr>
<td>Micrococcus spp</td>
<td>7.03 ± 0.03</td>
<td>34.0 ± 2.10</td>
<td>1.0 ± 0.00</td>
<td>3.1 ± 0.01</td>
<td>0.033 ± 0.00</td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>3.5 ± 0.00</td>
<td>21.3 ± 1.33</td>
<td>1.0 ± 0.00</td>
<td>1.2 ± 0.00</td>
<td>0.010 ± 0.02</td>
</tr>
<tr>
<td>Rhizobium spp</td>
<td>5.4 ± 0.09</td>
<td>40.0 ± 0.00</td>
<td>1.0 ± 0.00</td>
<td>2.8 ± 0.06</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6.3 ± 0.08</td>
<td>40.0 ± 0.00</td>
<td>1.0 ± 0.00</td>
<td>1.2 ± 0.06</td>
<td>0.030 ± 0.00</td>
</tr>
<tr>
<td>Control</td>
<td>2.6 ± 0.07</td>
<td>45.3 ± 0.88</td>
<td>1.0 ± 0.00</td>
<td>4.0 ± 0.03</td>
<td>0.030 ± 0.00</td>
</tr>
</tbody>
</table>

Results are values of three replicates ± the S.E (Standard error)

3.3. Antagonistic Effects of the Endophytic Bacteria against *F. oxysporum*

The selected endophytic bacteria showed varying degree of inhibitory activity against the phytopathogen *F. oxysporum*. The result, as presented in Table 4, shows that all the means were statistically greater (*P* < 0.05) than the control, indicating the ability of the test endophytic bacteria in the inhibition of *F. oxysporum*. There was a significant difference (*P* < 0.05) between all the mean values of zone of inhibition. Staphylococcus aureus and Bacillus subtilis yielded the highest zone of inhibition of 21.3 and 20.2 mm, respectively. However, there was a significant difference (*P* < 0.05) between the sizes of zone of inhibition yielded by the two bacteria. On the other hand, Bacillus cereus which produced a zone of 17.2 mm has the lowest inhibitory activity.

Table 4. Antagonistic Effects of Some Endophytic Bacteria against *F. oxysporum*

<table>
<thead>
<tr>
<th>Endophytic Bacterium</th>
<th>Mean Zone of Inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>20.2 ± 0.17</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>17.2 ± 0.12</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>18.5 ± 0.20</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>19.2 ± 0.15</td>
</tr>
<tr>
<td>Micrococcus spp 1</td>
<td>18.1 ± 0.10</td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>18.2 ± 0.12</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>21.3 ± 0.21</td>
</tr>
<tr>
<td>Control</td>
<td>12.7 ± 0.15</td>
</tr>
</tbody>
</table>

Results are values of three replicates ± the S.E (Standard error)

Qualitative detection of enzymes, such as cellulase, catalase, amylase, urease and oxidase, was carried out and the distribution of some of the enzymes among the test bacteria is represented in Table 5.

Table 5. Distribution of some enzymes among the test bacteria

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Catalase</th>
<th>Cellulase</th>
<th>Urease</th>
<th>Amylase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Micrococcus luteus</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Micrococcus spp</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Rhizobium spp</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

**: Positive; -: Negative

4. Discussion

The result showed that the roots of *C. citratus* contain higher population of endophytic bacteria more than the leaves. This is most probably due to the fact that, the roots are the primary sites of infection as opined by Kobayashi and Palumbo (2000) and Hallmann et al. (1997). Similarly, Rosenblueth and Martinez-Romero (2004) found that, in most plants, the number of bacterial endophytes is higher in the roots than the above-ground tissues. Moreover, most endophytic bacteria are soil-borne and, therefore, colonize the roots region first and subsequently spread to other parts of the plants. Interestingly, opposite pattern of distribution was observed among the endophytic fungi that colonize same plant as reported by Deshmukh et al. (2010) who, in a study of fungal endophytes of *C. citratus* in two sites in India, reported 53% and 50% compared with 25% and 23% of fungi isolated from the leaves and rhizomes of the two sites, respectively. Furthermore, the isolates obtained in the present study are similar to the common endophytic bacteria isolated from different plants by different workers.
at different times as reported by Ryan et al. (2007) as well as Rosenblueth and Martinez-Romero (2006).

The result shows that K. pneumoniae has potentials of promoting the growth of tomato seeds by ways of either shortening the length of germination period, improving the chances of seed germination, raising the length of shoot, improving weight gain or both. The mechanisms through which endophytes promote plant growth are many. These include: improved cycling of nutrients and minerals, phytoremediation (Ryan et al., 2007), phosphate solubilisation activity (Verma et al., 2001; Wakelin et al., 2004), Indole acetic acid production (Lee et al., 2004), production of a siderophore (Costa and Loper, 1994), and supply of essential vitamins to host plants among others (Pirttila et al., 2004).

All the tested bacteria showed antagonistic activity against the plant pathogen, F. oxysporum and, the activity was highest in S. aureus followed by B. subtilis. The result shows some agreement with the work of Ji et al. (2014) who reported the antagonistic activity of 12 endophytic diazotrophic bacteria isolated from Korean rice cultivars on mycelial growth of all the isolates of F. oxysporum tested. They further reported 4 species of both Bacillus and related genus Paenibacillus among the seven species with the highest antagonistic activity. The result also agrees with the work of Kim et al. (2008) who reported the antagonistic effects of 7 out of 20 Bacillus spp isolated from manure and cotton waste composts against soil borne fungi, F. oxysporum, Rhizoctonia solani, Phytophthora casici and Sclerotinia sclerotium. This in-vitro antagonistic effect of the endophytic bacteria against F. oxysporum is best explained by the mechanism of antibiotic resistance. Several studies have indicated the ability of endophytic bacteria to exude compounds with antioxidant properties and biocontrol potentials. Notable among these include compounds, such as oligomycin A, kanosamine, zwittermicin A, and xanthobaccin produced by Bacillus spp (Compant et al., 2005). This further proves the potential application of these bacteria more especially S. aureus and B. subtilis as biocontrol agents of plant diseases and also potential sources of natural bioactive compounds.

The growth promotion and pathogen inhibition of the test bacteria might also be associated with the enzymes produced by the test bacteria. The bacteria were found to possess a variety of enzymes, such as catalase, cellulase and urease. Kuhad et al. (2011) reported the application of cellulase in plant pathogen and disease control, as well as plant growth and flower production. Catalase was reported to reduce the toxicity of hydrogen peroxide in plants (Felton et al., 1991), while urease when combined with nitrification inhibitors prevents loss of Nitrogen and improves yield (Frenery, 1997).

5. Conclusion

The present study has shown that the internal tissues of C. citratus harbour a diverse range of endophytic bacteria that offer benefits to other plants in terms of growth promotion and pathogen inhibition. However, qualitative assay procedures that screen the useful bacteria for the production of useful enzymes, bioactive compounds and metabolites may reveal the answers for the potentials of these endophytic bacteria not only in growth promotion and biocontrol but possibly other areas.

Acknowledgement

The present work was supported by the department of Microbiology, Bayero University Kano.

References

Comparing the Total Coliform and Fecal Coliform for Recreational Waters in Public Swimming Areas in the Kingdom of Bahrain

Ali S. Bin Thani*, Sahar Baksh and Mariam Tanvir

Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain.

Received: July 23, 2017; Revised: August 24, 2017; Accepted: September 20, 2017

Abstract

The Kingdom of Bahrain has an annual rainfall of about 78 mm with limited surface water resources and poor underground recharge. The rapid increase in urbanization, during the last 20 years, has increased the demands for additional water supplies. Recycling of such limited resources would also necessitate monitoring effluents coming off wastewater treatment plants. The monitoring process requires continuous and laborious work by dedicated water laboratories to verify water supply safety. Herein, the total number of coliforms in two public swimming areas/beaches (Zallaq and Hidd) were evaluated, and the results were compared to those from effluents of the main sewage treatment plant in Bahrain (Tubli Water Pollution Control Centre, WPCC). The results indicated a high Most Probable Number (MPN) for Tubli (MPN annual average value of 504 CFU/100 mL) compared to the other two sites Hidd (102 CFU/100 mL) and Zallaq (47 CFU/100 mL). The number of fecal coliforms was estimated using both biochemical and molecular approaches. According to estimates by EMB cultures and PCR among the total coliforms, *E. coli* (fecal indicator) constituted 37.3% for Tubli WPCC effluents, and less than 30% for the two public swimming areas in Hidd and Zallaq.

Keywords: Coliform; Fecal coliform; Recreational waters; Bathing waters; Kingdom Bahrain.

1. Introduction

Insufficient water resources in arid areas with scarce and erratic rainfalls are adding to the costs spent by developing countries to maintain the infrastructure of water facilities. In the Kingdom of Bahrain, the annual rainfall is about 78 mm with limited surface water resources and poor underground recharge. The rapid increase in urbanization during the last 20 years has increased the demands for additional water supplies. Recycling of such limited resources would also necessitate monitoring effluents coming off wastewater treatment plants. The monitoring process requires continuous and laborious work by dedicated water laboratories to test water supply safety. Many worldwide water safety programs test water samples and check for indicator microorganisms. Upon obtaining data, regulations and access to recreational waters are coordinated with local organizations and governmental agencies (Efstratiou et al., 2009).

In 1914, the US Public Health Service Drinking Water Standards set the criteria for testing the quality of water for drinking and bathing (Efstratiou et al., 2009). The test uses conventional techniques, e.g., the multiple tube fermentation/Most Probable Number (MPN) to test for presence of coliforms. Coliforms are Gram-negative, rod shape *Enterobacteriaceae*. A subset of this group is the fecal coliforms (e.g., *Escherichia coli*), which indicates contamination of test samples with human waste/sewage outlets (Rompre et al., 2002). Fecal coliforms are used as indicator for the presence of pathogenic microorganisms (Efstratiou et al., 2009).

The objectives of the present study are to monitor the total number of coliforms (TC) in two public swimming areas/beaches (Zallaq and Hidd) and to compare the results obtained with effluents of the main sewage treatment plant in Bahrain (Tubli Water Pollution Control Centre-WPCC). The present study also estimates the percentage of fecal coliforms at the three aforementioned seashores. The study used both conventional and molecular approaches to estimate and enumerate the microorganisms.

To the best of our knowledge, the two selected beaches have not been previously investigated for the presence of coliforms even though that these were public swimming areas. The numbers obtained would be useful as references for future studies and further analysis.

2. Materials and Methods

2.1. Isolates

Collection of samples was performed between October and June for three successive years (2014 - 2016). The samples were collected at 1.0-meter depth offshore. Collection of samples was performed during the daytime at
3. Results and Discussion

The present study was carried out during the months of winter and early summer as we expected high tides during these seasons. High tides might change the number of counted coliforms (St Laurent et al., 2014). The locations studied had the following coordinates: Dry-dock beach at Hidd (26.1959586, 50.662142), Tubli effluent (26.1968666, 50.565727), Zallaq/Al Jazair beach (25.989600, 50.461081) (Figure 2).

Two of the studied areas are known public swimming beaches Zallaq and Hidd. The third location was selected as a control (Tubli-WPCC). Physical parameters for studied areas showed alkaline pH for both Hidd and Tubli (pH 8), while close to neutral for Zallaq (pH 7.2). Salinity was higher for Zallaq (54 PSU), than for Hidd (44 PSU) and Tubli (44 PSU). Figure 3 shows the total coliform values obtained for each site for three successive years (2014-2016). The numbers indicate high MPN for Tubli (MPN nine months’ average value of 504 CFU /100 mL) compared to the other two sites; Hidd (102 CFU /100 mL) and Zallaq (47 CFU /100 mL). The number of fecal coliforms was estimated using both biochemical and molecular tests. According to estimates by EMB cultures and PCR among the total coliforms, E. coli (a fecal indicator) constituted 37.3 % for Tubli WPCC effluents, and less than 30 % for the two public swimming areas in Hidd and Zallaq.

Compared to previous data, Tubli WPCC continues to contribute to the total coliforms and fecal coliforms found in Tubli bay (Qureshi and Qureshi, 1990; Qureshi et al., 1993; Mahasneh et al., 1997). The effluents of Tubli bay potentially pose health issues due to the highly pathogenic species detected previously (Amin, 1988; Qureshi and Qureshi, 1992). They found that most of the species were resistant to a panel of routinely used antibiotics in the public health sector (Amin, 1988; Qureshi and Qureshi, 1992). Thus, there is a necessity for a quick intervention by local environmental agencies to control the spread of antibiotic resistant strains. However, in the current study, the obtained numbers for Tubli WPCC effluents (504 CFU/100 ml) were not significant in terms of introduced pathogenic species as set by Efstratiou et al. (2009) (Figure 3). Efstratiou et al. (2009) indicated that a value of 1000 CFU/100 mL of total coliforms is needed to indicate the presence of pathogenic species, such as Salmonella spp. in seawater. Moreover, our values indicate a reduction in total coliforms compared to previous values obtained during a study in 1993-1994 (Al-Sayed et al., 2005).
log mean values of CFU/mL were around 5-6 (Al-Sayed et al., 2005), while the mean log value in our study was around 0.7 CFU/mL. This indicates that in the last 20 years, Tubli WPCC has increased their standards and quality of released effluents, hence achieving a reduction in the TC by almost 86%. In regards to both Hidd and Zallaq, most numbers of total coliforms are still within the limits set for public use and are considered safe < 100 CFU/100 mL (Figure 2) (Efstratiou et al., 2009).

The 16s rDNA PCR and the restriction digest showed similar sizes and patterns as depicted by http://insilico.ehu.eus/PCR/ using the sequences of both primers 27F and U1492R as inputs and selecting - apply to all Escherichia as the target microorganism with allow a mismatch of 2 (San Millán et al., 2013). No new species were identified by PCR, as both typical PCR amplicon sizes (Figure 1) and the restriction fragments produced were identical to that obtained in silico (two DNA fragments of 0.7 and 0.8 kb) (Suardana, 2014).

The statistical analysis presented in (Table 1) and (Figure 3) shows a positive trend among different swimming areas and their corresponding log mean values for the MPN numbers upon successive years of study, r(18)= 0.599, p < 0.005. Indicating a significant relationship between the numbers of coliforms detected and the sites studied. The standard deviations obtained for readings of Zallaq and Tubli are smaller than that for Hidd (Table 1 and Figure 3). This variability in the reported readings of Hidd area could be attributed to the fact that Hidd is more open to the high tides and open sea as illustrated in (Figure 2).

Table 1. The log mean value CFU/100 mL at different sites

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Nine months log mean values for the MPN TC coliforms (Standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Zallaq</td>
<td>1.66 (+0.024)</td>
</tr>
<tr>
<td></td>
<td>Hidd</td>
<td>1.86 (+0.179)</td>
</tr>
<tr>
<td></td>
<td>Tubli</td>
<td>2.69 (+0.017)</td>
</tr>
<tr>
<td>2015</td>
<td>Zallaq</td>
<td>1.70 (+0.024)</td>
</tr>
<tr>
<td></td>
<td>Hidd</td>
<td>1.90 (+0.179)</td>
</tr>
<tr>
<td></td>
<td>Tubli</td>
<td>2.70 (+0.017)</td>
</tr>
<tr>
<td>2016</td>
<td>Zallaq</td>
<td>1.65 (+0.024)</td>
</tr>
<tr>
<td></td>
<td>Hidd</td>
<td>2.19 (+0.017)</td>
</tr>
<tr>
<td></td>
<td>Tubli</td>
<td>2.72 (+0.017)</td>
</tr>
</tbody>
</table>

Figure 3. Total coliform estimates using the MPN method. Nine months’ log average values (CFU/100 mL) of seawater for the three studied areas (years 2014-2016). Error bars refer to the standard deviation obtained for each site.

4. Conclusions

According to the estimates done by both EMB and PCR, *E. coli* (as fecal indicator) constituted 37.3% of the total coliforms isolated in Tubli WPCC effluents, and less than 30% for the two public swimming areas in Hidd and Zallaq. Compared to previous data, Tubli WPCC continues to contribute to the total coliforms and fecal coliforms found in Tubli bay. However, the obtained numbers for Tubli WPCC effluents are not significant in terms of introduced pathogenic species. Moreover, the data indicate a reduction in total coliforms compared to previous values obtained during a study in 1993-1994.

Acknowledgements

The present study comes as a generous support by the Dean of Scientific Research, at the University of Bahrain to address environmental aspects at The Kingdom of Bahrain (Grant number 12/2015). Thanks also go to Mrs. Nawal Abdullah for her technical support in providing the materials and reading the results for some of the experiments.

References

Evaluation of Six Imported Accessions of *Lupinus albus* for Nutritional and Molecular Characterizations under Egyptian Conditions

Sherin A. Mahfouze¹*, Heba A. Mahfouze¹, Dalia M. F. Mubarak² and Ramadan M. Esmail¹

¹National Research Centre, Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department; ²Soil and Water Use Department, Agricultural and Biological Research Division, Dokki, 12622, Egypt.

Received July 26, 2017; Revised August 28, 2017; Accepted September 21, 2017

Abstract

White lupin (*Lupinus albus* L.; 2n = 50) is a member of the family Fabaceae (El-Enany et al., 2013; EL-Harty et al., 2016; Prusinski, 2017). It is sown as a crucial rotational yield. In addition, white lupin is beneficial in the diseases and weeds controlling in a crop rotation in a mixed agriculture program; lupin fixes nitrogen (N₂) ascribable the existence of proteoid roots which release organic acids and make P more available (Neumann and Martinoia, 2002). White lupin seeds are utilized for the human and livestock nutrition (Barnevelda, 1999).

The genetic variability of *Lupinus* species has been characterized by agronomical and morphological characters (Andres et al., 2007), biochemical (Vaz et al., 2004) and molecular markers, such as Random Amplified Polymorphism DNAs (RAPD), Inter Simple Sequence Repeats (ISSR) and Amplified Fragment Length Polymorphism (AFLP) (Talhinhas et al., 2003). Estimation of genetic variability depending on the morphological properties is not very authoritative, as it may be affected by the environment and the number of traits with recognized inheritance is few. Molecular markers have the distinguished advantages of being independent of climatic changes.

White lupin seeds are beneficial source of macro- and microelement contents. Essential elements are divided to macronutrients [Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), Manganese (Mg) and Sulfur (S)] and micronutrients [(Iron (Fe), Copper (Cu), Manganese (Mn), Zinc (Zn), Boron (B), Molybdenum (Mo), Nickel (Ni) and Chlorine (Cl)] and the classification depends on the relative abundance in the plants. A significance of mineral constitution is due to their nutritional characterizations and good health effects, also needed for a healthy diet (Kırbaşlar et al., 2012). Iron is required for haemoglobin (Hb) and myoglobin (Mb) synthesis (Saleh-e-in et al.,

Keywords: White lupin, yield, isozyme, RAPD, ISSR.

1. Introduction

White lupin (*Lupinus albus* L.; 2n = 50) is a member of the family Fabaceae (El-Enany et al., 2013; EL-Harty et al., 2016; Prusinski, 2017). It is sown as a crucial rotational yield. In addition, white lupin is beneficial in the diseases and weeds controlling in a crop rotation in a mixed agriculture program; lupin fixes nitrogen (N₂) gas of the atmosphere and improving of the soil fertility. *L. albus* is an efficient scavenger of phosphorus (P) ascribable the existence of proteoid roots which release organic acids and make P more available (Neumann and Martinoia, 2002). White lupin seeds are utilized for the human and livestock nutrition (Barnevelda, 1999).

The genetic variability of *Lupinus* species has been characterized by agronomical and morphological characters (Andres et al., 2007), biochemical (Vaz et al., 2004) and molecular markers, such as Random Amplified Polymorphism DNAs (RAPD), Inter Simple Sequence Repeats (ISSR) and Amplified Fragment Length Polymorphism (AFLP) (Talhinhas et al., 2003). Estimation of genetic variability depending on the morphological properties is not very authoritative, as it may be affected by the environment and the number of traits with recognized inheritance is few. Molecular markers have the distinguished advantages of being independent of climatic changes.

White lupin seeds are beneficial source of macro- and microelement contents. Essential elements are divided to macronutrients [Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), Manganese (Mg) and Sulfur (S)] and micronutrients [(Iron (Fe), Copper (Cu), Manganese (Mn), Zinc (Zn), Boron (B), Molybdenum (Mo), Nickel (Ni) and Chlorine (Cl)] and the classification depends on the relative abundance in the plants. A significance of mineral constitution is due to their nutritional characterizations and good health effects, also needed for a healthy diet (Kırbaşlar et al., 2012). Iron is required for haemoglobin (Hb) and myoglobin (Mb) synthesis (Saleh-e-in et al.,

* Corresponding author. e-mail: : sherinmahfouze@yahoo.com.
2. Materials and Methods

2.1. Plant Materials

The six white lupin accessions imported from (Centre for Genetic Resources, The Netherlands) and one local cultivar Balady were used in this investigation. Names, pedigree and origin of lupin genotypes are presented in Table 1. These materials were evaluated in 2015/16 growing season in field experiment under water stress conditions in a Randomized complete block design with three replications. Plants received two only irrigations through the whole season. The plot size of one row was 0.60 m x 4 m. Lupin seeds were planted on 13th of November in hills with 0.25 m apart on one side of ridge in Delta region at Shebin El-Kom, Menofiya Governorate, Egypt. Yield components and the other related traits, plant height (cm), No. of pods/plant, No. of seed/pod, No. seeds/plant, 100 seed weight (g) and seed yield/plant (g) were measured at harvesting.

Table 1. Pedigree of genotypes used in this study.

<table>
<thead>
<tr>
<th>No.</th>
<th>Accessions</th>
<th>Type</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L. albus CGN 10105</td>
<td>Research material</td>
<td>N106/50</td>
<td>Italy</td>
</tr>
<tr>
<td>2</td>
<td>L. albus CGN 10106</td>
<td>Research material</td>
<td>N107/50</td>
<td>Italy</td>
</tr>
<tr>
<td>3</td>
<td>L. albus CGN 10108</td>
<td>Research material</td>
<td>N121/50</td>
<td>Italy</td>
</tr>
<tr>
<td>4</td>
<td>L. albus CGN 10109</td>
<td>Research material</td>
<td>N122/50</td>
<td>Italy</td>
</tr>
<tr>
<td>5</td>
<td>L. albus CGN 10112</td>
<td>Land variety</td>
<td>Przehieński Wezeszyn</td>
<td>Poland</td>
</tr>
<tr>
<td>6</td>
<td>L. albus CGN 10113</td>
<td>Land variety</td>
<td>Kisondai Fehervarag</td>
<td>Hungary</td>
</tr>
<tr>
<td>7</td>
<td>L. albus cv. Balady</td>
<td>Land variety</td>
<td>Balady</td>
<td>Egypt</td>
</tr>
</tbody>
</table>

2.2. Macro- and Micro-Nutrient Analyses

The seeds of seven white lupin genotypes were milled after being oven-dried at 40°C, and then kept in sealed vials for further analyses. A portion of the dried samples was dissolute in acids mixtures to be digested as described by Cottenie et al., (1982).

Total nitrogen was determined by kjeldahl method and phosphorus was determined by ammonium-vanadate and molybdate method according to Motsara and Roy (2008).

2.3. Electrophoretic Analysis of Protein by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was done according to (Laemmli, 1970) as modified by (Studier, 1973).

2.4. Polyphenol Oxidase (PPO) and Peroxidase (POX) Isoforms.

For the assay of antioxidant enzymes Peroxidase (POX) and Polyphenol Oxidase (PPO) were extracted based on the method described in (Stagemann et al., 1985)

2.5. Extraction of Genomic DNA

Young plant leaves of seven white lupin genotypes were soaked in liquid nitrogen for DNA extraction using 2% (CTAB) cetyl trimethyl ammonium bromide (Borsch et al., 2003).

2.6 RAPD Analysis

A total of five primers were used to amplify DNA (Mahfouze et al., 2012) (manufactured by Bioneer, New technology certification from ATS Korea). The total reaction mixture was 25 μl contained 10X PCR buffer, 2 mM MgCl₂, 0.2 mM dNTPs mixed, 10 pmol primer, 1.25 U Taq polymerase and about 150 ng genomic DNA.

2.7. ISSR Profiles

A total of four anchored ISSR primers were used to amplify DNA (Life Technologies, Gaithersburg, Md.). Each 25-μl amplification reaction consisted of 2.5 μl 10X PCR buffer, 2.5 μl 25 mM MgCl₂, 0.5 μl 40 mM dNTPs; 1 μl Taq DNA polymerase (1 unit/μl); 2 μl 0.4 μM primer.

2.8. Data Analysis

A matrix for SDS-PAGE, POX, PPO, RAPD and ISSR combined was generated by scoring reproducible bands as 1 for their presence and as 0 for their absence across the genotype. Genetic similarity coefficients were computed according to (Nei and Li, 1979). The data were subsequently used to construct a dendrogram using the un-
weighted pair group method of arithmetic averages (UPGMA) (Sneath and Sokal, 1973) employing sequential, agglomerative hierarchic and non-overlapping clustering (SAHN). All the computations were carried out using the software NTSYS-PC (Numerical Taxonomy and Multivariate Analysis System), version 2.02 (Rohlf, 2000). Correlation coefficients were calculated using similarity coefficients obtained from combined SDS-PAGE, POX, PPO, RAPD and ISSR analysis.

2.9. Statistical Analysis

The data were analyzed by ANOVA procedure of program SPSS (1995) statistical procedures version 21 (Chicago, USA) (www.spss.com).

3. Results

3.1. Field Performance

The analysis of variance of all traits studied is presented in Table 2. Highly significant differences among seven white lupin genotypes were recorded for all the traits studied, indicating the presence of a considerable genetic diversity among the tested lupin genotypes. Also, these variations among genotypes might partially reflect their different genetic backgrounds.

Mean performance of seed yield and its components for the seven lupin genotypes are presented in Table 3. All the six foreign genotypes exhibited exceeded the plant height of the local landraces Balady. With regard to the number of pods/plant means ranged from 3.67 pods for the genotype CGN 10105 to 12 pods per plant for the genotype CGN 10108. Significant differences were found among genotypes for number of seeds/pod and the highest number found in genotype CGN 10106 (5.67 seeds/pod). Concerning the number of seeds/plant, genotype CGN 10106 had a larger number of seeds/plant (63.67), followed by CGN 10108 (58.67 seeds/plant). Also, results showed that the genotypes CGN 10106 and CGN 10108 had the highest values of seed yield. Moreover, these lines had the highest values for 100 seed weight.

Table 2. Mean square values for all studied characters among seven lupin genotypes evaluated in the growing season 2015/16.

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>D.F</th>
<th>Plant height (cm)</th>
<th>No. of Pods/plant</th>
<th>No. of seeds/pod</th>
<th>No. of seeds/plant</th>
<th>100 seed weight (g)</th>
<th>Seed yield/plant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reps</td>
<td>2</td>
<td>1.286</td>
<td>0.190</td>
<td>0.190</td>
<td>22.333</td>
<td>0.136</td>
<td>2.086</td>
</tr>
<tr>
<td>Genotypes</td>
<td>6</td>
<td>200.603**</td>
<td>28.857**</td>
<td>1.937**</td>
<td>974.429**</td>
<td>38.69**</td>
<td>146.17**</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>26.175</td>
<td>1.857</td>
<td>0.746</td>
<td>22.667</td>
<td>1.069</td>
<td>2.451</td>
</tr>
</tbody>
</table>

** Significant at $p = 0.01$; * significant at $p = 0.05$.

Table 3. Mean performance and standard error for all studied characters in seven white lupin genotypes evaluated in the growing season 2015/16.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Plant height (cm)</th>
<th>No. of P/ plant</th>
<th>No. of seeds/Pod</th>
<th>No. of seeds/plant</th>
<th>100 seed weight (g)</th>
<th>Seed yield/plant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. albus CGN 10105</td>
<td>58.67±1.85</td>
<td>3.67±0.33</td>
<td>5.67±0.32</td>
<td>21.00±3.00</td>
<td>33.85±0.25</td>
<td>7.09±0.98</td>
</tr>
<tr>
<td>L. albus CGN 10106</td>
<td>70.00±2.88</td>
<td>11.33±0.88</td>
<td>5.67±0.33</td>
<td>63.67±1.8</td>
<td>34.78±0.57</td>
<td>22.13±0.56</td>
</tr>
<tr>
<td>L. albus CGN 10108</td>
<td>69.00±2.08</td>
<td>12.00±0.88</td>
<td>5.0±0.57</td>
<td>58.67±1.33</td>
<td>36.58±0.26</td>
<td>21.43±0.36</td>
</tr>
<tr>
<td>L. albus CGN 10109</td>
<td>64.33±2.60</td>
<td>9.0±0.57</td>
<td>5.3±0.33</td>
<td>48.0±4.16</td>
<td>34.37±0.51</td>
<td>16.50±1.43</td>
</tr>
<tr>
<td>L. albus CGN 10112</td>
<td>62.33±0.65</td>
<td>6.0±0.58</td>
<td>5.3±0.67</td>
<td>31.3±2.40</td>
<td>33.20±0.09</td>
<td>10.39±0.76</td>
</tr>
<tr>
<td>L. albus CGN 10113</td>
<td>52.67±1.45</td>
<td>6.66±0.60</td>
<td>3.66±0.33</td>
<td>24.0±0.01</td>
<td>25.71±1.17</td>
<td>6.17±0.81</td>
</tr>
<tr>
<td>L. albus cv. Balady</td>
<td>48.00±1.53</td>
<td>5.67±0.66</td>
<td>4.0±0.58</td>
<td>22.66±3.92</td>
<td>30.53±0.24</td>
<td>6.92±1.21</td>
</tr>
</tbody>
</table>
3.2. Macro- and Micro-Elements of White Lupin Seeds

Studying the nutrients’ content in the seeds of *L. albus* are important from a human nutritional point of view as well as from the preferences of which genotype is best for agriculture. Generally, content of macro- and micronutrients in white lupin seeds based on the genotype (Tables 4 and 5). The highest content of N was recorded for genotype CGN 10106; however, the differences in this element’s content, among the studied genotypes, cannot be statistically considered. CGN 10113 seeds showed the best genotype in K, P and Na contents reached 1.78, 0.334 and 0.289 g 100 g⁻¹ dried material, respectively; followed by the seeds of Balady cultivar. The influence of the genotypes on the contents of Ca and Mg were not statistically significant. Nevertheless, the data showed that the CGN 10105 and CGN 10112 genotypes were the highest content of Mg and Ca, respectively, compared with the other genotypes (Table 5). On the other hand, the results revealed that the reduction of the K contents was depicted in CGN 10105 and CGN 10108 genotypes. In addition, the lowest contents of Na were found in CGN 10112 compared with the other genotypes (Table 5).

Among all the examined genotypes, CGN 10112 and CGN 10113 accessions and Balady cultivar had the superior content of the micronutrients (Tables 6 and 7). Wherein the nutrients increased as follow: Fe by (0.14 – 0.35), Mn by (0.7 – 1.5), Zn by (0.3 – 0.7), and Cu by (0.11 – 0.34) fold, compared with the other studied genotypes. Furthermore, the minimum contents of Fe and Cu nutrients were exhibited in the CGN 10106 genotype. According to, Mn and Zn were recorded in CGN 10108 and CGN 10105 genotypes, respectively. The results indicated the significant influence of the genotypes on the content of some nutritional elements in the white lupin seeds (Table 7).

| Table 4. Analysis of variance of macronutrients element contents (%) in white lupin genotypes |
|---|---|---|---|---|---|---|
| S.O.V | D.F | N | P | K | Ca | Mg |
| Reps | 2 | 0.886 | 0.043 | 0.056 | 0.001 | 0.003 | 0.001 |
| Genotypes | 6 | 0.450 ** | 0.005 ** | 0.122 ** | 0.027 ns | 0.005 ns | 0.003 ** |
| Error | 12 | 0.131 | 0.001 | 0.009 | 0.030 | 0.004 | 0.001 |
| ** Significant at p = 0.01; * significant at p = 0.05., ns = not significant. |

| Table 5. Mean values ± SE for macronutrients element (%) in seven white lupin genotypes studied (in milligrams per 100 gram) |
|---|---|---|---|---|---|---|
| Genotypes | N | K | P | Mg | Ca | Na |
| *L. albus* CGN 10105 | 4.13 ± 0.35 | 1.28 ± 0.068 | 0.26 ± 0.004 | 0.22 | 1.09 | 0.24 ± 0.012 |
| *L. albus* CGN 10106 | 4.30 ± 0.32 | 1.32 ± 0.083 | 0.23 ± 0.014 | 0.11 | 1.16 | 0.23 ± 0.003 |
| *L. albus* CGN 10108 | 3.65 ± 0.19 | 1.28 ± 0.02 | 0.24 ± 0.001 | 0.11 | 1.28 | 0.24 ± 0.009 |
| *L. albus* CGN 10109 | 4.03 ± 0.36 | 1.29 ± 0.014 | 0.27 ± 0.002 | 0.14 | 1.09 | 0.218 ± 0.006 |
| *L. albus* CGN 10112 | 3.67 ± 0.098 | 1.38 ± 0.067 | 0.297 ± 0.007 | 0.12 | 1.34 | 0.211 ± 0.017 |
| *L. albus* CGN 10113 | 3.27 ± 0.372 | 1.78 ± 0.140 | 0.334 ± 0.013 | 0.111 | 1.26 | 0.289 ± 0.003 |
| *L. albus* cv. Balady | 3.38 ± 0.142 | 1.64 ± 0.027 | 0.319 ± 0.008 | 0.114 | 1.23 | 0.286 ± 0.011 |

Values followed by the same letter are not significantly different according to Duncan’s multiple range test (p< 0.05).

| Table 6. Analysis of variance of micronutrients element contents (%) in white lupin genotypes |
|---|---|---|---|---|---|
| S.O.V | D.F | Fe | Mn | Zn | Cu |
| Reps | 2 | 0.001 | 78.619 | 7.620 | 0.147 |
| Genotypes | 6 | 260.475 ** | 17414.52 ** | 9.982 ** | 1.989 ** |
| error | 12 | 18.329 | 201.76 | 3.237 | 0.116 |

** Significant at p = 0.01; * significant at p = 0.05. |

| Table 7. Mean values ± SE for micronutrients element (%) in seven white lupin genotypes studied (in milligrams per 100 gram) |
|---|---|---|---|---|---|
| Genotypes | Fe | Mn | Zn | Cu |
| *L. albus* CGN 10105 | 78.34 ± 1.17 | 194.33 ± 2.96 | 7.77 ± 0.296 | 6.15 ± 0.406 |
| *L. albus* CGN 10106 | 66.53 ± 2.84 | 194.67 ± 2.60 | 8.65 ± 1.16 | 6.00 ± 0.37 b |
| *L. albus* CGN 10108 | 70.40 ± 0.58 | 153.33 ± 10.98 | 9.01 ± 2.35 | 6.22 ± 0.24 b |
| *L. albus* CGN 10109 | 76.53 ± 0.267 | 222.67 ± 4.05 | 9.54 ± 0.427 | 7.25 ± 0.01 a |
| *L. albus* CGN 10112 | 87.86 ± 1.07 | 268.67 ± 10.88 | 12.87 ± 0.712 | 7.63 ± 0.07 c |
| *L. albus* CGN 10113 | 89.7 ± 0.91 | 384.33 ± 10.34 | 11.29 ± 0.442 | 7.47 ± 1.151 |
| *L. albus* cv. Balady | 88.83 ± 1.93 | 275.33 ± 8.82 | 11.36 ± 0.981 | 8.02 ± 0.163 |

Values followed by the same letter are not significantly different according to Duncan’s multiple range test (p< 0.05).
3.3. SDS-PAGE

The electrophoresis of the total protein extracted from the leaves of seven white lupin genotypes determined by SDS-PAGE as shown in Figure 1. SDS-PAGE revealed that, seven *L. albus* genotypes were rich with protein content depending on number of bands on the gel. The electrophoregrams were estimated depending on their molecular masses. A total of 14 polypeptide chains were recorded ranging from 4.5 to 250 kDa; ten of these were monomorphic (71.43%), while four were polymorphic (28.57% polymorphism). The highest number of polypeptides scored in accessions CGN 10106 and CGN 10113 (14 polypeptides), followed Balady cultivar (13 bands) and CGN 10109 (12 subunits). However, the lowest number of subunits detected in accessions CGN 10105, CGN 10108 and CGN 10112 (ten subunits). On the other hand, one unique band with molecular weight 170 kDa scored in two accessions CGN 10106 and CGN 10113 (Figure 1).

![Figure 1. SDS-PAGE banding patterns of leaf protein extracted from seven genotypes *Lupinus albus*. Lane M: Marker protein. Lane 1: CGN 10105; lane 2: CGN 10106, lane 3: CGN 10108; lane 4: CGN 10109; lane 5: CGN 10112; lane 6: CGN 10113 and lane 7: Balady cultivar.](image)

3.4. POX and PPO Isozymes

Isozyme spectra of two tested isoforms (PPO and POX) were determined by native-PAGE in leaves of seven white lupin genotypes as shown in Figure 2. POX recorded three isoforms with *Rf* value ranging of 0.293 to 0.693. The highest expression was scored in CGN 10105, CGN 10106, CGN 10108 and CGN 10109 (three alleles), followed by CGN 10113 (two isoforms). However, the lowest expression was found in two genotypes CGN 10112 and Balady cultivar (one isoform) (Figure 2).

![Figure 2. POX and PPO isozyme profiles of seven genotypes *Lupinus albus*. Lane 1: CGN 10105; lane 2: CGN 10106, lane 3: CGN 10108; lane 4: CGN 10109; lane 5: CGN 10112; lane 6: CGN 10113 and lane 7: Balady cultivar.](image)

3.5. RAPD Analysis

Five decamer RAPD primers (10 nucleotide length) from arbitrary nucleotide sequences were used to amplify seven *L. albus* genotypes (Figure 3 and Table 8). A total number of 98 scorable bands were amplified by five RAPD primers (19.6 bands per primer), ranging from 90 to 1730 bp (RAPD-2) (Figure 3 and Table 8). Fifty-one out of 98 fragments were common bands (52.04%), 47 loci were polymorphic (47.96%). The number of fragments per primer varied from 16 (RAPD-1) to 26 (RAPD-2). Primer RAPD-1 scored the highest number of polymorphism (75%), followed by primer RAPD-5 (58.82%). However, Primer RAPD-3 recorded the lowest number of polymorphism (29.41%). On the other hand, 14 out of the 98 were unique markers (14.29%) (Table 8). CGN 10105 appeared the maximum number of positive and negative markers (six) with molecular sizes (+180; +191 and -700 bp) and (-700; -703 and -1510 bp), respectively. However, CGN 10108, CGN 10109 and Balady cultivar scored two bands of (+1730 and -185 bp); (+160 and +382); and (+730 and +781) bp, respectively. In contrast, CGN 10106 revealed the minimum number of specific bands (one) of +133 bp (Table 8).

<table>
<thead>
<tr>
<th>Primer Code No.</th>
<th>Primer sequences</th>
<th>Size range of the scorable loci (bp)</th>
<th>Total loci</th>
<th>No. of monomorphic loci</th>
<th>No. of polymorphic loci</th>
<th>% Polymorphism</th>
<th>Unique loci</th>
<th>Molecular size of markers (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD-1</td>
<td>GTTTCGCTCC</td>
<td>160-1600</td>
<td>16</td>
<td>4</td>
<td>12</td>
<td>75</td>
<td>3</td>
<td>+160; +730; -703</td>
</tr>
<tr>
<td>RAPD-2</td>
<td>AACGCAGCA</td>
<td>90-1730</td>
<td>26</td>
<td>16</td>
<td>10</td>
<td>38.46</td>
<td>2</td>
<td>+1730; -482</td>
</tr>
<tr>
<td>RAPD-3</td>
<td>CCGTCCAGCA</td>
<td>133-805</td>
<td>17</td>
<td>12</td>
<td>5</td>
<td>29.41</td>
<td>3</td>
<td>+133; +382; +500</td>
</tr>
<tr>
<td>RAPD-4</td>
<td>GAAGCCGGCTT</td>
<td>100-1510</td>
<td>22</td>
<td>12</td>
<td>10</td>
<td>45.45</td>
<td>2</td>
<td>-185; -1510</td>
</tr>
<tr>
<td>RAPD-5</td>
<td>AAGCCGGAGG</td>
<td>180-1500</td>
<td>17</td>
<td>7</td>
<td>10</td>
<td>58.82</td>
<td>4</td>
<td>+180; +191; +781; -700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>90-1730</td>
<td>98</td>
<td>51 (52.04%)</td>
<td>47</td>
<td>47.96%</td>
<td>14</td>
<td>14.29%</td>
</tr>
</tbody>
</table>
Figure 3. Amplified products of RAPD-PCR using of five primers for analyzed seven genotypes Lupinus albus. Lane M= DNA ladder 100 bp. Lane 1: CGN 10105; lane 2: CGN 10106, lane 3: CGN 10108; lane 4: CGN 10109; lane 5: CGN 10112; lane 6: CGN 10113 and lane 7: Balady cultivar.

3.6. ISSR Profiles

The four primers were used in ISSR loci, produced a total of 57 amplified fragments, ranging from 185 (ISSR-4) to 1500 (ISSR-1) bp. Forty amplicons were monomorphic (70.18%), 17 were polymorphic (29.82%) of the total number of bands (Figure 4 and Table 9). The number of amplicons using single primers ranged from 11 (ISSR-2) to 21 (ISSR-1) with a mean of 14.25 bands per primer. The highest degree of polymorphic among accessions for each primer was 33.33% for primers (ISSR-1 and ISSR-4), followed by ISSR-3 (30.77%). However, the lowest degree of polymorphism was scored in primer ISSR-2 (18.18%). The polymorphism of all amplification fragments was 29.82% for the genotypes investigated. Furthermore, seven out of the 57 bands were unique markers (12.28%). On other hands, CGN 10105 record the maximum number of unique loci (four) with molecular sizes (+433; +1200 bp). Followed, CGN 10109 scored three specific bands of (+530; +595 and +715 bp) (Table 9). On the contrary, the other accessions have not showed any markers.

Table 9. ISSR-PCR analysis, a total number of loci, monomorphic, polymorphic, unique loci of seven L. albus genotypes.

<table>
<thead>
<tr>
<th>Primer Code No.</th>
<th>Primer sequences</th>
<th>Size range of the scorable loci (bp)</th>
<th>Total loci</th>
<th>No. of monomorphic loci</th>
<th>No. of polymorphic loci</th>
<th>% Polymorphism</th>
<th>Unique loci</th>
<th>Molecular size of markers (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSR-1</td>
<td>(CA)₆AC</td>
<td>191-1500</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>33.33</td>
<td>2</td>
<td>+433, +1200</td>
</tr>
<tr>
<td>ISSR-2</td>
<td>(CT)₃GC</td>
<td>216-740</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>18.18</td>
<td>1</td>
<td>+619</td>
</tr>
<tr>
<td>ISSR-3</td>
<td>(GA)₃CC</td>
<td>202-1441</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>30.77</td>
<td>1</td>
<td>+491</td>
</tr>
<tr>
<td>ISSR-4</td>
<td>(CAC)₃GC</td>
<td>185-850</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>33.33</td>
<td>3</td>
<td>+530, +595, +715</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>185-1500</td>
<td>57</td>
<td>40(70.18%)</td>
<td>17</td>
<td>29.82%</td>
<td>7</td>
<td>12.28%</td>
</tr>
</tbody>
</table>
3.7. Cluster Analysis

The Nei genetic similarity index ranged from 0.74 between (CGN 10105 and CGN 10108); (CGN 10105 and CGN 10109); (CGN 10105 and CGN 10113) and (CGN 10109 and CGN 10113) to 0.88 between (CGN 10108 and CGN 10109) (Table 10). The genetic identity between L. albus genotypes fell into the range of 0.74 to 0.88 as shown in the UPGMA tree (Figure 5).

Table 10. Genetic similarity and genetic distance statistics for seven genotypes of L. albus.

<table>
<thead>
<tr>
<th>Accessions</th>
<th>L. albus CN 10105</th>
<th>L. albus CN 10106</th>
<th>L. albus CN 10108</th>
<th>L. albus CN 10109</th>
<th>L. albus CN 10112</th>
<th>L. albus CN 10113</th>
<th>L. albus cv. Balady</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. albus CN 10105</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. albus CN 10106</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. albus CN 10108</td>
<td>0.74</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. albus CN 10109</td>
<td>0.74</td>
<td>0.80</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. albus CN 10112</td>
<td>0.77</td>
<td>0.81</td>
<td>0.86</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. albus CN 10113</td>
<td>0.74</td>
<td>0.83</td>
<td>0.79</td>
<td>0.74</td>
<td>0.78</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>L. albus cv. Balady</td>
<td>0.79</td>
<td>0.83</td>
<td>0.80</td>
<td>0.78</td>
<td>0.82</td>
<td>0.83</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Three major groups were observed. The lupin genotypes CGN 10106; CGN 10113 and Balady cultivar were put in the first group (I): (similarity range 0.74 to 0.83), whereas the accessions CGN 10108, CGN 10109 and CGN 10112 were placed within the second group (II): (similarity range 0.74 to 0.88). However, CGN 10105, which were put in the third group: (similarity range 0.74 to 0.81), referred to be the most distinct but joined with groups I and II (Figure 5).

Figure 4. Amplified products of ISSR-PCR using of four primers for analyzed seven genotypes Lupinus albus. Lane M= 100 bp DNA ladder. Lane 1: CGN 10105; lane 2: CGN 10106, lane 3: CGN 10108; lane 4: CGN 10109; lane 5: CGN 10112; lane 6: CGN 10113 and lane 7: Balady cultivar.

Figure 5. UPGMA dendrogram of seven genotypes Lupinus albus depend on Jaccard’s similarity coefficient.
4. Discussion

White lupin (L. albus L.), is a member of the family Fabaceae. Lupin seeds are used as source of a protein for the human and animal nutrition due to their nutritional value (high in lipids, protein and dietary fiber). The present study is conducted to characterize the genetic relationships among six white lupin imported from Centre for Genetic Resources, and one local Egyptian cultivar Balady. Seven genotypes of white lupin seeds were exposed to water deficit. Our results showed highly significant differences in the field performance and drought tolerant among tested seven genotypes. Two accessions CGN 10106 and CGN 10108 were tolerant of drought compared with other genotypes. Thus, these genotypes recorded the highest seed yield when exposed to water stress. These results are in agreement with Annichiarico et al., (2010), Mut et al., (2012) and EL-Harty et al., (2016) who found significant differences among the Egyptian landraces of white lupin in crop components in various environments but seasonal variance was non-significant for the number of branches, plant height, seeds pod−1 and pods plant−1.

In the present investigation, the content of the macronutrients in the studied genotypes was compared with those of other studies on different legume seeds, including L. albus, carried out by Özcan et al., (2013). From the previous results, it is observed that the highest concentration of N recorded in (CGN 10106); (K, P and Na (CGN 10113 and Balady); Mg and Ca (CGN 10105 and CGN 10112) genotypes. However, the maximum contents of micro-nutrients were scored in genotypes CGN 10112, CGN 10113 and Balady. Concentration of micronutrients in the studied white lupin seeds was of less values than those in the L. albus reported by Özcan et al., (2013) and of similar or higher values than those reported in other varieties (Bartkiene et al., 2016). In general, essential elements are necessary for physiological and metabolic processes in the human body (Alsafwah et al., 2007; Bartkiene et al., 2016).

Several biochemical (protein and isozyme) and molecular markers (RAPD and ISSR) have been used to assess the genetic diversity of the seven L. albus genotypes. In the present study, slight differences were observed in the total protein bands among seven L. albus genotypes, thus polymorphism was low (28.57%). These results are in agreement with Muzquiz et al., (2011) who mentioned that lupins contained the major storage proteins, such as albumins and three globulin kinds: α, β, γ-conglutin. α-conglutin is the main constituent; it acts the largest heterogeneity among white lupin species, showing several polypeptide chains with molecular weights ranging from (15 to 72 kDa). The α-conglutin fraction consists of heavy polypeptide subunits with molecular masses from (31 to 63 kDa) and a lighter polypeptide subunit of 20 kDa, and γ-conglutin, usually the minor constituent, including two polypeptide chains (the first chain 17 kDa and the second chain 27-30 kDa) (Melo et al., 1994).

Isozyme spectra of PPO and POX isofoms were determined by native-PAGE in leaves of seven L. albus genotypes. Our results revealed that seven white lupin genotypes varied in expression from strong to low both PPO and POX isozymes. The highest expression of antioxidant enzymes was recorded in two genotypes tolerant of drought CGN 10106 (POX) and CGN 10108 (POX and PPO). Therefore, antioxidant isozymes play a main role in the tolerance of the plant to water stress. These findings agree with those obtained by Horáček et al., (2009) who found that the variations in the isozyme have a great importance in the plants’ breeding programs, especially in defense reactions to biotic and abiotic stresses.

All the assays used in the present study were able to uniquely fingerprint each of the seven white lupin genotypes. RAPD recorded the highest percentage of polymorphism 47.96%. On the contrary, for ISSR gave 29.82% polymorphism. Comparing between RAPD and ISSR loci, the ISSR has the capability of scoring more polymorphism to the primers barely amplify the non-coding regions of the white lupin genome, which are highly polymorphic. The RAPD loci amplifies both coding and non-coding DNA sequence of the white lupin genome, but when it amplifies in one region it does not amplify in another, decreasing the possibility of amplifying the most polymorphic sequences. According to reproducibility, the ISSR profile was indicated to be more specific in that it employs greater primers and needs higher annealing temperatures lessens the non-reproducibility that is so highly linked with RAPD (McGregor et al., 2000). Yorgancilar et al., (2009) used ISSR and RAPD loci to estimate the genetic variability among 20 old world lupin accessions and obtained that there are relationships between Egyptian and some American accessions and found that American genotype was screened from Egyptian origin materials. Talhinhas et al., (2003) as well as Al-Rawashdeh and Al-Rawashdeh (2015) reported that the low genetic similarity among Lupinus spp is most unlikely to be due to the differences in coding. You et al., (2005) and Yuan et al., (2005) mentioned that both RAPD and ISSR loci are dominant markers and their combination showed that L. albus, L. luteus and L. angustifolius were put in three different groups with minor genetically distances between the individuals of each group. Also, ISSR profiles are recognized to be more sensitive than RAPD technique which is again confirmed here.

Our results showed that biochemical (protein and isozymes) molecular (RAPD and ISSR) markers are beneficial to characterize the genetic diversity and evaluation of genetic distances among seven L. albus genotypes. Also, a combination among these assays could detect polymorphism in the tested seven L. albus genotypes to distinguish each genotype from the others by the unique band. Moreover, these results are important in the breeding programs for the selection process of parental strains that feasibility the prediction of crosses to generate hybrids with the best performance and drought tolerant.

5. Conclusion

The seven white lupine genotypes showed different responses under water deficit stress conditions. Analysis of variance (ANOVA) revealed that there are significant differences among the seven tested genotypes under water deficit stress. Two accessions, L. albus CGN 10106 and CGN 10108, were tolerant against drought compared with
other genotypes. The macro- and micro-element contents of seven *L. albus* genotypes were found to be different based on the genotype. The highest content of N was recorded for genotype CGN 10106. However, CGN 10113 seeds showed the best genotype in K, P and Na contents; recorded for genotype CGN 10106. However, CGN 10113

SPSS (1995). Computer user's guide SPSS in, USA.

Direct Bioconversion of Sorghum Straw to Ethanol in a Single-step Process by *Candida* species

Blessing A. Adelabu¹*, Sarafadeen O. Kareem¹, Abideen I. Adeogun² and Kehinde O. Ademolu³

¹Department of Microbiology; ²Department of Chemistry; ³Department of Pure and Applied Zoology, Federal University of Agriculture Abeokuta, Nigeria

Received March 5, 2017; Revised September 12, 2017; Accepted September 21, 2017

Abstract

The present study explores the potential of *Candida* species to convert sorghum straw biomass to ethanol. Two strains of *Candida* species (C. *tropicalis* and C. *shehatae*) were used to produce ethanol by distillation of fermented sorghum straw medium. These yeasts exhibited high amylolytic, cellulolytic and fermentative ability and were used for bioconversion of sorghum straw [2.5 - 15 % (w/v)] at pH (4.0 – 7.0). The yeasts were capable of producing ethanol from solutions containing 7.5 % sorghum straw. Ethanol production during optimization of growth parameters showed that *C. tropicalis* produced more ethanol (38.12 g/L) than *C. shehatae* (30.32 g/L), except optimization of incubation temperature where *C. shehatae* produced more ethanol (43.96 g/L) than *C. tropicalis* (35.10 g/L). The present study suggests cellulolytic yeasts, such as *C. tropicalis* and *C. shehatae*, for direct ethanol production from lignocellulosic material.

Keywords: Ethanol; Direct bioconversion; cellulolytic yeast; *Candida* species; Lignocellulosic.

1. Introduction

Bioethanol production is being considered an alternative source of energy due to the prediction that there will be exhaustion of fuel energy supply (Ariyajaroenwong *et al*., 2012). Bioethanol is mainly produced from sugar or starchy biomass (Agbogbo and Coward-Kelly, 2008) which poses a competition for the raw materials with food industry. In the last decade, attention started to shift to lignocellulosic feed stocks for ethanol production through multistage process including pretreatment, enzymatic hydrolysis, sugar fermentation and process design. Most of the processes developed toward industrial scale involve the addition of enzymes for cellulose and hemicellulose hydrolysis and use of specific yeast strains engineered to utilize pentose and hexose sugars during fermentation process (Bettiga *et al*., 2009). Both achieving effective biomass hydrolysis and complete sugar conversion are essential for an economical process (Kurian *et al*., 2010).

A process that aims at circumventing this multistage and cost prohibitive, such as critical cost-increasing item, is the direct microbial conversion or Consolidated Bioprocessing (CBP) is considered necessary (Lynd *et al*., 2002). In CBP, an organism or a mixed culture of organisms simultaneously produce hydrolytic enzyme and ferment the pentose and hexose sugars into ethanol or other valuable products without the addition of cellulolytic enzymes. This alternative process is envisaged to reduce energy consumption of the overall process of ethanol production (Lynd *et al*., 2002). *Pichia stipitis*, *Candida shehatae*, and *Pachysolen tannophilus* are known to use both pentose and hexose sugars (Agbogbo and Coward-Kelly, 2008). The advantage of the single-step bioconversion is that the process is carried out in one bioreactor where hydrolysis and fermentation take place at the same time. Microbial conversion of lignocellulosic materials to ethanol is performed by the action of xylene reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) (Khan and Dwivedi, 2013). These metabolic capacity has been reported in several yeast species, such as, *Debaryomyces hansenii*, *Meyerzyma guillermondii* and *Candida parapsilosis* (Lourenco *et al*., 2014; Latif and Rajoka, 2002). *Candida* species are asporogenous diploid yeast, which can utilize a very large variety of carbon sources including many sugars, disaccharides, phenols, alkanes, alkane derivatives, and fatty acids (Sanchez *et al*., 2009).

Huge volumes of cellulosic materials, such as sorghum straw, are renewable resources being generated as waste from various agro allied industries (Das and Singh, 2004). These potential can be exploited as sustainable resource for production of many organic fuels and bioenergy. They can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose problematic solid wastes, and improve air quality (Das and Singh, 2004).

Bioconversion of corn straw into ethanol seems to be one of the solutions to the increasing demands of energy. Although Oyeleke and Jibrin (2009) had produced bioethanol from guinea corn and millet husk through acid...
hydrolysis and fermentation with Aspergillus niger and Zymomonas mobilis. Wakil et al. (2013) also produced bioethanol from palm oil mill effluent using moulds and yeast, but literature has been silent on single-step production of bioethanol through consolidated bioprocesses. The present study presents here reports on the production of ethanol from sorghum straw by Candida species in a single step process.

2. Materials and Methods

2.1. Source of Microorganisms

Four Candida species (C. tropicalis, C. shehatae, C. utilis and C. krusei) were obtained from the Culture Collection Centre of the University of Agriculture, Abeokuta, Nigeria. The cultures were maintained on Yeast Extract Peptone Dextrose (YE PD) agar slant at 4 oC and sub-cultured twice a month.

2.2. Screening of Yeasts

2.2.1. Screening for Amylolytic Yeasts

Yeast isolates were qualitatively screened for using Gram iodine solution. Purified yeast isolates were grown on agar plates containing 1% starch agar which were inoculated with pure yeast isolates and were incubated at 30 oC for 3 days. The plates were flooded with grams iodine solution, colonies forming clear zones were selected for quantitative screening (Kareem et al., 2009). Quantitative screening was carried out using modified YE PD broth which consisted of 1% CMC, NH4NO3, 0.2 g; KH2PO4, 0.5 g; NaCl solution for 20 min (Saliu, 2012). Quantitative screening was carried out using modified YE PD broth containing MgSO4.7H2O, 0.03 g; FeSO4.7H2O, 0.5 g; MnSO4. H2O, 0.16 g; ZnSO4.7H2O, 0.14 g. Culture media were inoculated with pure yeast isolates and incubated under shaking condition (150 rpm) at 30 oC for 3 days, amylase production was quantified using the method of Kareem et al. (2009).

2.2.2. Screening for Cellulolytic Yeast

Yeast isolates were screened for cellulose qualitatively using congo red test. Purified yeast isolates were grown on agar plates containing 1% carboxyl methyl cellulose (CMC). Plates were inoculated with pure yeast isolates and were incubated at 30 oC for 3 days and flooded with 1% Congo red solution for 30 min and de-stained with 1 M NaCl solution for 20 min (Saliu, 2012). Quantitative screening was carried out using modified YE PD which consist of 1% CMC, NH4NO3, 0.2 g; KH2PO4, 0.5 g; CaCl2.2H2O, 0.03 g; MgSO4.7H2O, 0.03 g; FeSO4.7H2O, 0.5 g; MnSO4. H2O, 0.16 g; ZnSO4.7H2O, 0.14 g; Tween-80, 0.1 g. Culture media were inoculated with pure yeast isolates and were incubated under shaking condition (150 rpm) at 30 oC for 3 days and cellulase production was quantified according to the method of Saliu (2012).

2.2.3. Screening for Ethanol Producing Yeast

Purified yeast isolate were screened for fermentative ability using YE PD broth prepared in test tubes containing inverted Durham tube (Wakil et al., 2013). Test tubes were inoculated and incubated at 30 oC for 3 days, isolates were selected based on the volume of gas in Durham tube during the incubation period (Brooks, 2008). Quantitative screening was carried out by distillation using 5% starch according to the method of Wakil et al. (2013).

2.3. Selection of Starters

Two Candida spp. (C. tropicalis and C. shehatae) with best amylolytic, cellulolytic and ethanol producing abilities were selected from the four Candida species obtained.

2.4. Determination of Fermentative Parameters of Selected Yeasts

Enzymes released from selected yeast were used for hydrolysis of corn and sorghum straw (10 % w/v). Each product of hydrolysis was fermented by the yeasts. Using the method of Lazarova et al. (1987), fermentative parameters of selected yeasts were determined using 10 mL needle and syringe inverted into injection bottles. Carbon dioxide productivity, volumetric ethanol productivity, theoretical alcohol recovery, actual alcohol recovery and fermentation efficiency were determined.

2.5. Processing of Substrate

Sorghum straws were collected from a farm at Kishi in Oyo State, Nigeria. The straws were oven dried at 70 oC for 2 hours and grounded into powdered using an electric blender (Philips INO23) and was sieved using 40 mm mesh. 10 % of the straw was used for fermentation.

2.6. Ethanol Production

2.6.1. Fermentation of Sorghum Straw

Yeast strains were grown in a 1 L Erlenmeyer flask that contained 700 mL of basal medium containing: NH4NO3 1.2 g; KH2PO4 0.8 g; CaCl2.2H2O 0.3 g; MgSO4.7H2O 0.3 g; FeSO4.7H2O 0.4 g; MnSO4. H2O 1.5 g; ZnSO4.7H2O 1.3 g; Tween-80 0.15 g; peptone 0.75 g; yeast extract 0.3 g; glucose 5 g and 10 % sorghum straw. The pH of the medium was adjusted to 5.5 prior to sterilization. The flask was inoculated with 5 % yeast suspension and incubated at 30 oC for 96 hours (Hashem et al., 2013). Fermented corn straw was analyzed for ethanol production at 24, 48, 72 and 96 hour.

2.6.2. Fractional Distillation

Distillation of the fermented medium was carried using 100 mL of each fermented medium which was dispensed into round-bottom flasks fixed to a distillation column enclosed in running tap water. A conical flask was fixed to the other end of the distillation column to collect the distillate. A heating mantle with temperature adjusted to 78 oC was used to heat the round bottom flask containing the fermented sample (Wakil et al., 2013).

2.6.3. Determination of Quantity of Ethanol Produced

The distillate collected over a slow heat at 78 oC was measured using a measuring cylinder, and expressed as the quantity of ethanol produced in g/L by multiplying the volume of distillate collected at 78 oC by the density of ethanol (0.8033 g/mL). Gram/L is equivalent to the yield of 100 g of dried substrate (Wakil et al., 2013).

2.7. Optimization the Fermentation Conditions of Ethanol Production

2.7.1. Effect of Substrate Concentration

Ethanol production was carried out at constant pH, incubation temperature and inoculum concentration using
various substrate concentrations (5%, 7.5%, 10% 12.5%) of sorghum straw. Samples were taken at 72 hours of incubation. Ethanol productions by yeast stains were determined as previously described.

2.7.2. Effect of Temperature

Ethanol was produced from the substrates in flasks inoculated with yeast cells. The flasks were incubated at different temperature (30, 35, 40, 45, 50 and 60 °C). Other growth conditions were constant. Ethanol productions by yeast stains were determined as previously described.

2.7.3. Effect of pH

Effect of pH on ethanol production, using the selected yeast stains, was studied by conducting experiments at different pH (4.0, 4.5, 5.0, 5.5 and 6.0) while all other parameters were kept constant. Ethanol productions by yeast stains were determined as previously described.

2.7.4. Effect of Inoculum Concentration

Effect of inoculum concentration on ethanol production by the selected yeast strains was carried out using YEPDA medium incorporated with sorghum straw. The medium was sterilized and inoculated with varying yeast suspension of 5, 7.5, 10, 12.5 and 15 %. Other growth conditions were constant. Ethanol productions by yeast stains were determined as previously described.

2.7.5. Statistical Analysis

All the experiments were performed in triplicates and the results were presented as mean ± standard deviation and were also analyzed by ANOVA using statistical software SPSS version 17.0.

3. Results

3.1. Screening of Yeasts

All the yeast strains tested positive for amylase and cellulase production by showing clear zones on starch and carboxyl methyl cellulose (CMC) agar. Candida tropicalis produced the highest halo zone (39.0 mm) followed by C. shehatae (36.0 mm), while the least was observed in C. utilis (10.0 mm) (data not shown). Result of the quantitative screening showed that the highest amylase activity was produced by C. tropicalis (319.50 U/mL) while C. utilis had the least amylase activity (136.46 U/mL). Highest cellulase activity was produced by C. tropicalis (174.67 U/mL) followed by C. shehatae (161.38 U/mL) while the least cellulase activity was observed in C. utilis (100.18 U/mL) (Table 1). Screening for ethanol production showed that C. tropicalis had the best ethanol producing ability (31.96 g/L), followed by C. shehatae (26.13 g/L) while C. krusei produced the least (13.63 g/L) (Table 1).

Two yeasts (C. tropicalis and C. shehatae), which displayed the best amylolytic, cellulolytic and ethanol producing abilities, were selected for bioethanol production in submerged fermentation.

<table>
<thead>
<tr>
<th>Yeast Isolates</th>
<th>Enzyme activity (U/mL)</th>
<th>Ethanol (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amylase</td>
<td>Cellulase</td>
</tr>
<tr>
<td>C. shehatae</td>
<td>246.63±11.76</td>
<td>161.38±23.21</td>
</tr>
<tr>
<td>C. krusei</td>
<td>171.84±80.62</td>
<td>112.31±14.98</td>
</tr>
<tr>
<td>C. utilis</td>
<td>136.46±35.64</td>
<td>100.18±9.44</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>319.50±34.63</td>
<td>174.67±24.54</td>
</tr>
</tbody>
</table>

Each value is a mean of 3 readings ± standard deviation

3.2. Measurement of Fermentative Parameters of Yeasts on Hydrolyzed Sorghum Straw Medium

Fermentative parameters (carbon dioxide productivity and volumetric ethanol productivity) of the yeasts on hydrolyzed sorghum straw are presented in Figure 1. Candida tropicalis had the highest carbon dioxide production (3.93 L/L.h) while C. shehatae had (3.81 L/L.h) (Figure 1). Maximum volumetric ethanol production was achieved by C. tropicalis (9.43 g/L.h) while C. shehatae had (9.14 g/L.h) (Figure 1). Total alcohol recovery, actual alcohol recovery and fermentation efficiency of the yeasts were presented in Table 2. The yeasts had total alcohol recovery of 4.0 %. Candida tropicalis had maximum actual alcohol recovery and fermentation efficiency of 1.68 % and 42 %, respectively, while C. shehatae had actual alcohol recovery and fermentation efficiency of 1.55 % and 39 %, respectively (Table 2).

<table>
<thead>
<tr>
<th>Yeast</th>
<th>Total Alcohol Recovery (%)</th>
<th>Actual Alcohol Recovery (%)</th>
<th>Fermentation Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. shehatae</td>
<td>4.0±0.014</td>
<td>1.55±0.025</td>
<td>39±1.52</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>4.0±0.014</td>
<td>1.68±0.015</td>
<td>42±2.08</td>
</tr>
</tbody>
</table>

Each value is a mean of 3 readings ± standard deviation

3.3. Ethanol Production from Sorghum Straw

The result, presented in Figure 2, shows production of bioethanol from sorghum straw. Volume of ethanol increased with increased fermentation time with the two yeasts. The two yeasts produced ethanol throughout the fermentation period. Ethanol production by C. tropicalis was higher than that of C. shehatae (Figure 2). Candida
C. tropicalis produced maximum quantity of ethanol (16.25 g/L) at 72 hour of fermentation while C. shehatae produced 12.50 g/L at 72 hour. Further increase in fermentation time decreased ethanol production (Figure 2). Although the two yeasts had almost the same volume of ethanol at 24 hour of fermentation, rapid bioethanol production was observed in C. tropicalis after 48 hour (8.10 – 14.80).

Figure 2. Ethanol production from sorghum straw

3.4. Optimization of Fermentation Conditions of Ethanol Production

3.4.1. Effect of Substrate Concentration on Ethanol Production

Ethanol productions at different substrate concentration of sorghum straw by the two yeasts are summarized in Figure 3. Ethanol production increased gradually with the use of 5 % to 7.5 % and thereafter declined. *Candida tropicalis* produced the highest volume of ethanol (28.65 g/L) while *C. shehatae* produced (22.08 g/L) (Figure 3). Bioethanol production with 15 % sorghum straw concentration with the two yeasts produced the least volume of ethanol.

Figure 3. Effect of substrate concentration on ethanol production

3.4.2. Effect of pH on Bioethanol Production from Sorghum Straw

Ethanol production at different pH from sorghum straw by yeast strains are shown in Figure 4, with pH 5.5 having highest yield of ethanol. Ethanol production by direct conversion with *C. tropicalis* (35.81 g/L) was the highest among the yeast strains. On the other hand *C. shehatae* produced lowest volume of ethanol (17.0 g/L) during fermentation period. Fermentation at pH 7.0 produced the least volume of bioethanol (Figure 4).

Figure 4. Effect of pH on bioethanol production from sorghum straw

3.4.3. Effect of Inoculum Concentration on Bioethanol Production

Result, presented in Figure 5, shows the effect of inoculum concentration on ethanol production from sorghum straw. Inoculum concentration of 7.5 % was observed as the optimum for ethanol production. Highest ethanol production was observed with *C. tropicalis* fermented sorghum straw (38.12 g/L) while *C. shehatae* produced least ethanol (30.32 g/L) during fermentation (Figure 5). Bioethanol production with 7.5 % inoculum concentration produced highest volume of ethanol, followed by 5 % inoculum concentration while 15 % produced the least bioethanol (Figure 5).

Figure 5. Effect of inoculum concentration on bioethanol production

3.4.4. Effect of Incubation Temperature on Bioethanol Production

Experimental data, presented in Figure 6, shows the effect of different incubation temperature ranging from 30 °C to 60 °C on bioethanol production by yeast strains grown in medium containing sorghum straw. The Figure indicates that the selected yeast strains were able to produce bioethanol from sorghum straw with all temperature. *Candida shehatae* produced the highest volume of ethanol during the fermentation (43.98 g/L) while *C. tropicalis* produced 35.1 g/L (Figure 6). Fermentation at 40 °C produced the highest volume of ethanol, followed by 35 °C while at 60 °C; *C. shehatae* produced 15.62 g/L and *C. tropicalis* produced 12.52 g/L which is the least volume of ethanol produced.
4. Discussion

Yeasts are industrially important unicellular microorganisms due to their ability to hydrolyze polysaccharide to monomers and their fermentative role in biosynthesis of ethanol. They are found everywhere and thus can be easily isolated from the environment. Candida species are used in the present study for the production of ethanol. One factor that could have been responsible for the presence of Candida spp in the environment is the nature of the yeast. Yeast, especially Candida spp are known to adapt best in high temperature and low pH (4-5). These observations are in agreement with earlier studies (Bey et al., 2011; Boonmak et al., 2011). Candida tropicalis and C. shehatae used in the present study were identical to those earlier reported by Rai et al. (2012) who identified Candida spp as yeast used for saccharification of sugar cane bagasse which shows that Candida spp are cellulolytic yeast. Idowu and Edema (2003) also identified Candida spp as cellulolytic yeasts that can digest food materials.

In this present study, all the yeast strains (C. tropicalis, C. shehatae, C. utilis and C. krusei) produced amylase, cellulase and ethanol with C. tropicalis and C. shehatae having the highest production, thus they were selected as very high ethanol producing yeast strains. These observations are in agreement with earlier studies by Limtong et al. (2012) who state that yeast species, such as Candida shehatae, Pachysolen tannophilus, Scheffersomyces (Pichia) stipites, had been reported to assimilate cellulose and ferment it to ethanol. Candida shehatae and C. tropicalis were introduced as new stains and are used to study the effect of fermentation conditions on their efficiency in ethanol production. Yeasts growth is usually accompanied with fermentation. They have been referred to as being respiro-fermentative organisms (Aranisola, 2006). Actively growing yeasts are likely to be actively fermenting. Carbon dioxide production, volumetric ethanol productivity, theoretical alcohol recovery and fermentative efficiency are important parameters to be studied in ethanol producing yeasts (Nwachukwu et al., 2006). Analysis of fermentation parameters in the fermentation of hydrolysed corn and sorghum straw showed the difference in the fermentative parameters of the yeasts. Candida tropicalis fermented sorghum straw had the highest carbon dioxide productivity and fermentation efficiency; this may be due to the yeast to easily use up sugars present in the hydrolysed sorghum straw (Tahmina and Capareda, 2011).

Yeast may be confronted with different environmental factors that can cause the loss of yeast cell viability and decreased fermentation rates (Hashem et al., 2013). Fermentation period is an important factor in ethanol production. Results from the present work show that ethanol increased gradually with increasing in incubation time with each of the yeast used: C. tropicalis and C. shehatae and reached their maximum at 72 hours of fermentation and dramatically decreased with further extension of time with each of the yeast. These findings are in agreement with those of Kurian et al. (2010) who reported that highest ethanol production by yeasts at 72 hours. Candida tropicalis was found to be better than C. shehatae. This may be due to the fact this yeast has more cellulolytic enzyme (xylose isomerase) which is responsible for the breakdown of lignocellulolytic materials to glucose (Aristidou and Penttila, 2000). Latif and Rajoka (2002) confirmed C. tropicalis as the major yeast that has enzyme xylose reductase which is responsible for the bioconversion of lignocellulolytic materials. Candida shehatae had been also recorded as naturally occurring yeast that is xylose-fermenters (Khan and Dwivedi, 2013).

Production of ethanol was affected by sorghum straw concentration between 5 and 12.5 %. Candida tropicalis gave the highest yield. Production of ethanol decreased by increasing substrate concentration above 7.5 %, this could be due to decrease in sugar utilization which results in reduction of total ethanol production (Reddy and Reddy 2006). In sorghum straw concentration could have also led to high concentration of complex sugars in the fermentation medium and this could have had a high inhibitory effect on yeast growth and their capability to produce ethanol (Wakil et al., 2013). This has been reported by Pratt-Marshall et al. (2003) who observed that the fermentation of high gravity worts has a negative effect on the yeast performance due to the elevated osmotic pressure. High substrate concentration leads to decrease ethanol production. This reduction could be due to increase in ethanol production at high sugar concentration which exerts high toxicity on yeast and the nutrients may be deficient at the final stage of the fermentation (Hashem et al., 2013). This is in agreement with the work of Kumar and Murthy (2011) who reported 6% xylose concentration for maximum ethanol productivity of Pichia stipitis, which is comparable with the present study.

Ethanol production varies with changes in physical parameters, such as temperature and pH of the production medium. The effect of initial pH of the fermentation media on ethanol production showed that the highest ethanol concentration was obtained by C. tropicalis in medium with initial pH 5.5. Any change in this parameter induces morphological changes in microbes (Bodade et al., 2010). Russell (2003) also recorded that yeast prefers an acidic pH and its optimum pH is 5.0-5.2 but brewing yeast can grow at the pH range of 3.5 to 6.0.

Inoculum concentration of 7.5 % produced the highest volume of ethanol. Although inoculum concentration is known to play a vital role in the production of microbial metabolites; however, higher concentration of cell did not
lead to improved ethanol yield. This may be attributed to substrate limitations or product inhibition and also supported by the finding of Mahoney (2003). The results of Kourkoutas et al. (2004) confirmed our results, where they observed maximum ethanol from S. cerevisiae at 10% inoculum size, whereas Anxo et al. (2008) observed the highest ethanol production by S. cerevisiae at 5.0% v/v inoculum size. Lower ethanol biosynthesis at lower inoculum size is probably due to the less cells which are insufficient to use the fermentation medium for enzyme maximal activity, while the decreased yield at higher inoculum size might probably due to nutritional imbalance caused by tremendous growth resulting in autolysis of cells (Shafei and Allam, 2010).

Fermentation temperature has a significant effect on ethanol production. Candida shehatae was observed to adapt and produced ethanol at high temperature than C. tropicalis. This may be due to the fact this yeast strain code for genes that help to tolerate high temperature. In industry, it is commonly believed that 20–35 °C is the ideal range for fermentation and at higher temperatures, almost all fermentation would be problematic (Phisalaphong et al., 2006; Aldiguer et al., 2004). However, in the present study, when the temperature was increased to 40 °C, the yeast still produced high volume of ethanol. Using a higher fermentation temperature, similar to the optimal temperature for cellulolytic activity, it may be possible for direct microbial conversion process to improve the final efficiency (Yan et al., 2012). In addition, volume of ethanol was found to decline at temperature above 40 °C, the reason might be that fermentation at higher temperature might disrupt enzyme activity and membrane function (Aldiguer et al., 2004).

A recent finding shows that approximately 35 g/L of ethanol had been produced from agricultural waste (Cutzu and Bardi, 2017), while 38.12 g/L of ethanol was produced from the present study. Conversion of lignocellulosic material into ethanol still has economic, technical and environmental obstacles, thus different feedstocks and methods should be studied to make it more feasible. Bioethanol production method has to be efficient (high energy yields), cost effective (energy return on investment) and environmentally beneficial, in order to be feasible. Also single-step production of bioethanol is economically feasible; therefore, more research and technological development are needed. As a recommendation, governmental policies are important to promote bioethanol research and make its price competitive with other sources of energy. Moreover, there should be participation of all stake holders to enhance energy security.

5. Conclusion

From the present study, it is concluded that cellulolytic yeasts (C. tropicalis and C. shehatae) can produce ethanol directly from sorghum straw using a single-step approach. These yeasts produced appropriate hydrolytic enzymes thus no external enzymes were required. The direct conversion of sorghum straw to ethanol by C. tropicalis and C. shehatae is significant in single-step production of bioethanol

References

Effect of *Solanum nigrum* Methanol Leaf Extract on Phenylhydrazine Induced Anemia in Rats

Umaru H. Aduwamai*, Moses M. Abimbola and Zailani H. Ahmed

Department of Biochemistry, School of Life Sciences Modibbo Adama University of Technology Yola, P.M.B. 2076 Adamawa State, Nigeria

Received July 4, 2017; Revised September 12, 2017; Accepted September 23, 2017

Abstract

Anemia is a global health problem affecting both developed and developing countries, characterized by low level of haemoglobin in the blood. The effect of *Solanum nigrum* methanol leaf extract on phenylhydrazine induced anemia in rats was investigated using an automatic counter. Forty-two (42) Albino rats were induced anemia through intraperitoneal injection of phenylhydrazine at 10mg/kg for 8 days. Packed cell volume was taken after some hours to ensure that the rats were anemic; those with packed cell volume less than 29% were grouped into seven groups of six rats each. Methanol extract of *Solanum nigrum* was administered at 100, 200, 300 and 400 mg/kg/body weight to groups 4, 5, 6 and 7 for three weeks orally by gastric intubation. Result obtained revealed that oral administration of *S. nigrum* methanol leaf extract to rats previously treated with phenylhydrazine significantly (*p*<0.05) increased the packed cell volume, haemoglobin, red blood cells, mean corpuscular volume, mean capsulated haemoglobin, and platelets in a dose dependent manner but decreased the white blood cells, lymphocytes and neutrophils within three weeks. Phytochemical analysis of the plant revealed the presence of alkaloids, saponins, flavonoids, phenols and tannins. The extract also contains substantial amount of vitamins A, K, B6, C, E, and folic acid. Mineral elements, such as iron, magnesium, calcium, zinc and copper, were also observed in the plant extract. Results obtained also revealed that the methanol leaf extract of *S. nigrum* exhibited strong antioxidant activity measured using 2, 2-Diphenyl-l-Picryl Hydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) assay at different concentrations of the methanol extract (20, 40, 60, 80 and 100 mg/mL). The findings of the present study suggest that *S. nigrum* methanol leaf extract contains hematonic properties thus, justifying the use of the plant in the management of anemia in north eastern Nigeria.

Keywords: Anaemia, *Solanum nigrum*, Vitamins, Mineral elements, Phytochemicals, Phenyl hydrazine, Haematological Parameters.

1. Introduction

Anemia is a medical condition in which the red blood cells count is less than normal. It is evidenced by a reduced quality or quantity of red blood cells. It is devastating effects on health, physical and mental productivity affect the quality of life and translate in to significant economic losses for individuals and for countries with high anemia prevalence (Diallo et al., 2008). Anemia is one of the world’s most widespread health problems. It affects more than one third of the world’s population. In almost all the developing countries, between one third and one-half of the females and children are anemic. The prevalence among pregnant women and children under two years of age is typically more than fifty percent (WHO, 2002).

Anemia has multiple causes categorized as poor, insufficient or abnormal red blood cells production, excessive red blood cells destruction and excessive red blood cell loss (Dacia and Lewis, 2004). According to WHO 2005, several factors are associated with anemia; these are iron deficiency, micronutrient deficiency, malaria, parasitic infestation and HIV infection.

A good number of medicinal plants are traditionally employed to alleviate anemia. Some of these plants include *Spinacia oleracea*, *Telfeira occidentallis*, *Jatropha curcas*, *Waltheria indica* and *Spondias mombin* (Luka et al., 2014; Dina et al., 2006). *Solanum nigrum* is a species in the Solanum genus, native to Eurasia and introduced in the America, Australia, and South Africa. The plant has a long history of medicinal usage, dating back to ancient Greece. Plant parts are used in traditional medicine. The juice of the plant is used on ulcers and other skin diseases. The fruits are used as a tonic, laxative, appetite stimulant, and for treating asthma and “excessive thirst.” The plant *Solanum nigrum* (black night-shade) commonly known as *kumbi* in Hausa is a widely used plant in oriental medicine where it is considered to be antitumor, antioxidant, anti-inflammatory, hepatoprotective, diuretic, and antipyretic (Jain et al., 2011). *Solanum nigrum* is also used in the

* Corresponding author. e-mail: umaruhauwa@yahoo.com.
northeastern Nigeria to treat anemia. The present study, therefore, seeks to scientifically look at the antianemic potential of *Solanum nigrum* on phenylhydrazine induced anemia.

2. Materials and Methods

2.1. Plant Material

Solanum nigrum leaf was collected in March from farm in vunoklang, Girei Local Government Area of Adamawa State and was authenticated by a Botanist in the Department of Plant Science, Modibbo Adama University of Technology, Yola. The fresh leaf sample was shade-dried for 7 days and milled into coarse powder using a manual blender. The coarse material was sieved using 0.3mm endicot test sieve to obtain a fine powder.

2.2. Preparation of Plant Extract

Powdered sample (1 kg) was extracted with 1.5 L of methanol by cold maceration for 48 h (Trease and Evans, 1989). The solvent extract was then concentrated by evaporating the solvent at 50°C using rotary evaporator and vacuum oven to obtain a dry powder.

2.3. Quantitative Analysis of Phytochemicals

The presence of alkaloids, saponins, flavonoids, total phenols and tannins were determined using the methods of Trease and Evans (1989), Harborne (1973) and Sofowora (1993); Alkaloid was determined using the method of Trease and Evans (1989); Saponin was determined using the method of Harborne (1973); Flavonoid was determined using the method of Harborne (1973); Total phenol was determined using the method of Sofowora (1993); Tannin was determined using the method of Harborne (1973).

2.4. Vitamin Analysis

Vitamin analysis was carried out for vitamin A, K, B6, C, E and Folate using the method of AOAC (2000).

2.5. Elemental Analysis

The method of AOAC (1990) was used to determine iron, magnesium, calcium, zinc and copper.

2.6. Determination of Antioxidant Activity

2.6.1. Determination of DPPH (2, 2-diphenyl-l-picryl hydrazyl)

DPPH (2,2-diphenyl-1-picryl hydrazyl) radical scavenging assay was determined using the method described by Sadasiharan et al. (2007). The free radical scavenging activity of the extract was measured by the decrease in absorbance of methanol solution of DPPH. Different concentration of the plant extracts (20, 40, 60, 80 and 100 mg/mL in methanol) was added at an equal volume (10 mL) to methanol solutions of DPPH (400 mg/mL) and incubated for 30 minutes. The absorbance was measured at 517 nm using spectrophotometer (VIS 721, PEC MEDICAL USA). A different concentration of L-ascorbic acid ((20, 40, 60, 80 and 100 mg/mL) was used as standard antioxidant. The antioxidant activity of the leaf extract was compared with L-ascorbic acid. Values obtained were converted in to percentage antioxidant activity using the equation below:

\[
\text{% DPPH antiradical scavenging capacity} = \frac{\text{absorbance of sample} - \text{Absorbance of blank} \times 100}{\text{Absorbance of blank}}
\]

2.6.2. Determination of Ferric Reducing Antioxidant Power (FRAP Assay)

Ferric Reducing Antioxidant Power (FRAP Assay) was determined using the method described by Banerjee et al. (2008). Various concentration (20, 40, 60, 80 and 100 mg/100 mL of the methanol leaf extract was mixed with 1 mL of 0.2 M sodium phosphate buffer (pH 6.6) and 1 mL of 1% potassium ferricyanide in separate test tubes. The reaction mixtures were incubated in a temperature-controlled water bath at 50°C for 20 min, followed by the addition of 1 mL of 10% trichloroacetic acid. The mixtures were then centrifuged for 10 min at room temperature. The supernatant obtained (1 mL) was added with 1 mL of de-ionized water and 200 µL of 0.1% FeCl₃. The blank was prepared in the same manner as the samples except that 1% potassium ferricyanide was replaced by distilled water. The absorbance of the reaction mixture was measured at 700 nm. L-ascorbic acid was used as standard. The reducing power was expressed as an increase in A₇₀₀ nm after blank subtraction (Banerjee et al., 2008). Percentage inhibitory activity was calculated as follows:

\[
\text{% inhibitory activity} = \frac{\text{absorbance of control} - \text{Absorbance of test} \times 100}{\text{Absorbance of control}}
\]

2.7. Experimental Animals

Forty-two male albino rats (90 ± 10 g) were obtained from National Veterinary Research Institute (NVRI) Vom, Plateau State. The animals were maintained under standard laboratory conditions and had a free access to standard finisher feeds and water for two weeks for acclimatization before the commencement of the experiments. All animal experiments were conducted in compliance with NIH guidelines for Care and Use of Laboratory Animals.

2.8. Induction of Anemia

Anemia was induced in rats by daily injection (intraperitoneally) of Phenylhydrazine (PHZ) at 10 mg/kg for 8 days (Yeshoda et al., 1942). No death was recorded. Rats that developed anemia with PCV less than 29% were recruited for the study (Agbor et al., 2005).

2.9. Experimental Design

Forty-two (42) Albino rats weighing 90 ± 10g (eight weeks old) were assigned into 7 groups (n=6) animals per group. The rats were administered different doses of the methanol extract of *S. nigrum* orally by gastric intubation daily for 3 weeks following Demo et al. (2007).
2.10. Collection of Blood Samples

At the end of the three weeks’ experimental period, the albino rats were sacrificed under chloroform. A blood sample was collected by cardiac puncture. About 3mL of blood was collected into an EDTA sample bottle for haematological assay and sample bottles labeled accordingly for all the 7 groups.

2.11. Determination of Hematological Parameters

The Red Blood Cell count (RBC), White Blood Cell count (WBC), Haemoglobin concentration (HGB), Mean Capsulated Haemoglobin (MCH), Mean Corpuscular Volume (MCV) and Platelets (PLT) were assayed using an automatic counter (Sysmex K21, Tokyo, Japan), as described by Dacie et al. (2001).

2.12. Statistical Analysis

Experimental data were analyzed using one-way analysis of variance (ANOVA) and LSD multiple range test to determine significant differences between means. The difference between the means was regarded as significant at p<0.05 and the differences of the mean was expressed using SPSS software version 23.

3. Results

3.1. Phytochemical Screening

Quantitative phytochemical screening of S. nigrum methanol leaf extract revealed the presence of alkaloids, saponins, flavonoids, total phenols and tannins. Total phenols and flavonoids were found to be highest while tannins, saponins and alkaloids were found to be lowest.

Table 1. Quantitative Phytochemical Content of Solanum nigrum Methanol Leaf Extract (mg GAE/g)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>3.70 ± 0.03</td>
</tr>
<tr>
<td>Saponins</td>
<td>3.62 ± 0.06</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>43.67 ± 1.08</td>
</tr>
<tr>
<td>Total Phenols</td>
<td>70.60 ±2.15</td>
</tr>
<tr>
<td>Tannins</td>
<td>1.89 ± 0.22</td>
</tr>
</tbody>
</table>

Values are Mean ± SD for 3 determinations

3.2. Vitamins Composition of Solanum nigrum Methanol Leaf Extract

The Vitamins composition of S. nigrum methanol leaf extract revealed the presence of high amounts of Vitamin C. The plant extract was also found to contain vitamin A, vitamin K, vitamin B₁₂, vitamin E and Folic acid in substantial quantities.

Table 2. Vitamins Composition of Solanum nigrum Methanol Leaf Extract

<table>
<thead>
<tr>
<th>Vitamins</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A (µg/100g)</td>
<td>400.66 ± 0.62</td>
</tr>
<tr>
<td>Vitamin K (µg/100g)</td>
<td>42.14 ± 0.10</td>
</tr>
<tr>
<td>Vitamin B₁₂ (Mg/100g)</td>
<td>14.23 ± 0.01</td>
</tr>
<tr>
<td>Vitamin C (Mg/100g)</td>
<td>45.18 ± 0.02</td>
</tr>
<tr>
<td>Vitamin E (IU/100g)</td>
<td>10.72 ± 0.02</td>
</tr>
<tr>
<td>Folic acid (µg/100g)</td>
<td>1100.61 ± 10.01</td>
</tr>
</tbody>
</table>

Values are mean ± SD for 3 determinations

3.3. Mineral Composition of Solanum nigrum Methanol Leaf Extract

Table 3 shows the level of some mineral elements in S. nigrum methanol leaf extract. Magnesium was found to be highest in the plant extract followed by calcium and iron while copper and zinc were found to be lowest.

Table 3. Mineral Composition of Solanum nigrum Methanol Leaf Extract in mg/100g

<table>
<thead>
<tr>
<th>Mineral Element</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>13.01±0.01</td>
</tr>
<tr>
<td>Magnesium</td>
<td>247.59±4.12</td>
</tr>
<tr>
<td>Calcium</td>
<td>17.33±0.03</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.07±0.01</td>
</tr>
<tr>
<td>Copper</td>
<td>2.12±0.12</td>
</tr>
</tbody>
</table>

All values are mean ± SD for 3 determinations

3.4. DPPH Radical Scavenging Activity Solanum nigrum Methanol Extract

The result of DPPH radical scavenging activity of the S. nigrum methanol extract is as presented in Table 4. The plant extract significantly (p<0.05) exhibited a high radical scavenging activity at the different concentrations of the plant extract (50, 100, 150, 200 and 250 mg/mL) compared to L-ascorbic acid at the same concentrations. The radical scavenging activity was also found to be dose-dependent. Significantly higher (p<0.05) radical scavenging activity was observed at the highest concentration of the plant extract (250 mg/mL) while the lowest activity was observed at 50mg/mL of plant extract.

Table 4. DPPH Radical Scavenging Activity of Solanum nigrum Methanol Leaf Extract in %

<table>
<thead>
<tr>
<th>Concentration (mg/mL)</th>
<th>Methanol Extract</th>
<th>Ascorbic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>56.00±0.65</td>
<td>42±1.01</td>
</tr>
<tr>
<td>100</td>
<td>67.53±1.42</td>
<td>58±0.26</td>
</tr>
<tr>
<td>150</td>
<td>78.24±1.32</td>
<td>65±1.13</td>
</tr>
<tr>
<td>200</td>
<td>86.92±1.68</td>
<td>72±2.15</td>
</tr>
<tr>
<td>250</td>
<td>97.08±1.20</td>
<td>81±1.92</td>
</tr>
</tbody>
</table>

All values are mean ± SD for 3 determinations. *significant (p<0.05) higher compared to ascorbic acid

GROUP TREATMENT

I Normal Control
II Experimental Control (Anemia + No treatment)
III Standard Control (feroton 10 mg/kg body weight)
IV Treatment group (100mg/kg body weight)
V Treatment group (200mg/kg body weight)
VI Treatment group (300mg/kg body weight)
VII Treatment group (400mg/kg body weight)
3.5. Ferric Reducing Antioxidant Power (FRAP) of Solanum nigrum Methanol Leaf Extract

The ferric reducing antioxidant power of S. nigrum methanol leaf extract revealed the antioxidant power of the plant extract in percentage. The antioxidant power of the plant was found to be dose-dependent. Significantly higher \(p<0.05\) antioxidant power was observed at 250 mg/mL while the least antioxidant power was observed at the lowest concentration (50 mg/mL) of both the plant extract and ascorbic acid. The ferric reducing antioxidant power of the methanol extract of S. nigrum was significantly \(p<0.05\) higher at 200 mg and 250 mg compared to the antioxidant power of ascorbic acid at the same concentration. No significant \(p<0.05\) difference was observed in the antioxidant power of the plant extract and ascorbic acid at the concentrations of 50, 100 and 150 mg/mL.

Table 5. Ferric Reducing Antioxidant Power (FRAP) of Solanum nigrum Methanol Leaf Extract in %

<table>
<thead>
<tr>
<th>Concentration (mg/mL)</th>
<th>Methanol Extract</th>
<th>Ascorbic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>39.22 ± 0.64</td>
<td>37.42±0.61</td>
</tr>
<tr>
<td>100</td>
<td>48.26±0.22</td>
<td>46.64±0.72</td>
</tr>
<tr>
<td>150</td>
<td>57.48±0.46</td>
<td>55.55±0.45</td>
</tr>
<tr>
<td>200</td>
<td>75.55±0.48 *</td>
<td>63.25±0.65</td>
</tr>
<tr>
<td>250</td>
<td>89.64±0.62 *</td>
<td>74.24±3.12</td>
</tr>
</tbody>
</table>

All values are mean ± SD for 3 determinations. *=significantly higher compared to Ascorbic acid

3.6. Effect of Solanum nigrum Methanol Leaf Extract on PCV

Table 6 shows the progressive effect of S. nigrum methanol leaf extract on PCV levels of rats in percentage. Administration of Phenylhydrazine to rat significantly reduced the PCV levels of rats. Administration of plant extract to rats revealed a dose dependent increase in PCV levels of rats compared to control. The PCV level of rats increased significantly \(p<0.05\) at 300 and 400 mg extract concentration compared to control. Results also indicate significantly \(p<0.05\) higher PCV levels in rats treated with 400 mg/kg S. nigrum (65.60±1.03 %) compared to rats treated with standard drug (59.50 ± 1.32 %).

A progressive increase in PCV levels was observed with days of treatment. A significantly higher \(p<0.05\) increase in PCV was observed at day 21 of treatment in all the groups compared to day 0. However, rats in group 6, treated with 400 mg of the plant extract, had significantly higher \(p<0.05\) PCV at day 21 compared to other groups treated with different concentrations of the plant extract.

3.7. Effect of Solanum nigrum Methanol Leaf Extract on Different Hematological Indices

Table 7 shows the effect of S. nigrum methanol leaf extract on different hematological indices. Significantly \(p<0.05\) lower values of PCV, HGB, MCV, MCH, PLT and RBC were observed in the experimental control group compared to normal rats. The result of the study showed that rats treated with 400mg/kg had significantly \(p<0.05\) lower levels of WBC count, lymphocytes and neutrophils compared to Negative control. However, an increase in HGB, MCV, MCH, platelets and RBC values was observed in a dose dependent manner compared to negative control when the extract was administered to the different groups. The PCV was significantly \(p<0.05\) higher at 400 mg/kg body weight compared to groups administered 100, 200 and 300 mg/kg body weight. Significant \(p<0.05\) increase was also observed in PCV of rats in groups 3, 4, 5, 6 and 7 compared to control group. Values for MCV, PLT and RBC were found to be significantly \(p<0.05\) higher at 400 mg of S. nigrum extract compared to the different extract concentrations administered. The levels of PCV and RBC were observed to be significantly \(p<0.05\) higher at 400 mg of the extract compared to normal rats.
Table 6. Effect of Solanum nigrum Methanol Leaf Extract on PCV Levels of Rats (%)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>DAY 0</th>
<th>DAY 7</th>
<th>DAY 14</th>
<th>DAY 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>44.83 ± 1.38</td>
<td>45.67 ± 1.20</td>
<td>46.23 ± 1.15</td>
<td>47.33 ± 1.45 b</td>
</tr>
<tr>
<td>PHZ Negative control</td>
<td>28.33 ± 0.88 a</td>
<td>30.67 ± 0.67 a*</td>
<td>31.00 ± 1.15 a*</td>
<td>36.33 ± 1.45 a*</td>
</tr>
<tr>
<td>Standard Control (feroton 10mg/kg/ body wt)</td>
<td>27.75 ± 0.25 a</td>
<td>40.00 ± 3.19 ab</td>
<td>48.00 ± 1.73 b</td>
<td>59.50 ± 1.32 b</td>
</tr>
<tr>
<td>S. nigrum 100 mg/kg/ body wt</td>
<td>28.26 ± 0.62 a</td>
<td>34.59 ± 0.46 a</td>
<td>40.38 ± 1.6 ab</td>
<td>48.20 ± 2.15 b</td>
</tr>
<tr>
<td>S. nigrum 200 mg/kg/ body wt</td>
<td>27.67 ± 0.33 a</td>
<td>36.67 ± 0.88 a</td>
<td>44.67 ± 1.86 b</td>
<td>55.30 ± 1.20 b</td>
</tr>
<tr>
<td>S. nigrum 300 mg/kg/ body wt</td>
<td>28.25 ± 0.48 a</td>
<td>39.70 ± 0.85 ab</td>
<td>50.25 ± 0.85 b</td>
<td>59.00 ± 1.29 b</td>
</tr>
<tr>
<td>S. nigrum 400 mg/kg/ body wt</td>
<td>28.40 ± 0.51 a</td>
<td>43.40 ± 1.63 b</td>
<td>53.80 ± 0.58 b</td>
<td>65.60 ± 1.03 b*</td>
</tr>
</tbody>
</table>

Values are Mean ± SEM, (n = 6). "Significantly (p<0.05) lower compared to normal, "b" Significantly (p<0.05) higher compared to different extract concentrations. Wt= body weight.

Table 7. Effect of Solanum nigrum Methanol Leaf Extract on Hematological Indices

<table>
<thead>
<tr>
<th>GROUP</th>
<th>PCV (%)</th>
<th>WBC (*10)</th>
<th>HGB (g/dl)</th>
<th>MCV (fl)</th>
<th>MCH (pg)</th>
<th>PLT (*10)</th>
<th>LYM (%)</th>
<th>NEU (%)</th>
<th>RBC (*10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>47.33 ± 1.45 a</td>
<td>11.87 ± 2.02</td>
<td>78.73 ± 0.32 a</td>
<td>30.20 ± 1.64 a</td>
<td>479.67 ± 3.84 a</td>
<td>39.00 ± 3.61</td>
<td>5.77±0.02 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHZ Negative control</td>
<td>36.33 ± 1.45 a</td>
<td>18.07 ± 0.27 a</td>
<td>74.33 ± 0.27 a</td>
<td>31.60 ± 1.27 a</td>
<td>479.30 ± 3.52 a</td>
<td>60.35 ± 0.88 a</td>
<td>3.27 ± 0.17 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard control 100 mg/kg/ body wt</td>
<td>59.50 ± 1.32 b</td>
<td>11.40 ± 0.78 b</td>
<td>74.33 ± 0.27 b</td>
<td>31.60 ± 1.27 b</td>
<td>479.30 ± 3.52 b</td>
<td>41.00 ± 0.91 b</td>
<td>7.40 ± 0.08 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. nigrum 200 mg/kg/ body wt</td>
<td>42.30 ± 2.10 a</td>
<td>14.00 ± 0.80 a</td>
<td>62.74 ± 0.44 a</td>
<td>26.43 ± 0.20 a</td>
<td>424.13 ± 2.12 a</td>
<td>45.04±1.28 a</td>
<td>57.10 ± 3.42 a</td>
<td>4.50 ± 0.30 b</td>
<td></td>
</tr>
<tr>
<td>S. nigrum 300 mg/kg/ body wt</td>
<td>55.30 ± 1.20 b</td>
<td>8.00 ± 0.10 b</td>
<td>72.87 ± 1.94 b</td>
<td>29.43 ± 0.19 b</td>
<td>454.33 ± 3.21 b</td>
<td>40.40±2.22 b</td>
<td>52.20 ± 3.93 b</td>
<td>6.50 ± 0.10 b</td>
<td></td>
</tr>
<tr>
<td>S. nigrum 400 mg/kg/ body wt</td>
<td>59.00 ± 1.29 b</td>
<td>7.93 ± 1.63 b</td>
<td>74.42 ± 2.83 b</td>
<td>30.10 ± 0.88 b</td>
<td>474.67 ± 4.25 b</td>
<td>34.25±0.75 b</td>
<td>47.67 ± 1.83 b</td>
<td>7.13 ± 1.63 b</td>
<td></td>
</tr>
</tbody>
</table>

Values are Mean ± SEM, (n = 4). "Significantly (p<0.05) lower compared to normal; "b" Significantly (p<0.05) higher compared to negative control; "b" Significantly (p<0.05) higher compared to different extracts concentration.

4. Discussion

The phytochemical analysis carried out on the methanol leaf extract of S. nigrum revealed the presence of high content phenols and flavonoids as well as alkaloids saponins and tannins. Results of phytochemical analysis seems to be in agreement with the findings of Temitope and Omotayo (2012). It has been reported that Phenylhydrazine causes oxidative damage to red cells by increasing the formation of reactive oxygen species (Clemens et al., 1984). These phytochemicals protect cells as powerful antioxidants which prevent or repair damage done to red cells by free radicals or highly reactive oxygen species. Adewoye et al. (2012) stated that some of the biological functions of flavonoids include protection against allergies, free radicals, platelet aggregation microorganisms, ulcers, hepatotoxins and tumors. The presence of these phytochemicals might have contributed to the antihäm occult activity of Solanum nigrum observed in the present study.

The vitamins content of the plant (Table 2) revealed the presence of an appreciable amount of some haemaetic vitamins, such as folic acid, vitamin A, vitamin C, vitamin K, vitamin B₆ and vitamin E. Deficiency of folic acid and other vitamins constituents in erythropoiesis has been reported to cause macrocytic, megaloblastic and pernicious anemia (Chanarin et al., 2004). These haematemic agents have been found to be effective in relieving the symptoms of anemia in pregnancy and infancy. Vitamins A and C contribute to the uptake of iron while vitamin C enhances the intestinal absorption of non- haem iron by reducing ferric ion to a ferrous form or by forming a soluble complex in the alkaline PH of the small intestine thereby increasing /enhancing iron absorption (Demodara, 2013). This probably was the reason for the observed increase in haemoglobin observed in the present study. The methanol extract of S. nigrum has contributed in the faster reversal of the phenylhydrazine induced anemia in rats treated with the extract for three weeks. A similar outcome was observed when anemic rats were treated with Tectona grandis (Diallo et al., 2008).

Table (3) shows the mineral composition of S. nigrum. Calcium and magnesium are useful in the formation of blood and intracellular and extracellular fluids of body cells. They also function as constituents of bones, teeth and in regulation of nerve and muscle function (Brody et al., 2004; Ogbe et al., 2010). The value of iron obtained in the present study (15.01±0.03 mg/100g) is higher than the values reported for some selected leafy vegetables in Nigeria. Iron is a part of the haemoglobin, myoglobin and...
contraction and blood clotting (Demo magnesium is part of the protein making machinery, involved in cell potassium loss and dehydration seen in potassium chloride co transport system was found to be nerve impulse transmission. Abnormal activation of iron in the formation of haemoglobin (Whitney and Rolfes, to ferric iron. It is necessary for the absorption and use of containing enzymes catalyze the oxidation of ferrous iron an active agent in haemoglobin synthesis. Copper oxidative stress (El-Nawawy et al. (2004) reported that zinc plays a major role in the synthesis of haemoglobin. Zinc deficiency has been associated with anemia and erythrocyte fragility. Zinc is also a cofactor for RBC-SOD thereby protecting the integrity of the cell and oxidative stress (El-Nawawy et al., 2002). Copper is also an active agent in haemoglobin synthesis. Copper containing enzymes catalyze the oxidation of ferrous iron to ferric iron. It is necessary for the absorption and use of iron in the formation of haemoglobin (Whitney and Rolfe, 2001). Potassium is necessary in the management of sickle cell anemia. It plays a major role in heart beat and assist in nerve impulse transmission. Abnormal activation of potassium chloride co transport system was found to be involved in cell potassium loss and dehydration seen in sickle cell anemia (Agoreyo and Nwaeze, 2009). While magnesium is part of the protein making machinery, together with calcium, magnesium is involved in muscle contraction and blood clotting (Demo et al., 2007).

The radical scavenging activity of the plants revealed that both DPPH and FRAP activity of the methanol extract of S. nigrum exhibited significantly higher (p< 0.05) antioxidant activity compared to L-ascorbic acid. A study by Turaaskar (2013) revealed that most anti-anemic compounds are known for their free radical scavenging activity that reverses anemic conditions. The scavenging activity of free radicals and reactive oxygen species is in a dose dependent manner with reference to DPPH and FRAP antioxidant determination. This probably is due to the presence of phytochemicals in the leaf extract. According to Lv et al. (2013), good antioxidant activities exhibited by plants extracts are due to the presence of poly-phenolic compound. Administration of the methanol extract of S. nigrum significantly (p<0.05) increased the haematological parameters in the experimental groups in a dose dependent manner. A significant increase was observed in the levels of PCV, HB, platelets, MCV, MCHC, neutrophils and RBC. A similar result was obtained by Asuquo (2013) when ethanol leaf extract of yellow mombin was administered to rats. However, a significant decrease (p<0.05) was observed in the levels of WBC, lymphocytes and neutrophils. The white blood cells, lymphocytes and neutrophils are indices of immunology of the body against infection; thus, a significant decrease was seen in these parameters when methanol leaf extract of S. nigrum was administered. Treatment with 400 mg/kg body weight was found to be more effective in ameliorating the effect of phenylhydrazine than other doses. A similar result was obtained by Vansee et al. (2004) when a curry leaf was administered to anemic rats at 400 mg/kg body weight.

5. Conclusion

In conclusion, results obtained from the present study indicate that the methanol leaf extract of S. nigrum possesses anti-anemic potentials and this may be attributed to the phytochemicals, antioxidant vitamins, such as folic acid, vitamin C, and minerals, such as iron, zinc and calcium content of S. nigrum leaf. The present study, therefore, supports the therapeutic use of the plant in the traditional medicine for the treatment of anemia.

References

Antimicrobial Activity of Endophytic Fungi from Leaves and Barks of *Litsea cubeba* Pers., a Traditionally Important Medicinal Plant of North East India

Deepanwita Deka and Dhruva Kumar Jha*

*Corresponding author. e-mail: dkjha_203@yahoo.com.

Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, Pin code: 781014, India,

Received May 23, 2017; Revised September 14, 2017; Accepted September 24, 2017

Abstract

The present research work was carried out to study the endophytic fungal flora associated with the leaves and barks of *Litsea cubeba* and antibacterial activity of the crude metabolites produced by the endophytes. *L. cubeba* is an endemic plant to Southeast Asia and is commonly known as Mezankari in Assam. A total of 12 morphologically different endophytic fungi were isolated from *L. cubeba*. *Acremonium falciforme* was the most dominant fungi that inhabited both the leaves and barks of *L. cubeba* and, respectively, had 42.41% and 31.42% relative frequency of dominance. The ethyl acetate extracts of the crude metabolites of all the isolates, showed antagonistic activity against at least one of the tested bacteria. *Acremonium falciforme* showed the highest zone of inhibition (12.3±0.50 mm) against *Staphylococcus epidermidis* (MTCC 435). The results of the present study indicated that the isolated endophytes produced bioactive compounds which might have potential application in pharmaceutical industry.

Keywords: *Acremonium falciforme*, Antimicrobial activity, Endophytic fungi, Inhibition zone, *Litsea cubeba*.

1. Introduction

Endophytes are microorganisms colonizing healthy plant tissues without causing overt symptoms or apparent injuries to the host (Bills, 1996). Since the discovery of endophytes in Darmel, Germany, in 1904, various investigators have defined endophytes differently depending on the perspective from which the endophytes were being isolated and subsequently examined (Strobel and Daisy, 2003). The most common endophytes in plants were fungi (Tayung, 2008). According to Petrini (1991) endophytes, include all those fungi that during quite a prolonged period of their life remain present in the living internal tissues of their host without producing any symptoms. Mostly Ascomycetes, Deuteromycetes and Basidiomycetes class of fungi are reported as endophytic fungi (Petrini, 1986; Dayle et al., 2001). Many genera and species of fungi belonging to first two classes could live endophytically in plants (Khan, 2007; Dissanayake et al., 2016). Fungi are a rich source of many therapeutic substances. Metabolites of endophytic *Fusarium* sp. isolated from *Selaginella pallescens*, collected from Guanacaste Conservation Area of Costa Rica, showed antifungal activity (Brady and Clardy, 2000). The secondary metabolites produced by *Guignardia* sp. was active against *Escherichia coli*, *Staphylococcus aureus*, *Saccharomyces cerevisiae*, *Geotrichum* sp. and *Penicillium hennertii*. Phomopsilactone, an antifungal compound, was isolated from *Phomopsis cassia*, an endophyte of *Cassia spectabilis* (Silva et al., 2005). Nineteen out of 73 endophytic fungi produced antimicrobial compounds that inhibited several plant and human pathogens (Tuppad and Shishupala, 2014). Katoch et al. (2014) observed that twenty-six endophytic fungi isolated from *Bacopa monnieri* possessed antimicrobial activity against *Bacillus subtilis*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Escherichia coli*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, and *Candida albicans*.

Litsea cubeba is an important medicinal plant. The fruit and leaf of *L. cubeba* produce an essential oil that primarily contains Citral and 1,8-Cineol, respectively (Ho et al., 2010). This oil exhibited cytotoxic activity against human lung, liver and oral cancer cells besides antimicrobial activity (Ho et al., 2010). It is also used as a raw material for the synthesis of Vitamin-A. In Assam, it is economically important and is widely used as a secondary food plant for the Muga silkworms (*Antheraea assamensis*), which yields valuable golden yellow muga silk fiber (“the golden fiber”). The medicinal as well as the economic importance of *Litsea cubeba* enthused us to carry out the present investigation on endophytic fungi, which has been properly explored so far as a source of noble compounds. Till now, meagre work has been done related to isolation and bioactivities of endophytic fungi
associated with *L. cubeba*. The objectives of the present work, therefore, were to isolate the endophytic fungi associated with *L. cubeba* and to investigate the antibacterial properties of their secondary crude metabolites against some important bacterial pathogens.

2. Materials and Methods

2.1. Collection of the Plant Materials

The present study was conducted in the Botanical Garden, Department of Botany, Gauhati University, Guwahati, Assam, which is located between 25°45' N to 26°25' N latitude and 91°10' E to 92°E longitudes, at an altitude of 62.0 masl. The present study was conducted between March 2012 and February 2013. Healthy leaves and barks of *L. cubeba* were collected aseptically. Three samples each from the bark and leaf totaling to six samples were collected for isolation of endophytic fungi. The samples were immediately brought to the laboratory in sterilized bags and were kept in a refrigerator at 4°C until they were processed. The materials were used for the analysis within 24 hours.

2.2. Isolation of Endophytes

Samples were washed thoroughly with distilled water, air-dried and were cut aseptically into about 2 cm long and 0.5 cm broad segments with a sterile knife and were surface-sterilized. A total of 144 segments were made from the plant, 72 each from barks and leaves for isolation of the endophytic fungi. For surface-sterilization, segments were immersed in 70% ethanol for 3 minutes and 4% aqueous solution of sodium hypochlorite for 5 minutes there after again with 70% ethanol 1 minute and 0.1% mercury chloride (HgCl₂) for 3 minutes (Bills and Polishook, 1993; Strobel, 2002). Finally, the segments were rinsed with sterile distilled water until the traces of antiseptics were washed off. The efficiency of surface sterilization was ascertained for every segment following the imprint method of Schulz et al. (1993). After surface drying under sterile conditions (Arnold et al., 2000) in laminar air flow chamber to remove the excess water, segments were inoculated in plates containing Czapek-Dox-Agar (CDA), Potato-Dextrose-Agar (PDA) media (Hi-Media, India) and media amended with bark and leaf extracts separately. Bark and leaf extracts were prepared by boiling 500 g of the plant’s bark and leaf in 250 ml of distilled water separately for 10-15 minutes (Tayung, 2008). The preparation was cooled and filtered through sterile Whatman No.1 filter paper to get the bark and leaf extracts. The medium was supplemented with streptomycin (50 µg/ml) to prevent bacterial contamination. The plates were sealed with parafilm and then incubated at 25±1°C until the mycelium appeared surrounding the segments. The plates were checked every other day continuously for 30 days. The individual fungal colonies were transferred onto other plates with PDA for pure culture and pure culture was maintained on PDA slants.

2.3. Identification of Isolates

The fungal endophytes were identified based on their morphological and reproductive characters using identification manuals of Nagamani et al. (2006) and Gilman (1950). Sporulation was induced in non-sporulating isolates by inoculating them in different media and incubating them at different temperatures for different period of time. Those without distinct morphological and reproductive characters were recorded as mycelia sterilia.

2.4. Production of Crude Metabolites

All the isolates were cultivated to produce crude metabolites according to the protocols of Phongpaichit et al. (2007). Endophytic fungal isolates were grown in 1000 ml Erlenmeyer flask containing 500 ml potato dextrose broth media and incubated at 25±1°C for 3-4 weeks under a stationary condition. The crude fermentation broth was filtered using Whatman filter paper No. 1 and the supernatant was blended thoroughly and centrifuged at 3600 rpm for 10 minutes. Finally, the crude metabolite was extracted three times with ethyl acetate and then it was concentrated to dryness by using rotary vacuum evaporator (Model: EYELA/NVC-2100) at 40°C. The resulting extracts from each isolate was diluted with Dimethyl Sulfoxide (DMSO) at a concentration of 10 µg/ml. The solution was sterilized by filtration through 0.4 µm Cellulose Acetate (hydrophilic) filter and was examined for antimicrobial activity against some bacteria.

2.5. Antibacterial Activity Assay

It was assayed by Kirby-Bauer disc diffusion method (Bauer et al., 1966). The antimicrobial activity of the crude extract was determined against two-gram negative, viz. *Escherichia coli* (MTCC 443) and *Klebsiella pneumoniae* (MTCC 619), and two-gram-positive, viz. *Bacillus subtilis* (MTCC 441) and *Staphylococcus epidermidis* (MTCC 435) bacteria. The test organisms, except for *S. epidermidis*, were collected from the Institute of Microbial Technology (IMTECH), Chandigarh, India. *S. epidermidis* was collected from Regional Institute of Medical Sciences (RIMS), Imphal, India. Prior to testing, the pathogens were cultured in Nutrient broth at 28±1°C until their growth was observed. Then, with sterile cotton-buds swabbing was done on the Nutrient Agar (NA) medium in Petri dishes using the four test bacteria, after solidification. The sterile paper disc (0.6 cm in diameter) soaked in crude extract was placed on the NA media to evaluate of antimicrobial activity. Tetracycline antibiotic discs (10 µg/disc) was used as positive control and discs immersed with DMSO were used as negative control in the experiment. The plates were incubated at 28±1°C for 4-7 days and diameter of the inhibition zone was measured. Three replicates were maintained in each case.

2.6. Data Analysis

The Colonization Frequency (CF %) of endophytic fungi was calculated using the following formula, given by Fisher and Petriini (1987):

\[
CF = \left(\frac{N_{\text{COL}}}{N_{\text{T}}^{\text{a+1}}} \times 100 \right)
\]

where, \(N_{\text{COL}}\) = Number of bark/leaf segments colonized by specific fungus; \(N_{\text{T}}\) = Total number of bark/leaf segments plated.

Frequency of dominant endophytes was calculated as percentage colony frequency divided by sum of percentage of colony frequency of all endophytes x 100 (Kumarasen and Suryanarayanan, 2002).

Similarity co-efficient (\(SC = 2w(a+b+c)\)) was calculated to compare the endophytic colonization in different organs of the plants, by using Carroll and Carroll (1978) formula.
and was expressed as a percentage, where: \(a \) = the sum of colonization frequency for all fungal species in a tissue; \(b, c \) = the similar sum for another tissue; \(w \) = the sum of lower colonization frequencies for fungal endophytes in common between the tissues.

2.7. Statistical Analysis

Standard error was calculated for the antimicrobial activity assay using Microsoft office excel 2016. One-way analysis of variance (ANOVA) was used to analyze the differences between the number of isolates of the endophytic fungi in the media amended with plant extract and un-amended medium followed by Least Significant Difference (LSD) test. P value of less than 0.05 was considered to indicate statistical significance.

3. Results

3.1. Endophytic Fungi Isolated from L. cubeba:

A total of sixty-nine isolates were obtained from healthy barks and leaves of L. cubeba. Thirty-six isolates

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Endophytic fungi</th>
<th>Total no. of isolates</th>
<th>Colonizing Frequency (%)</th>
<th>Frequency of dominant Endophytes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bark</td>
<td>1.Nigrospora sphaerica</td>
<td>10</td>
<td>13.89</td>
<td>28.56</td>
</tr>
<tr>
<td>Bark</td>
<td>2.Acremonium falciforme</td>
<td>11</td>
<td>15.28</td>
<td>31.42</td>
</tr>
<tr>
<td>Bark</td>
<td>3.Periconia hispidula</td>
<td>2</td>
<td>2.78</td>
<td>5.72</td>
</tr>
<tr>
<td>Bark</td>
<td>4.Allomyces arbuscula</td>
<td>4</td>
<td>4.17</td>
<td>8.57</td>
</tr>
<tr>
<td>Bark</td>
<td>5.Aureobasidium sp.</td>
<td>1</td>
<td>1.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Bark</td>
<td>6.Chaetomium sp.</td>
<td>1</td>
<td>2.78</td>
<td>5.72</td>
</tr>
<tr>
<td>Bark</td>
<td>7.Penicillium chrysogenum</td>
<td>2</td>
<td>1.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Bark</td>
<td>8.Mycelia sterilia (1)</td>
<td>1</td>
<td>1.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Bark</td>
<td>9.Mycelia sterilia (2)</td>
<td>1</td>
<td>1.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Bark</td>
<td>10.Mycelia sterilia (3)</td>
<td>1</td>
<td>1.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Bark</td>
<td>11.Mycelia sterilia (4)</td>
<td>2</td>
<td>2.78</td>
<td>5.72</td>
</tr>
<tr>
<td>Leaf</td>
<td>1.Nigrospora sphaerica</td>
<td>12</td>
<td>16.67</td>
<td>36.37</td>
</tr>
<tr>
<td>Leaf</td>
<td>2.Acremonium falciforme</td>
<td>14</td>
<td>19.44</td>
<td>42.41</td>
</tr>
<tr>
<td>Leaf</td>
<td>3.Allomyces arbuscula</td>
<td>3</td>
<td>1.39</td>
<td>3.03</td>
</tr>
<tr>
<td>Leaf</td>
<td>4.Penicillium chrysogenum</td>
<td>2</td>
<td>4.17</td>
<td>9.10</td>
</tr>
<tr>
<td>Leaf</td>
<td>5.Acrphialophora sp.</td>
<td>1</td>
<td>2.78</td>
<td>6.06</td>
</tr>
<tr>
<td>Leaf</td>
<td>6.Mycelia sterilia (3)</td>
<td>1</td>
<td>1.39</td>
<td>3.03</td>
</tr>
</tbody>
</table>

Table 1. Occurrence, Colonizing Frequency (%) and Frequency of dominance (%) of endophytic fungi isolated from different parts of L. cubeba.

The Colony frequency was calculated based on 72 segments of plant parts plated.

![Figure 1](image_url). Occurrence of (a) Ascomycota, (b) Chytridiomycota and (c) unidentified (sterile) fungal endophytes isolated from bark and leaf of L. cubeba using amended and unamended media. Results are expressed as Mean±SE. Isolation of the fungal endophytes (a, b and c) from bark and leaf are significantly different in media amended with plant extract from unamended media (\(p < 0.05 \)).
hispidula, specificity were isolated only from bark showing its organ sterilium (1), mycelia sterilium (2) and mycelia sterilium (4). Colonization frequency, in case of bark, was 48\% (52\% bark or leaf extracts sample segments placed in media amended either with 3.4.

Leaf and bark was 35\% for leaves (Table 1) colonized only leaf segments showing its organ specificity L. cubeba, 58 isolates were obtained from (b) medium (Figure 1) (3.2.

Acremonium falciforme used spores on Potato Dextrose Agar media than other media (3.4.

Effect of Different Media on the Growth of Endophytic Fungi

The endophytic fungi grew optimally and produced spores on Potato Dextrose Agar media than other media used. A significant difference in the number of isolates of the endophytic fungi was observed when the medium was amended with bark and leaf extracts than un-amended medium (Figure 1) (P<0.05). Out of sixty-nine fungal isolates of L. cubeba, 58 isolates were obtained from sample segments placed in media amended either with bark or leaf extracts.

Organ Specificity of Endophytic Fungi in the Host

The recovery of endophytes from the bark of L. cubeba (52.17\%) was more than that of leaf (47.83\%). The colonization frequency, in case of bark, was 48.63\%, while the same for leaf was 45.84\%. The fungi, viz. Periconia hispidula, Aureobasidium sp., Chaetomium sp., mycelia sterilium (1), mycelia sterilium (2) and mycelia sterilium (4) were isolated only from bark showing their organ specificity. Moreover, the fungus Acrophialophora sp. colonized only leaf segments showing its organ specificity for leaves (Table 1). The similarity coefficient between leaf and bark was 35.29\%.

Antimicrobial Activity of Ethyl Acetate Extracts of Crude Metabolites against Some Bacteria

Ethyl acetate extracts of crude metabolites of all the isolates were tested for antimicrobial activity against four test bacteria. Amongst all, the crude extract of Nigrospora sphaerica showed activity against all the four test microbes and it inhibited B. subtilis mostly (Table 2, Figure 4a). Acremonium falciforme showed the highest zone of inhibition of 12.3±0.50 mm diameter, against S. epidermidis (Table 2, Figure 4b).

Table 2. Zone of inhibition of crude metabolites obtained from different endophytic fungi isolated from L. cubeba against different gram-positive and gram-negative bacteria

<table>
<thead>
<tr>
<th>Zone of inhibition (mm)</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endophytic fungi</td>
<td>Se</td>
<td>Bs</td>
</tr>
<tr>
<td>Nigrospora sphaerica</td>
<td>4±0.75</td>
<td>8±0.25</td>
</tr>
<tr>
<td>Acremonium falciforme</td>
<td>12.3±0.50</td>
<td>5±0.9</td>
</tr>
<tr>
<td>Periconia hispidula</td>
<td>-</td>
<td>5±0.55</td>
</tr>
<tr>
<td>Acremonium falciforme</td>
<td>3±0.12</td>
<td>7±0.32</td>
</tr>
<tr>
<td>Acremonium falciforme</td>
<td>3±0.50</td>
<td>3.15±0.75</td>
</tr>
<tr>
<td>Chaetomium sp.</td>
<td>-</td>
<td>7±0.45</td>
</tr>
<tr>
<td>Penicillium chrysogenum</td>
<td>-</td>
<td>3±0.61</td>
</tr>
<tr>
<td>Acrophialophora sp.</td>
<td>-</td>
<td>2±0.19</td>
</tr>
<tr>
<td>Mycelia sterilium (1)</td>
<td>-</td>
<td>2±0.23</td>
</tr>
<tr>
<td>Mycelia sterilium (2)</td>
<td>-</td>
<td>3±0.32</td>
</tr>
<tr>
<td>Mycelia sterilium (3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mycelia sterilium (4)</td>
<td>2±0.12</td>
<td>3±0.29</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>18.8±0.21</td>
<td>15.0±0.19</td>
</tr>
<tr>
<td>Negative control</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Positive control: Co-assayed antibiotics (Tetracycline-30 mcg/disc). Negative control: Sterile disc (5 mm diameter) immersed in Dimethyl sulphoxide (DMSO).

Se=Staphylococcus epidermidis, Bs=Bacillus subtilis, Kp=Klebsiella pneumoniae, Ec=Escherichia coli. Data mean of three replicates ± SE.

Discussion

Litsea cubeba is of great economic importance due to its high medicinal properties. Meager work has been done on endophytes associated with L. cubeba. Over exploitation of these plants for medicinal and commercial purposes has threatened the existence of this plant. Therefore, the present work was carried out with an aim to study the endophytic fungi associated with L. cubeba so
that endophytes may be used for antimicrobial metabolites instead of plants, thus conserving the plants. The major objectives of the present work include studying the occurrence of endophytic fungi and to screen and evaluate these microorganisms for the presence of antimicrobial bioactive metabolites. The endophytic fungi were isolated from bark and leaf samples of the plant to screen organ specific endophytes regarding the host plant. Endophytes were generally not considered as organ-specific microbes and it is likely that many of the species isolated from bark may also occur in leaves (Dix et al., 1995). A similar type of study was carried out to evaluate the organ specificity of the endophytes in the host plant. The endophytic fungi viz., Nigrospora sphaerica, Acremonium falciforme, P. chrysogenum, Allomyces arbuscula were recovered both from bark and leaf samples of Litsea cubeba while some were restricted to a particular organ of the plant. The fungus Aureobasidium sp., Chaetomium sp., Periconia hispidula, and the three mycelia sterilia were isolated only from the bark throughout the study period. The fungus Acrophiaphalophora sp. was isolated only from the leaf samples. Tejesvi et al. (2005) while working on the endophytic fungi of Terminalia arjuna found that the distribution of some taxa and their density was more in inner bark segments compared to the twigs. Chareprasert et al. (2006) also recovered more endophytic fungi from leaves of Tectona grandis L. and Samanea saman Merr. Tejesvi et al. (2005) isolated Chaetomium and Penicillium from T. arjuna, a medicinal plant. Some species of endophytes, like Nigrospora sp., Penicillium sp., Chaetomium sp., Aspergillus sp. Etc., were isolated from Rauwolfia serpentina, a medicinal plant (Daleyi, 2002). Nigrospora sp., Penicillium sp., Chaetomium sp. were also isolated during the present work. Endophytic fungi, Nigrospora sphaerica, was also isolated from medicinal plants, viz. Adhatoda vasica, Costus igneus, Coleus aromaticus and Lawsonia inermis by Amirita et al. (2012). The genera Penicillium was amongst the most commonly isolated genera (Santos et al., 2003). Aureobasidium pullulans, endophytic fungi isolated from grapevine (Vitis vinifera), play a potential role as biological control agents against grapevine pathogens (Martini et al., 2009). Aureobasidium pullulans were also isolated from L. cubeba during the present work. Acremonium sp., the dominant endophytic fungi of L. cubeba of the present work, was also isolated from grass and found to be antagonistic towards several grass pathogens (White and Cole, 1985).

The culture media can affect the endophytic fungi that produce secondary metabolites. In the present experiment recovery of endophytic fungi differed in different media. The PDA media appeared as the suitable media for isolation of a large number of isolates. It might be due to the nature of carbon and nitrogen constituents of the media (Tayung, 2008). A large number of species were isolated from L. cubeba on media amended with bark and leaf extracts due to the addition of some extra nutrients through the host plant part extracts which had a positive effect on the growth of endophytes. This indicates the presence of some substances in the host plant which encourage the growth of the endophytes.

Endophytic fungi are by now recognized as a potential source of anti-microbial secondary metabolites (Strobel and Daisy, 2003; Li et al., 2005; Huang et al., 2008) that could be used for various medicinal purposes. The crude extracts of some endophytic fungi, namely Acremonium sp., Aspergillus terreus, A. flavus, Alternaria sp., showed an antimicrobial activity against pathogenic E. coli, Proteus mirabilis, S. typhi, K. pneumoniae (Kalyanasundaram et al., 2015). Nwakanma et al. (2016) studied antagonistic activity of the crude secondary metabolites of 16 different endophytic fungi isolated from leaves of Bush mango against E. coli, S. aureus, P. aeruginosa, B. subtilis, P. chrysogenum and A. fumigatus. Pinheiro et al. (2017) also found that, among seventeen endophytic fungi isolated from Bauhinia guianensis, the fungus Exserohilum rostratum showed the highest activity against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853), S. aureus (ATCC 25923), B. subtilis (ATCC6633) and S. typhimurium (ATCC14028). During the present investigation, some of the isolates of L. cubeba also showed a very good antimicrobial activity against some microbes, which are of pharmaceutical importance. Endophytic fungi isolated from L. cubeba, produced antimicrobial secondary metabolites as most of the crude extracts showed an inhibitory activity against all the test organisms. Gram-positive test bacteria (B. subtilis) was more sensitive to the crude extracts of the isolated endophytes than that of gram-negative bacteria which supported the findings of Rakshit and Sreedharamurthy (2011) and Drozem et al. (2017).

The results of the present work, thus, suggest that L. cubeba harbor some endophytic fungi producing antimicrobial secondary metabolite which may have noble compounds. These endophytes may be used as source of therapeutic agents in pharmaceutical industries. However, further investigation is needed for the characterization of these endophytes within the host plant, proper establishment of their role and chemical characterization of secondary metabolites produced by them for their future applications as bio-control and pharmaceutical agents (Dissanyake et al., 2016).

5. Conclusion

The present study reveals that a total of sixty-nine isolates, thirty-six isolates from bark and thirty-three from leaf samples, sheltered L. cubeba. These sixty-nine isolates, excluding four mycelia sterilia isolates, belonged to 8 different genera. Acremonium falciforme was the most dominant and potent endophyte showing highest antimicrobial activity against Staphylococcus epidermidis (MTCC 435). All the isolates showed antimicrobial activity against the test organisms. Thus, it can be concluded from the present investigation that endophytic fungi, isolated from L. cubeba, can be used for pharmaceutical purposes. More aggressive investigation is required to better understanding of the metabolomics and endophyte biology of L. cubeba.

Conflict of Interest
No conflicts of interest have been declared by the authors.
Funding

No funding sources are declared by the Authors.

References

Morphometric Relationships of the Tank goby *Glossogobius giuris* (Hamilton, 1822) in the Gorai River using Multi-linear Dimensions

Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Bangladesh.

Received July 24, 2017; Revised September 14, 2017; Accepted September 26, 2017

Abstract

The present study illustrates the first complete and inclusive information of morphometric relationships, including Length-Weight Relationships (LWRs) and Length-Length Relationships (LLRs), using a total of 13 linear dimensions of *Glossogobius giuris* (Hamilton, 1822) in the Gorai River, southwestern (SW) Bangladesh. Also meristic characters, including various fin-rays of the tank goby, have been studied. In total, 229 specimens of *G. giuris* were collected occasionally from the Gorai River during March 2016 to February 2017 by a variety of local fishing gears (e.g., cast, gill, and square lift net). Fin rays and scales (including lateral line scale) were counted by a magnifying glass. Different morphometric lengths were measured to 0.01 cm, and whole Body Weight (BW) was estimated ± 0.01 g for each individual. The fin formula of *G. giuris* is: dorsal, D1. VI; D2. 8–11 (II–III/8–11); pectoral, P1. 17–22 (II–VI/14–19); pelvic, P2. 10–13 (II–III/8–10); anal, A. 7–12 (II–IV/5–8); and caudal, C. 16–21 (IV–VIII/12–13), correspondingly. In the present study, Total Length (TL) varied from 4.3 to 26.9 cm and BW ranged from 0.67 to 146.55 g. All LWRs were highly significant (p < 0.0001) with r² values ≥ 0.975. Based on r² value, LWR by BW vs. TL, BW vs. SL and BW vs. PoAnL were good fitted models among 13 equations. The present study would be very valuable for species recognition and stock assessment of tank goby in the Gorai River, SW Bangladesh and in adjoining ecosystems.

Keywords: Tank goby; Fin rays; *Glossogobius giuris*; Meristic; Morphometric.

1. Introduction

The tank goby *Glossogobius giuris* (Hamilton, 1822), belonging to the family Gobiidae, is a benthopelagic, amphidromous species occurring in sea-, brackish- and fresh-waters. It is the only species of diverse genus *Glossogobius*, found in Bangladesh, locally known as Bele (Rahman, 2005), Bhaila in India, Tank goby in Malaysia, Goby in Philippine (Freose and Pauly, 2016). *G. giuris* inhabits streams, canals, ditches and ponds. This goby fish is broadly distributed in coastal and estuarine as well as fresh waters alongside the coasts of East Africa, the Red Sea and the Indian subcontinent to China (Freose and Pauly, 2016). It is very rich in protein and micronutrients and has high market value (Islam and Joadder, 2005; Islam et al., 2014). This fish is one of the dominant species in the Gorai River (SW Bangladesh); hence, it is an important capture species for small- and large- scale fishermen (Costa et al., 1999; Hossain et al., 2016). Moreover, in fisheries research, appraising the well-being of individuals as well as evaluating the life history and the morphological traits of populations of different locality greatly rely on morphometric characters (King, 2007; Hossain, 2010; Hossain et al., 2013).

To the best of our knowledge, a few studies, including morphometric and meristic characters, Length-Weight Relationships (LWRs), food and feeding habits, reproduction and breeding performance, have been conducted on this species from other habitats (Hossain et al., 2009; Mollah et al., 2012; Islam and Mollah, 2013; Hossain, 2014; Islam et al., 2014; Kaur and Rawal, 2015; Qambrani et al., 2015; Hossain et al., 2016; Saha et al., 2016); however, no sound studies on this issue, covering a large number of linear dimensions, have been conducted yet from the Gorai River. Therefore, the present study is designed to describe the morphometric and meristic characteristics of *G. giuris* systematically using large number of specimens from small to larger sizes over a study period of one year from the Gorai River (SW Bangladesh).
2. Materials and Methods

In the present study, a total of 229 individuals of *G. giuris* (Figure 1) were collected occasionally from the Gorai (distributary of Ganges River) River (Latitude: 23° 32' N; Longitude: 89° 31' E), SW Bangladesh during March 2016 to February 2017 from artisanal fishers. The samples were caught using various types of traditional fishing gears, i.e., cast net (mesh size ranges: 1.5 - 2.5 cm), gill net (mesh size ranges: 1.5–2.0 cm), and square lift net (mesh size: ~2.0 cm). The fresh samples (dead fish) were instantly chilled in ice on site and preserved with 10% buffered formalin after arrival in the laboratory.

Total Body Weight (BW) of each individual was taken using a digital electric balance with 0.01 g accuracy and different linear dimensions, i.e., lengths (Table 1 and Fig. 2) were estimated to the nearest 0.01 cm using digital slide calipers. The LWR was estimated using the equation: \(W = a \times L^b \), where \(W \) is the body weight (BW, g) and \(L \) is the 13 different lengths in cm. The regression parameters \(a \) and \(b \) were calculated by linear regression analyses based on natural logarithms: \(\ln(W) = \ln(a) + b \ln(L) \). Moreover, 95% Confidence Limit (CL) of \(a \) and \(b \) and the co-efficient of determination \(r^2 \) were estimated. Extremes outliers were removed from the regression analyses according to Froese (2006). A t-test was used to confirm whether \(b \) values obtained in the linear regressions were significantly different from the isometric \((b = 3) \) value (Sokal and Rohlf 1987).

A total of 12 LLRs were estimated by linear regression analysis (Hossain *et al.*, 2006). Best/good model for both LWRs and LLRs was selected based on the highest value of determination \(r^2 \). Total number of fin rays and scales from different body parts (including the lateral line) were counted by using magnifying glass. Statistical analyses were performed using Graph Pad Prism 6.5 software. All statistical analyses were considered significant at 5% \((p < 0.05) \).

![Figure 1. A photo of Glossogobius giuris which was collected from the Gorai River, southwestern Bangladesh](image1)

![Figure 2. Showing the morphometric measurements of Glossogobius giuris in the Gorai River, southwestern Bangladesh](image2)

Table 1. Morphometric measurements of the *Glossogobius giuris* (Hamilton, 1822) \((n = 229)\) captured from the Gorai River, southwestern Bangladesh

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Min (cm)</th>
<th>Max (cm)</th>
<th>Mean ± SD</th>
<th>95% CL</th>
<th>%TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (Total length)</td>
<td>4.3</td>
<td>26.9</td>
<td>12.803±5.893</td>
<td>12.036-13.571</td>
<td></td>
</tr>
<tr>
<td>SL (Standard length)</td>
<td>3.3</td>
<td>19.5</td>
<td>9.867±4.535</td>
<td>9.276-10.457</td>
<td>76.728</td>
</tr>
<tr>
<td>PrDL 1 (1st Pre-dorsal length)</td>
<td>1.2</td>
<td>7.8</td>
<td>3.679±1.705</td>
<td>3.457-3.901</td>
<td>37.291</td>
</tr>
<tr>
<td>PoDL 1 (1st Post-dorsal length)</td>
<td>1.5</td>
<td>10.1</td>
<td>4.810±2.226</td>
<td>4.520-5.099</td>
<td>37.401</td>
</tr>
<tr>
<td>PrDL 2 (2nd Pre-dorsal length)</td>
<td>1.9</td>
<td>11.6</td>
<td>5.658±2.594</td>
<td>5.320-5.995</td>
<td>43.996</td>
</tr>
<tr>
<td>PoDL 2 (2nd Post-dorsal length)</td>
<td>2.5</td>
<td>15.6</td>
<td>7.564±3.470</td>
<td>7.112-8.016</td>
<td>58.822</td>
</tr>
<tr>
<td>HL (Head length)</td>
<td>0.9</td>
<td>6.3</td>
<td>2.914±1.362</td>
<td>2.737-3.092</td>
<td>22.664</td>
</tr>
<tr>
<td>OprL (Opercular length)</td>
<td>0.8</td>
<td>6.2</td>
<td>2.781±1.372</td>
<td>2.602-2.959</td>
<td>21.625</td>
</tr>
<tr>
<td>PcL (Pectoral length)</td>
<td>0.9</td>
<td>6.3</td>
<td>2.964±1.410</td>
<td>2.781-3.148</td>
<td>23.051</td>
</tr>
<tr>
<td>PvL (Pelvic length)</td>
<td>1.1</td>
<td>6.4</td>
<td>3.110±1.449</td>
<td>2.922-3.299</td>
<td>24.188</td>
</tr>
<tr>
<td>AnsL (Anus length)</td>
<td>1.4</td>
<td>11.8</td>
<td>5.535±2.710</td>
<td>5.182-5.888</td>
<td>43.045</td>
</tr>
<tr>
<td>PrAnL (Pre-anal length)</td>
<td>1.9</td>
<td>12.3</td>
<td>6.000±2.766</td>
<td>5.640-6.360</td>
<td>46.658</td>
</tr>
<tr>
<td>BW (Body weight)</td>
<td>0.67*</td>
<td>146.55*</td>
<td>27.73±33.217</td>
<td>23.406-32.056</td>
<td></td>
</tr>
</tbody>
</table>

Min, minimum; Max, maximum; SD, standard deviation; CL, confidence limit for mean values; TL, total length; SL, standard length; BW, body weight; PrDL 1, 1* Pre-dorsal length; PoDL 1, 1* Post-dorsal length; PrDL 2, 2* Pre-dorsal length; PoDL 2, 2* Post-dorsal length; HL, Head length; OprL, Opercular length; PcL, Pectoral length; PvL, pelvic length; AnsL, anus length; PrAnL, pre-anal length; PoAnL, post-anal length; * weight in g.
3. Results

The body of *G. giuris* is elongated and moderately compressed, mouth oblique with prominent lower jaw and flattened head. The body color is brownish yellow with 5 to 6 dark and rounded spots on its sides. Dorsal, pectoral and caudal fins mottled with small spots where darkest spots are found along the spine of second dorsal fin. Pelvic fins united but attached to the body only from their anterior part. The morphometric measurements of *G. giuris* are shown in Figure 2.

The fin formula of *G. giuris*: dorsal, D1. VI; D2. 8 – 11 (II–III/8–11); pectoral, P1. 17 – 22 (II–VI/14–19); pelvic, P2. 10 – 13 (II–III/8–10); anal, A. 7 – 12 (II–IV/5–8); and caudal, C. 16 – 21 (IV–VIII/12–13), respectively. A completed lateral line is present. There are about 32–33 scales below the lateral line and 5.5 scales above lateral line and 6.5 scales below the lateral line. All allometric and meristic measurements are presented in Table 1 and 2, respectively. In the present study, TL was ranged from 4.3 to 26.9 cm (mean ± SD = 12.80 ± 5.89) and the BW was varied from 0.67 to 146.55g (mean ± SD = 27.73±33.217). The standard length (76.73%) contains the high percentage of TL (Table 1).

The regression parameters (*a* and *b*), with their 95% confidence intervals for LWRs, coefficients of determination (r^2) of *G. giuris*, are given in Table 2. All LWRs were highly significant ($p < 0.0001$) with r^2 values ≥ 0.975. Based on r^2 value, LWR by BW vs. TL, BW vs. SL and BW vs. PoAnL were good fitted models among the 13 equations.

Also, the LLRs are presented in Table 3 and all LLRs were also highly correlated with r^2 values ≥ 0.990. According to r^2 value, LLR by TL vs. SL; TL vs. PoDL 2; TL vs. PrAnL and TL vs. PoAnL were good fitted models among 12 equations.

Table 2. Descriptive statistics and estimated parameters of the length-weight relationships of *Glossogobius giuris* (Hamilton, 1822) (*n* = 229) from the Gorai River, southwestern Bangladesh

<table>
<thead>
<tr>
<th>Equation</th>
<th>Regression parameters</th>
<th>95% CL of a</th>
<th>95% CL of b</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW = a \times TLb</td>
<td>0.0012</td>
<td>2.910</td>
<td>0.0096-0.0102</td>
<td>2.882-2.937</td>
</tr>
<tr>
<td>BW = a \times SLb</td>
<td>0.2222</td>
<td>2.902</td>
<td>0.0209-0.0236</td>
<td>2.875-2.929</td>
</tr>
<tr>
<td>BW = a \times PrDL 1b</td>
<td>0.4168</td>
<td>2.849</td>
<td>0.3974-0.4370</td>
<td>2.812-2.886</td>
</tr>
<tr>
<td>BW = a \times PoDL 1b</td>
<td>0.1862</td>
<td>2.876</td>
<td>0.1773-0.1957</td>
<td>2.844-2.908</td>
</tr>
<tr>
<td>BW = a \times PrDL 2b</td>
<td>0.1104</td>
<td>2.907</td>
<td>0.1046-0.1165</td>
<td>2.875-2.939</td>
</tr>
<tr>
<td>BW = a \times PoDL 2b</td>
<td>0.0487</td>
<td>2.895</td>
<td>0.0460-0.0515</td>
<td>2.866-2.924</td>
</tr>
<tr>
<td>BW = a \times HLb</td>
<td>0.8289</td>
<td>2.827</td>
<td>0.7797-0.8812</td>
<td>2.770-2.885</td>
</tr>
<tr>
<td>BW = a \times OprLb</td>
<td>1.1287</td>
<td>2.672</td>
<td>1.0669-1.1941</td>
<td>2.617-2.726</td>
</tr>
<tr>
<td>BW = a \times PcLb</td>
<td>0.8422</td>
<td>2.775</td>
<td>0.7977-0.8892</td>
<td>2.725-2.825</td>
</tr>
<tr>
<td>BW = a \times PoLb</td>
<td>0.6699</td>
<td>2.853</td>
<td>0.6336-0.7082</td>
<td>2.804-2.903</td>
</tr>
<tr>
<td>BW = a \times AnLb</td>
<td>0.1747</td>
<td>2.687</td>
<td>0.1654-0.1846</td>
<td>2.654-2.720</td>
</tr>
<tr>
<td>BW = a \times PrAnLb</td>
<td>0.0998</td>
<td>2.869</td>
<td>0.0950-0.1049</td>
<td>2.841-2.897</td>
</tr>
<tr>
<td>BW = a \times PoAnLb</td>
<td>0.0529</td>
<td>2.877</td>
<td>0.050-0.0558</td>
<td>2.849-2.905</td>
</tr>
</tbody>
</table>

n, sample size; *a* and *b* are regression parameters; CL, confidence intervals for mean values; r^2, co-efficient of determination.

Table 3. The estimated parameters of the length-length relationships (*Y* = *a* + *b* \times *X*) of *Glossogobius giuris* (*n* = 229) from the Gorai River, southwestern Bangladesh

<table>
<thead>
<tr>
<th>Equation</th>
<th>Regression parameters</th>
<th>95% CL of a</th>
<th>95% CL of b</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL = a + b \times SL</td>
<td>0.0003</td>
<td>1.298</td>
<td>-0.0976 to 0.0982</td>
<td>1.289-1.307</td>
</tr>
<tr>
<td>TL = a + b \times PrDL 1</td>
<td>0.1166</td>
<td>3.448</td>
<td>-0.0095 to 0.243</td>
<td>3.417-3.479</td>
</tr>
<tr>
<td>TL = a + b \times PoDL 1</td>
<td>0.0947</td>
<td>2.642</td>
<td>-0.0231 to 0.2126</td>
<td>2.620-2.665</td>
</tr>
<tr>
<td>TL = a + b \times PrDL 2</td>
<td>-0.0232</td>
<td>2.267</td>
<td>-0.1392 to 0.0927</td>
<td>2.249-2.86</td>
</tr>
<tr>
<td>TL = a + b \times PoDL 2</td>
<td>-0.0217</td>
<td>1.696</td>
<td>-0.1249 to 0.0814</td>
<td>1.683-1.708</td>
</tr>
<tr>
<td>TL = a + b \times HL</td>
<td>0.2509</td>
<td>4.307</td>
<td>0.0714-0.4305</td>
<td>4.251-4.363</td>
</tr>
<tr>
<td>TL = a + b \times OprL</td>
<td>0.9208</td>
<td>4.273</td>
<td>0.7457-1.0959</td>
<td>4.217-4.330</td>
</tr>
<tr>
<td>TL = a + b \times PcL</td>
<td>0.4735</td>
<td>4.160</td>
<td>0.2988-0.6483</td>
<td>4.106-4.213</td>
</tr>
<tr>
<td>TL = a + b \times PoL</td>
<td>0.2190</td>
<td>4.046</td>
<td>0.0365-0.4015</td>
<td>3.993-4.0990</td>
</tr>
<tr>
<td>TL = a + b \times AnL</td>
<td>0.7912</td>
<td>2.170</td>
<td>0.6831-0.8994</td>
<td>2.153-2.188</td>
</tr>
<tr>
<td>TL = a + b \times PrAnL</td>
<td>0.0415</td>
<td>2.127</td>
<td>-0.0612 to 0.1442</td>
<td>2.111-2.143</td>
</tr>
<tr>
<td>TL = a + b \times PoAnL</td>
<td>0.0618</td>
<td>1.711</td>
<td>-0.0381 to 0.1616</td>
<td>1.698-1.723</td>
</tr>
</tbody>
</table>

SL, standard length; PrDL 1,1st Pre-dorsal length; PoDL 1,1st Post-dorsal length; PrDL 2, 2nd Pre-dorsal length; PoDL 2, 2nd Post-dorsal length; HL, Head length; OprL, Opercular length; PcL, Pectoral length; PoL, pelvic length; AnL, anus length; PrAnL, pre-anal length; PoAnL, post-anal length; *a*, intercept; *b*, slope; CL, confidence limit for mean values; r^2, co-efficient of determination.
4. Discussion

The present study illustrates the first complete information on morphometric (LWRs and LLRs) and meristic characteristics of *G. giuris* from the Gorai River, southwestern Bangladesh. In this study, a total of 229 individuals from small to larger body sizes were used; however, it was not possible to collect *G. giuris* smaller than 4.3 cm TL, which can be attributed to the fishermen failed to catch the smaller size or selectivity of fishing gears (Hossain et al., 2012; Hossain et al., 2016a, b). In the present study, the maximum length was found 26.9 cm TL, which is quite close to the study of Talwar and Jhingran, 1991 (30 cm) but lower than the maximum recorded value of 50.0 cm SL (Eccles, 1992). The absence of maximum sizes of *G. giuris* in the Gorai River might be due to either the absence of larger-sized individuals in the populations in the fishing grounds (Hossain et al., 2016c, d; 2017) or fishermen did not go where the larger size exist. Indeed, maximum length is a helpful fool to estimate the growth parameters (i.e., asymptotic length, growth coefficient), thereby important for fisheries resource planning and management (Ahmed et al., 2012; Hossain, 2016b, 2017).

The allometric co-efficient (b) values of LWRs may vary between 2.0 and 4.0 (Carlander, 1969); however, values ranging from 2.5 to 3.5 are more common (Froese, 2006). In the present study, most of the b values were within the limit (2.67–2.91) indicating negative allometric growth pattern for *G. giuris* in the Gorai River, SW Bangladesh which was dissimilar with Hossain et al. (2009) (b=3.07-3.09). However, the b values may vary in the same species due to the amalgamation of one or more factors including variations of growth in different body parts, sex, physiology, preservation methods and differences in the observed length ranges of the specimens collected (Tesch, 1971; Hossen et al., 2016; Hossain et al., 2015; 2017, Naver et al., 2017), which were excluded during the present study. In addition, all LLRs were highly correlated, which is not in accordance with Hossain et al. (2009). However, the present study found the best/good model among equations using a number of different lengths based on coefficient of determination, which would be very effective for comparison with any future studies. In the present study, 6 fin rays in 1st dorsal fin and 8–11 in 2nd dorsal fin, 17–22 pectoral fin rays, 10–12 rays in attached pelvic fin, 7–12 anal fin rays and 16–21 caudal fin rays were observed, which was more or less similar with the studies done by Talwar and Jhingran (1991) and Rahman (2005). Besides, we found a total of 32-33 scales in lateral line, which is in agreement with Rahman (2005).

In conclusion, these findings would be a helpful tool for taxonomists to recognize *G. giuris* and for fishery managers' biologists to instigate the stock assessment of the remaining stocks of this species in the Gorai River, SW Bangladesh and other subtropical countries. Also, these results will impart an important baseline for future studies within the Gorai River and surrounding ecosystems.

Acknowledgement

The authors would like to extend their sincere appreciation to (i) TWAS for research grants (Ref: RGA No. 14-028 RG/BIO/AS 1; UNESCO FR: 324028574), (ii) BARC, PIU, NATP-2, Sub-project ID: 484 for technical (usage of equipments) supports. The present study is part of the research for M. Phil degree of the senior author M.A.K. Azad.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of the present paper.

References

Costa T, Begum A and Alam SMN. 1999. From exclusion to collective ownership: A case study of user-group representatives in fisheries management in Bangladesh. Caritas and Department of Fisheries (DoF), Bangladesh.

Hossain MY, Hossen MA, Khairun Y, Bahkali AH and Elgorban AM. 2016a. Length-weight relationships of *Dermogenys pusilla*...
Parvin MF and Rahman MM. 2016. Morphological Characters of from the river Padma.

Islam MN and Joadder MAR. 2005. Seasonal variation of the proximate composition of freshwater gobi, G. giuris (Hamilton) from the river Padma.

Lactobacillus rhamnosus Ability of Aflatoxin Detoxification

Nizar I. Alrabadi¹,* , Essa M. Al-Jubury², Karkaz M. Thalij³ and Jadoo M. Hajeej³

¹Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jordan
² College of Pharmacology, ¹ Food Science Department, College of Agriculture, Tikrit University, Tikrit, Iraq

Received May 23, 2017; Revised September 26, 2017; Accepted October 5, 2017

Abstract

The present study was conducted to isolate and identify Lactobacillus rhamnosus from locally fermented dairy products collected from different markets in Irbid city, Jordan. Thereafter, the ability of Lb. rhamnosus to detoxify aflatoxins (AFs) was investigated in vitro after incubation on 37°C in MRS medium and in artificial intestine fluid (AIF). Three Lb. rhamnosus out of nine different species of Lactic Acid Bacteria (LAB) isolated from 15 fermented dairy products samples were identified. The isolates were characterized based on their morphological, microscopic, cultural and biochemical properties. The selection of isolates as probiotics depended on their abilities to grow in pH levels between 2 to 6 and their tolerance to grow at 1.0 % bile salts concentrations. Furthermore, Lb. rhamnosus was able to adhere to mucus onto the intestine surface at 54.7%. The ability of Lb. rhamnosus of AFs detoxification has significantly (p<0.05) increased with the increase in incubation periods, and the detoxification percentage after 72h incubation in each MRS medium and AIF, was 76% and 81.6%, respectively.

Keywords: Lb. rhamnosus, Aflatoxins, Probiotics, Detoxifications.

1. Introduction

Mycotoxins are secondary metabolites of molds that contaminate over 25% of the human food (Moss, 2002). They have been found in homes, agricultural settings and food; they could be able to cause different human health problems, because they have wide toxic effects, ranging from short-term mucous membrane irritation to damaging the internal organ, depression of the immune system and cancer (Williams, 2004; Mohamad et al., 2015). Almost the diseases related to causes by mycotoxins were related to consuming contaminated food (Hussein et al., 2015). The most important kind of mycotoxin is the aflatoxins group which include aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) and the metabolites. These aflatoxins were well-characterized biologically and toxicologically (Wagacha and Muthoni, 2008). Aflatoxins are among the most potent mutagenic and carcinogenic substances. They were classified by the International Agency for Research on Cancer (IARC) as a Class 1 human carcinogen (IARC, 2002). They are associated with many chronic health risks, including the induction of cancer, immune suppression, digestive, blood and nerve defects (Bryden, 2007).

Aspergillus flavus and A. parasiticus are capable of colonizing a wide variety of food commodities including maize, oilsseeds, spices, groundnuts, tree nuts, milk, and dried fruit (Thalij et al., 2015). Ability of these fungi to produce aflatoxins depends on multiple climate factors, such as drought stress, rainfall, suitability of crop genotype, insect damage, and agricultural process (Mohammed et al., 2005; Wu and Khlangwiset, 2010). These foods were the main sources of human exposure to aflatoxin because they are so highly consumed worldwide and unfortunately they are also the most susceptible crops to aflatoxins contamination (Thalij et al., 2015).

Various physical and chemical methods have been developed to decrease the aflatoxins toxicity, but these methods have many limitations, such as loss of nutrition products, organoleptic qualities, undesirable health effects and high cost of equipment (Hussein et al., 2014). These disadvantages have stimulated recent prominence on biological methods of degradation of aflatoxins (Basappa and Shantha, 1996).

Lactobacillus is a broad genus from Lactic Acid Bacteria (LAB) characterized by formation of lactic acid as a major metabolites product of carbohydrate utilization. It is a genus of gram-positive, non-spore-forming, microaerophilic and some other characteristics (Satokari et al., 2003). LAB are common and usually being inhabitants of the GI and the vagina in the bodies of humans and animals (Hammes and Vogel, 1995).

Several publications have reported in vitro ability of binding by LAB and some species of yeast with mycotoxins, such as aflatoxin B1 (Hernandez-Mendoza et al., 2009; Hernandez-Mendoza et al., 2010). Some species of LAB were reported to be the strongest binder of aflatoxin (Fazeli et al., 2009). The interaction was influenced by the peptidoglycan structure and, more
accurately, by its amino acid composition (Niderkorn et al., 2009). The LAB, which have been used as probiotics, were considered potential mycotoxin decontaminating microorganisms because of their ability to bind these toxic metabolites (Hernandez-Mendoza et al., 2010).

The objectives of the present study are to investigate the ability of *Lb. rhamnosus* isolated from local fermented dairy products to degrade AFs produced by *A. parasiticus* after incubation in MRS medium and AIF.

2. Materials and Methods

2.1. Lactobacillus rhamnosus Isolation and Identification

Lactobacillus rhamnosus isolation was conducted from Locally Dairy Fermented (LDF) samples that were collected from different markets in Irbid city in Jordan. Fifty mL of each LDF sample were mixed with 10 mL of MRS broth medium (Oxoid, UK) and incubated statically under aerobic conditions at 37 °C for 48 h. The last two series of dilution mixture of each sample were spread on MRS agar plates supplemented with 1.1 mM bromocresol purple, and incubated anaerobically at 37 °C for up to 48 h, (Sujaya et al., 2001). Single yellow colonies were selected randomly from the MRS agar plates, then transferred into test tubes containing 10 mL of MRS broth, and incubated at 37 °C for 24 h under aerobic conditions. The pure colony isolates were streaked onto MRS agar plates. The isolated bacterium was examined by comparing its bacterial colony and cell morphology, gram staining properties, acid and gas production from different carbohydrates as carbon sources. Fermentation was observed after incubation for 24 and 48 h anaerobically at 30 °C and 37 °C. In addition, identification was completed using other biochemical profiles and combined with the descriptions contained in Bergey’s Manual of Systematic Bacteriology (Kandler et al., 1986). The bacteria were maintained by routine subculture at 4 °C in slant tubes with MRS agar for further investigation (Kozaki et al., 1992).

2.2. Tolerance Ability of Lb. rhamnosus to Low pH Values

Five mL of MRS medium tubes were adjusted to pH levels at 2, 3, 4, 5 and 6 using optimal amount from artificial gastric juice. *Lb. rhamnosus* cells were pre-cultured in 5mL of MRS broth at 37°C for 24 h under aerobic conditions, then a 1mL of aliquot of the culture broth was harvested by centrifugation at 15000 g for 5 min and washed twice with PBS. The bacterial cells were suspended in 100 μL of PBS and incubated with 5mL of MRS broth medium at various pHs levels at 37 °C for 3 h under aerobic conditions. After incubation, 50 μL of the culture broth were appropriately diluted with PBS then streaked on MRS agar plates. Viable cells were counted after anaerobic incubation at 37 °C for 48 h (Sultana et al., 2000).

2.3. Tolerance Ability of Lb. rhamnosus to Bile Salts

This test was performed by inoculating 100 μL of bacterial cells pre-cultured at 37 °C for 24 h in 5mL of MRS broth containing bile salts (BDH, UK) at 0.3, 0.5 and 1% and then incubated at 37 °C for 4 h under aerobic conditions. Viable cells were counted as described by Deshpande et al. (2014).

2.4. Adhesion Properties of Lb. rhamnosus

The adhesion assay, to screen the ability of *Lb. rhamnosus* bacteria to adhere to cells, was performed using the Adhesion Index (AI) (Gratz et al., 2004). The assay procedure was completed according to Lee et al. (2003).

2.5. Aflatoxin Production

The aflatoxin was produced from *Aspergillus parasiticus* NRRL 2999 which was obtained from College of Agricultural Tikrit University, Laboratory of Food Science Department. Then, an assurance of mold strains was done on the basis of morphological characteristics using Scotch tape preparation and cultural characteristics after cultivation on malt extract agar and potato dextrose agar, according to (Sammonson et al., 1992). Thereafter, a fermentation of rice was done by the method of Boller and Schroeder (1973). Successfully fermented rice was then steamed to kill the fungus, dried and ground to a fine powder. The aflatoxin content in rice powder was measured by ELISA as follows.

2.6. Aflatoxin Assay

Aflatoxin extraction was performed according to Kawamura et al. (1988). An aliquot of each rice fermented at 2 g was shaken for 10 min at 150 rpm with 10 mL methanol: water (70:30, v/v). The crude extract was then filtered through Whatman No. 1 and diluted in PBST (PBS + 0.05% Tween 20) for intracellular (ic-ELISA) determination.

Aflatoxins were determined by a monoclonal antibody-based ic-ELISA using Aflatoxin ELISA Test Kits (Shenzhen Lvshiyuan Biotechnology Co., Ltd. Guangdong, China) sensitivity: 0.1ppb and as the product protocol procedure. This test kit was based on the competitive enzyme immunoassay for the qualitative-quantitative detection of Aflatoxins in the rice. The coupling antigen was pre-coated on the micro well strips. The AFs in the sample and the coupling antigens pre-coated on the micro-well strips compete for anti-Aflatoxin antibodies. After the addition of the enzyme conjugate, the TMB substrate was added for coloration. The Optical Density (OD) value of the testing sample has a negative correlation with the AF concentration in the sample. This value was compared to the standard curve and the AF concentration was subsequently obtained. The average absorbance was calculated from the individual absorbance obtained from triplicate wells and the results were expressed as percentage of binding. This ELISA procedure was completed according the description guide from the manufacturing company (Shenzhen Lvshiyuan Biotechnology Co., Ltd. Guangdong, China).

2.7. Assessing the Ability of Lb. rhamnosus to Detoxify AFs

Lb. rhamnosus was activated in MRS broth at 37°C for 24 h., and viable counts (approximately 1.5 ×10⁶ cfu/ml) were calculated by McFarland procedure (Winn et al., 2006). One ml of activated culture was inoculated into 100 mL of fresh MRS broth. Aflatoxin was added to make the mixtures containing 2.5μg/mL of aflatoxin. MRS broth containing aflatoxins was used as a control and was not inoculated with activated culture. Each mixture was incubated at 37°C for 72 h., with shaking at 150 r/min. At 0, 24, 48, and 72 h of fermentation, 5 mL of fermented
broth was taken out and centrifuged (14,000×g, 10 min, at 4°C) with ultra-centrifuge (Sigma-Aldrich), supernatant fluid was filtered through 0.22-μm filter twice and kept at 4°C before it was analyzed for aflatoxins content (Niderkorn et al., 2006).

2.8. Assessment of Lb. rhamnosus Ability to Detoxify AFs in Artificial Intestinal Fluids

The ability of Lb. rhamnosus to detoxify AFs against simulated intestinal fluids was tested as described by Fernandez et al. (2003), with some modifications. One ml of 24 h, culture-broth was harvested by centrifugation at 14000 g for 5 min at 4 °C, washed with sterilized PBS, and suspended in 100 ml of PBS. The cell suspension was added to 90 ml of AIF (RICCA CHEMICAL COMPANY, USA). The bacterial suspensions were incubated at 37 °C for up to 72 h, with agitation at 160 rpm. Fifty ml of the Aliquots of the mixture were taken at each 0, 12, 24, 36, 48, 60 and 72 h., of incubation, and were used for an appropriate dilution then they were streaked on MRS agar plates (in triplicates) and were incubated at 37 °C for 48 h., under anaerobic conditions, followed by counting of viable cells.

Another amount of 50 ml from suspension, at different incubation periods, was used to detect the AFs contents after extraction according to Kawamura et al. (1988). The suspension was shaken for 10 min at 150 rpm with 10 ml methanol: Water (70:30,v/v). The crude extract was then filtered through Whatman No.1 and was diluted in PBST (PBS+0.05% Tween 20) for ic-ELISA determination. Aflatoxins were determined by a monoclonal antibody-based ic-ELISA using Aflatoxin ELISA Test Kits (Shenzhen Lvshiyuan Biotechnology Co., Ltd. Guangdong, China) and the procedures were completed according to the same steps mentioned above.

2.9. Statistical Analysis

Data were analyzed by the ANOVA analysis, using the general linear model of the Statistical Analysis System (SAS Institute, 2001). Significant treatment differences were evaluated using Duncan’s multiple-range test (Duncan, 1955). All statements of significance are based on the 0.05 level of probability.

3. Results and Discussion

3.1. Isolation and Identification of Lb. rhamnosus

Isolation of the Lb. rhamnosus from the fermented dairy products was carried out using the morphological characteristics, after cultivation on MRS media. The growth on these media has been observed because it contained all nutrients needed to grow well. The colony appeared as restricted and in a pale yellow color in central of pellucid zone for each species.

Nine pure isolates were primarily assigned as different lactobacilli species. Since they appeared as Gram-positive, rods shapes were straight and they were cultivated on MRS- CaCO₃ in an aerobic environment and showed ability to utilize the CaCO₃. Moreover, they were catalase negative and unable to produce NH₃ from arginine (Gilliland, 1990).

The assurance diagnosis process for species level was completed with biochemical test after obtaining subcultures of pure colonies from each isolate on MRS media. Three isolates out of nine appeared as hetero-fermentative and gas producing, they were tentatively identified as Lb. rhamnosus (Tables 1). Also, Lb. rhamnosus differed from some other lactobacillus spp. in its capability to grow in pH range from 2 to 6, and at 25 to 45 °C while it was not able to grow at 10 °C. In addition, the isolates were capable of fermenting all carbohydrates when used as carbon sources, excepted D-arabinose and D-xylene. On the other hand, the other Lactobacillus spp. had a different fermentation action.

These results of biochemical tests of Lb. rhamnosus were in agreement with accurate data found in Berge's Manual Guide at Holt et al. (1994).

Table 1. Characteristics tests of Lb. rhamnosus

<table>
<thead>
<tr>
<th>Phenotypic, cultures and biochemical tests characteristics</th>
<th>Lb. rhamnosus</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape of colony</td>
<td>appearance on MRS agar is pale yellow</td>
</tr>
<tr>
<td>Shape under microscope</td>
<td>Rods, usually straight</td>
</tr>
<tr>
<td>Gram stain reaction</td>
<td>+</td>
</tr>
<tr>
<td>Catalase activity</td>
<td>-</td>
</tr>
<tr>
<td>CO₂ from glucose</td>
<td>-</td>
</tr>
<tr>
<td>NH₃ from arginine</td>
<td>-</td>
</tr>
<tr>
<td>Growth at pH</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>+</td>
</tr>
<tr>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>4.0</td>
<td>+</td>
</tr>
<tr>
<td>5.0</td>
<td>+</td>
</tr>
<tr>
<td>6.0</td>
<td>+</td>
</tr>
<tr>
<td>Growth at Temp. °C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>+</td>
</tr>
<tr>
<td>40</td>
<td>+</td>
</tr>
<tr>
<td>45</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugar fermentation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D-arabinose</td>
<td>-</td>
</tr>
<tr>
<td>D-ribose</td>
<td>+</td>
</tr>
<tr>
<td>D-xylene</td>
<td>±</td>
</tr>
<tr>
<td>D-galactose</td>
<td>+</td>
</tr>
<tr>
<td>D-mannose</td>
<td>+</td>
</tr>
<tr>
<td>D-mal-tose</td>
<td>+</td>
</tr>
<tr>
<td>D-lactose</td>
<td>+</td>
</tr>
<tr>
<td>D-glucose</td>
<td>+</td>
</tr>
<tr>
<td>D-sorbitone</td>
<td>-</td>
</tr>
<tr>
<td>L-rhamnose</td>
<td>+</td>
</tr>
<tr>
<td>D-turanose</td>
<td>+</td>
</tr>
</tbody>
</table>

+, positive; —, negative; ±, undetermined

3.2. Parameters for Probiotics Characteristics

Optimal bacterial species, which were selected as probiotics, should have many characteristics, such as the ability to grow in stomach acidity, the resistance to bile salts and the capability to adhere to intestine epithelial cells.

The tolerance of Lb. rhamnosus to different pH levels after cultivation on MRS medium at 37 °C for 48 h is illustrated in Table 2. The Lb. rhamnosus showed an ability to grow in pH levels between 2 to 6. These results were in agreement with another study by Ali (2011) who found the same results for some lactic acid bacteria. The LAB tolerance to the acidic environment may indicate that they contain lipoteichoic acid and hydrophobic amino acids in S-layer proteins of cell wall of these bacteria (Frece et al., 2005). The tolerance of Lb. rhamnosus to different bile salts concentrations appeared important to
evaluate the bacterial species to be used as probiotics especially in cases of oral intake by the organisms.

Lb. rhamnosus showed an ability to survive at certain bile salts concentrations (Morelli, 2000). The results in Table 2 indicate that the *Lb. rhamnosus* were able to grow at 0.3 to 1.0% bile salts concentrations.

This result was in harmony with that of Shi *et al.* (2012) who found that *Lb. rhamnosus* was able to grow in 0.3 to 1.0% of bile salts. Generally, the LAB, which were capable of growing with bile acids, were found to contain the bile salts hydrolase which function by stimulating the fraction of bile salts conjugated with glycine or taurine amino acids for carrying out the non-conjugated bile salts, which in turn is described as less dissolving and exerting with feces, and replacing with other new bile salts through manufacturing in liver from cholesterol. These results were in agreement with Aries and Hill (1970).

The ability of *Lb. rhamnosus* cells to adhere to rats' intestine mucus surface was illustrated in Figure 1. The results indicated that the *Lb. rhamnosus* was able to adhere at 54.7%. The adhesion ability was the essential characteristic for using *Lb. rhamnosus* as probiotics. The capability of adhesion refers to the S-layer protein in the cell wall, the protein percentage in this layer was 10 to 15% from total proteins the cell contains (Bezkorovainy, 2001).

Table 2. Tolerances Ability of *Lb. rhamnosus* to different levels of pH and bile salts

<table>
<thead>
<tr>
<th>LAB Species</th>
<th>pH levels</th>
<th>Bile salts concentrations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

+: positive reactions - : negative reaction

Figure 1. Adhesion Ability of *Lb. rhamnosus* with intestine cells

3.3 *Lb. rhamnosus* Ability of AFs Detoxification

The *Lb. rhamnosus* Ability of AFs Detoxification after 72 h. of incubation in MRS media was summarized in Table 3. The results showed that adding AFs to MRS media without inoculation of *Lb. rhamnosus* caused an insignificant change (p<0.05) in AFs concentrations through the incubation periods from 0 to 72 h. On the other hand, the incubation of MRS medium that contains AFs with *Lb. rhamnosus* caused a significant decrease in the AFs concentration, this happened with 0, 24, 48 and 72 h., at 2.5, 1.9, 1.2 and 0.6µg/mL, respectively, and the detoxification percentage was at 0.0, 25, 52 and 76%, respectively.

The results showed that the *Lb. rhamnosus* have the ability to degrade AFs contents in medium, and this degradable activity increased with the increase of incubation periods of *Lb. rhamnosus* with AFs.

Table 3. *Lb. rhamnosus* Ability of AFs Detoxification

<table>
<thead>
<tr>
<th>Incubation periods (hours)</th>
<th>AF Concentration (µg/ml) in</th>
<th>Detoxification percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AFs in MRS</td>
<td>AFs + Lb. rhamnosus</td>
</tr>
<tr>
<td>0</td>
<td>2.5±0.04</td>
<td>2.5±0.04</td>
</tr>
<tr>
<td>24</td>
<td>2.3±0.06</td>
<td>1.9±0.06</td>
</tr>
<tr>
<td>48</td>
<td>2.5±0.06</td>
<td>1.2±0.06</td>
</tr>
<tr>
<td>72</td>
<td>2.4±0.02</td>
<td>0.6±0.02</td>
</tr>
</tbody>
</table>

a-d: Values within columns followed by different letters for different significance levels at 0.05.

The ability of degradation of AFs concentrations at 2.5 µg/mL in artificial intestine fluid during incubation with *Lb. rhamnosus* at 37°C with different period times from zero to 72 h are shown in Table 4. The *Lb. rhamnosus* counts have significantly (p<0.05) increased with the increase in the incubation periods to 72 h and the maximum count was at 48 h of incubation. The AFs concentration in the artificial intestine fluid was significantly removed by the *Lb. rhamnosus* fermentation in artificial intestine fluid and with the 0, 12, 24, 36, 48, 60 and 72 h of incubation and at 2.46, 2.24, 1.86, 1.27, 1.02, 0.74 and 0.46 ng/mL, respectively. The AFs detoxification percentage at 72 h of incubation was 81.6%. The Mechanism of the AFs removal is shown in Tables 3 and 4. The AFs were bound by *Lb. rhamnosus* in each liquid medium and artificial intestine fluid was assayed at toxin concentration. The mechanism of aflatoxins detoxification by *Lb. rhamnosus* occurs by the interaction between ingredients of its cell wall with aflatoxins. The nature of binding is poorly understood till this moment; it also differs according to the types of ingredients. The binding between aflatoxins and bacterial cell wall ingredients modifies aflatoxins structures and gets a new structure form. The binding of *Lb. rhamnosus* and some other LAB species with all types of aflatoxins were conducted by Haskard *et al.* (2000). The cell wall peptidoglycans of LAB was found by Teniola *et al.* (2005) as responsible for AFs removal. On the other hand, Niderkorn *et al.* (2009) reported that treatments affecting bacterial wall polysaccharides, lipids and proteins caused an increase in the binding with AFs, while those degrading peptidoglycan partially decreased.
Table 4. *Lb. rhamnosus* Ability of AFs Detoxification in artificial intestine fluid.

<table>
<thead>
<tr>
<th>Test types</th>
<th>Incubation periods (h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Lb. rhamnosus accounts (CFU/mL)</td>
<td>8.17±0.72</td>
</tr>
<tr>
<td>AFs concentration (ng/mL)</td>
<td>2.46±0.05</td>
</tr>
<tr>
<td>AFs detoxification (%)</td>
<td>1.65±0.08</td>
</tr>
</tbody>
</table>

a-d: Values within rows followed by different letters for different significance levels at 0.05.

4. Conclusion

The present study investigated the ability of *Lactobacillus rhamnosus* to detoxify aflatoxins. It was isolated from locally fermented dairy products and identified by morphological, microscopic, cultural and biochemical characteristics. The results indicated the high ability of *Lactobacillus rhamnosus* in detoxifying aflatoxins. This ability increased with the increase of incubation periods. These findings are important to food industry and public health; thus, aflatoxin is believed to possess high toxicity among various types of secondary metabolites produced by a larger number of *Aspergillus* spp. Many foods, such as grains (corn, sorghum, and millet), peanuts, beans, and nuts (almonds, pistachios, etc.), may support the growth of *Aspergillus*, and may be contaminated with aflatoxins.

References

http://doi.org/10.1371/journal.pone.0170109.

Expression of Biotransformation and Antioxidant Genes in the Liver of Albino Mice after Exposure to Aflatoxin B1 and an Antioxidant Sourced from Turmeric (*Curcuma longa*)

Nemat J. Abdulbaqi1, Batol I. Dheeb2,*, and Rizwan Irshad3

1Department of Biology, College of Science, Baghdad University, Baghdad, Iraq;
2Department of Pathological Analysis, College of Applied Science, Samarra University, Salahaldeen, Iraq;
3College of Science, King Saud University, Riyadh, Saudi Arabia

Received August 25, 2017; Revised October 3, 2017; Accepted October 7, 2017

Abstract

The present investigation aims to determine the effects of aflatoxin B1 (AFB1) on biotransformation and antioxidant genes and the protective effects of curcumin, present in turmeric (*Curcuma longa*) powder (TMP). Specifically, the study included four groups of albino mice were fed for 30 days on diet Group I: Control, Group II: animals fed on the conventional basal diet supplemented with 0.5% food grade TMP that supplied 74 mg/kg total curcuminoids. Group III contained animals reared on conventional basal diet supplemented with 1.0 ppm AFB1 supplied by ground aflatoxin culture material (760 ppm AFB1). Finally, Group IV comprised of albino mice fed with basal diet supplemented with 1.0 ppm AFB1 and 0.5% TMP that supplied 74 mg/kg of the body weight. After treatment, a number of physical parameters were assessed (gain in body weight, average quantity of feed intake and relative liver weight) and it was found that the subjects fed on diet containing curcumin and aflatoxin B1 experienced ameliorative effect on the impact of aflatoxin B1 and performed better on growth and liver weight parameters. RNA extracted from the mice liver successfully was subjected to quantitative real time PCR analysis (Q PCR) and the results revealed no high significant difference in the expression of *CAT* gene between studied groups with probability value ≥0.005. However, at the other hand a decreased in expression statically of *SOD, GPx, GST, EH* genes was observed while there was an increased Synchronous and consistent expression of *CYP1A1* and *CYP2H1* genes display in the studied groups in the current study.

Keywords: Aflatoxin B1, *Curcuma longa*, Gene expression, Antioxidant.

1. Introduction

Fungi contaminate the food in a variety of ways including food spoilage and toxicity depending on their biological make-up and the eco-physiological conditions (Ahmadib et al., 2011). Some fungi are toxigenic, synthesising one or more mycotoxins (Ahmed et al., 2013), having impact on humans and certain animals when ingested in large quantities. Amongst these, Aflatoxins (AF), especially Aflatoxin B1 (AFB1), are wide spread in distribution, potent contaminants of food of humans and animals, and result in food security issues and mortality. (Kumar et al., 2017). These toxins travel in the food chain and causing wide spread impact in a variety of organisms apparently not under the direct influence of the fungus (Moosavy et al., 2013). Recognizing the significance of food security and these toxins rendering the food unsuitable for human consumption has led to a large number of studies (Moosavy et al., 2013) on various aspects of the toxicity and remedies thereof. When consumed by Albino mice, AFB1 causes invariably cell damage, production of free radical, and lipid peroxidation in different organs (Dheeb, 2013; Nogueira et al., 2015). Protective effects against damage due to oxidative are normally redressed by antioxidants that obstruct the free radicals like reactive oxygen species (ROS) reactions. Various studies have been reported the healing effect of aflatoxins through use of medicinal plants (Abdulmajeeed, 2011) and the curative role of curcuminoid pigments extracted from roots and rhizomes of turmeric (*Curcuma longa*) (WH, 2009; Bayram et al., 2008) is one such example. The present study was therefore initiated to investigate and evaluate this curative role of curcumin and its influence on the expression of biotransformation and anti-oxidant function genes, using Quantitative real time PCR.

2. Materials and Methods

2.1. Animals and Experimental Design

A total 40 male Albino mice (age 7 weeks) obtained from the National Centre of Research and Drugs
Monitoring in Baghdad were employed in the study. The mice were allowed to adapt for two weeks in the Biotechnology Research Centre at Al Nahrain University before the commencement of the study. The animals were reared separately in clean, disinfected and pathogen-free facility fed on commercially available assorted pellets and tap water *ad libitum* (Jun et al., 2006). Experiment design "A completely randomized design" was adopted with ten replicates of eight Albino mice assigned to each of four dietary treatments: Group I: Control, Group II: animals fed on the conventional basal diet provided with TMP 0.5% food grade that supplied total curcuminoids 74 mg/kg. Group III contained animals reared on conventional basal diet supplemented with 1.0 ppm AFB1 supplied by ground aflatoxin culture material (760 ppm AFB1). Finally, Group IV comprised of albino rats fed with basal diet supplemented with 1.0 ppm AFB1 and 0.5% TMP that supplied 74 mg/kg of the body weight. During the 30 days' dietary treatment, mortality of the animals was recorded as and when noticed and mice were inspected daily for any health related anomalies. At the end of the treatment, mice were sacrificed, the liver was weighed and the tissue collected, immediately frozen in liquid nitrogen, and stored in a freezer at -80 °C until RNA extraction in order to use it in molecular analysis and determination expression of biotransformation and antioxidant genes. Dietary AFB1 concentrations and the content of all the diets were confirmed by the ELISA technique performed using an ELISA kit (Wacoo et al., 2017). All treatments on present experiments were approved based on The Committee Ethics of Baghdad University ID: 2398.

2.2. Extraction of Curcuminoid and Determination of the Concentration

The potent curcuminoid was extracted from naturally grown, commercially available Turmeric. A sample of (10) g powdered root and rhizomes was extracted using hexane (50 mL) as a solvent. Re-extracted done to Hexane extracted powder (1 gm) with methanol (20 ml) for 2 hours, aliquot centrifuged at 13,000 rpm for 5 min. The supernatant (1 mL) was removed, diluted methanol (4 mL) and total curcuminoid content (curcumin, bis-dimethoxy curcumin and dimethoxy curcumin) was ascertained by High Performance Liquid Chromatography following Gowda et al. (2009). To achieve highest possible degree of precision, Sampler and Column (Hitachi Model L-7200 autosampler, 250 x 4.6 mm HyperSil reverse phase C18 column) were employed. Following Dhee (2015). Hitachi D-7000 data acquisition interface and Concert Chrome software were used to gather data at a detection wavelength of 425 nm. The mobile phase was a mixture of methanol, acetonitrile and acetic acid (1:11:10) with a flow rate of 1 mL/min. The curcumin standards were established following Gowda et al. (2009). The total curcuminoid content of TMP was determined by adding up the concentrations of the three curcuminoids: curcumin, bis-dimethoxy curcumin and dimethoxy curcumin (Buchau et al., 2007).

2.3. Gene Expression Study of Biotransformation and Antioxidants

2.3.1. RNA Isolation and cDNA Synthesis

An RNA extraction kit (Promega) was used for extraction of Total RNS following the manufacturer’s instructions. Although not considered mandatory step, more complete DNA removal was carried out by treating isolated RNA with RNase-free DNase I (Biobasic, Canada) for 20 min at 37°C. Quantus Florometer was used to detect the concentration of extracted RNA in order to detect the goodness of samples for downstream applications. For 1 μL of RNA, 199 μL of diluted Quanty Flour Dye was mixed. After 5 min incubation at room temperature, RNA concentration values were detected.

The DNase I was inactivated at 65°C for 10 min. The integrity of the RNA was ascertained by gel electrophoresis (1.5% agarose gel containing 0.5% ethidium bromide) following Rassin et al. (2017). First-strand cDNA was synthesised from 500 ng of total RNA using a Reverse Transcription system (Bioneer, Korea) with an oligo-dT15 primer. The reaction solution was used as a template for reverse transcriptase polymerase chain reaction (RT-PCR).

2.3.2. Amplification of Biotransformation and Antioxidant Genes

Target gene and housekeeping B-actin (reference gene) cDNA were amplified using biotransformation and antioxidant primers in order to measure the expression patterns of genes involved in antioxidant function. Primers were as follows:

Catalase (CAT) Forward 5'GGGGAGCTGT TTACT GCAAG-3' and a reverse primer5'TTCCATTGGCATTG GCATT-3', product size 139 bp; super oxide dismutase (SOD, GPx, GST biotransformation genes EH, CYP 2H1, CYP 1A1), Forward5'-AGGGGGTCTAC TACCTCC-3' and a reverse primer 5'CCATTTGTG TGTCTCTCA A-3', product size 122 bp; glutathione peroxidase (GPx), Forward 5'-TGTTAACATCAC GGGCAAA-3' and a reverse primer 5'TGGGC CAAAGTCTTCTTGTA-3', product size 140 bp; glutathione S-transferase (GST) Forward GCCGTGACTCTGCTCTTGGT-3' and a reverse primer 5'5' CCACCGaATTGACTCC ATCT-3', product size 131 bp.

The following primers were used for biotransformation genes: epoxide hydrolase (EH) Forward5'-AAAGGGACAGAA GCTGACA-3' and a reverse primer 5' CCTCCAGTG GCTCAGTGAAT -3', product size 128 bp; cytochrome P450's, CYP 2H1 Forward 5'-ATCCCCATCAT CTTGGAAATGT-3' and a reverse primer 5' TCGTAGGCA TACAGACCCAC -3', product size 137 bp; cytochrome CYP 1A1 Forward 5'CACCTTTCGCT GCCTGCT-3' and a reverse primer 5' GGTCCTT CCAGTCTCCAG -3', product size 125 bp polymerase chain reaction (PCR) was initiated by employing cDNA template on a Lab net Thermocycler (USA) at the following conditions: (95°C for 5 min and 40 cycles at 95°C for 1 min, 60°C for 45 s and 72°C for 1 min). Primers were designed according to Livak et al., (2017) using the Primer3 program with an annealing temperature of 60 °C (Al-Tekreeti et al., 2017).

© 2018 Jordan Journal of Biological Sciences. All rights reserved - Volume 11, Number 1
2.4. Gene Expression Analysis Study through SYBR Green Real-Time RT-PCR

The gene expression of biotransformation and antioxidant was evaluated through use of SYBR real-time RT-PCR following Al-Mashhadani (2014). Quantitation of relative expression was determined by the following equation (Choi et al., 2010).

\[\text{Gene expression (Quantity)} = 10^{\frac{(CT-b)}{slop}} \]

Gene for Glyceraldehyde Phosphate Dehydrogenase (GAPDH) was used as the endogenous control gene in the qRT-PCR experiments.

2.5. Quantitative Real Time PCR (qRT–PCR)

The expression levels of antioxidant genes CAT, SOD, GPx, GST, biotransformation genes EH, CYP 2H1, and CYP 1A1, were estimated by One Step qRT-PCR. To confirm the expression of target gene, quantitative real time one step qRT-PCR sybr Green assay was used. Primers sequences for each gene were prepared. The mRNA levels of endogenous control gene GAPDH were amplified and used to normalize the mRNA levels of the up genes. The reaction volume and Thermal Cycler Programming summarized in Table 1 and 2.

Table 1. Reaction volume and components of RT qPCR

<table>
<thead>
<tr>
<th>Components</th>
<th>Conc. (μM)</th>
<th>Volume(μL)</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoTaqPCR master mix</td>
<td>2X</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>RT mix</td>
<td>10</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Forward Primer</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Revers Primer</td>
<td>1-2ng</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RNase-free water</td>
<td>-</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Total per reaction</td>
<td>-</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Thermal Cycler Programming

<table>
<thead>
<tr>
<th>Steps</th>
<th>°C</th>
<th>min:sec</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA Synthesis</td>
<td>95</td>
<td>5 min: 40</td>
<td></td>
</tr>
<tr>
<td>Initial Denaturation</td>
<td>95</td>
<td>15 min: 1</td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>95</td>
<td>30 sec</td>
<td>40</td>
</tr>
<tr>
<td>Annealing</td>
<td>60</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Melt</td>
<td>65-90</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2.6. Statistical Analysis

Data were analysed using the model procedures of SAS. The differences of values of the investigated parameters among different groups of the subjects (mean ± standard error) were assessed by analysis of variance using SAS version 7.5, (difference \(p=0.05 \) and 0.001) (Choi et al., 2010).

3. Results

3.1. Influence of Dosage of AFB1 on Total Body Weight and Some Properties of Mice Organs

Data for the animals belonging to control and experimental groups regarding average food intake, gain in weight, and liver weight (% BW) after 30 days of experimentation are presented in Table 3. The data reflects that the mice treated with TMP alone (Group II) and the control (Group I) had similar pattern of weight gain and feed intake while the mice in Group III(receiving dose of AFB1) had significantly lower feed intake and corresponding weight gain. For animals receiving 0.5% TMP (74 mg/kg curcuminooids) together with AFB1 (Group IV), feed intake and body weight both increased, suggesting a protective action of the curcuminooids present in TMP. The results of the present investigation are in conformity with some previous studies investigating the effects of AFB1 (Choi et al., 2008, Livak et al., 2008), and other chemicals (Yarru, 2008, Livak et al., 2008). The condition of the mice exposed to AFB1 together with TMP (Group IV) and the ones receiving dose of TMP alone (Group II) are a reflection of curcuminooids present in turmeric works as an antioxidant through inhibition of the biotransformation of AFB1 to aflatoxicol in the liver (Yarru, 2008, Livak et al., 2008), and may also have antimutagenic and anticarcinogenic effects (Yarru, 2008, Cleveland et al., 2009). In another study (Hismiogullari, 2014; Livak et al., 2008), where mice were fed on different concentrations of turmeric powder over a period of 49 days, the animals experienced a positive effect on liver enzymes that directly or indirectly reflect a healthier liver status.

Table 3. Average feed intake, weight gain, feed efficiency and relative liver weight in mice during the study.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Av. Feed intake (gm/mice)</th>
<th>Av. Body weight gain (gm/mice)</th>
<th>Wt of liver (% BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(Control)</td>
<td>1047.3±0.22 a</td>
<td>33.5±0.12a</td>
<td>1.74±0.44b</td>
</tr>
<tr>
<td>III(animals fed on the conventional basal diet supplemented with 0.5% food grade TMP that supplied 74 mg/kg total curcuminooids)</td>
<td>857.8±0.75b</td>
<td>26.0±0.34c</td>
<td>1.37±0.19a</td>
</tr>
<tr>
<td>III(animals reared on conventional basal diet supplemented with 1.0 ppm AFB1 supplied by ground aflatoxin culture material (760 ppm AFB1))</td>
<td>1047.3±0.22 a</td>
<td>33.5±0.12a</td>
<td>1.74±0.44b</td>
</tr>
<tr>
<td>IV (animals feed basal diet supplemented with 1.0 ppm AFB1 and 0.5% TMP that supplied 74 mg/kg of the body weight)</td>
<td>1004.9±0.20a</td>
<td>29.9±0.18ab</td>
<td>1.016±0.007ab</td>
</tr>
</tbody>
</table>

\(p<0.05 \). *different letter means significant difference between the treatment.
3.2. Quantitative Real Time PCR Results

The expression of genes responsible for antioxidant and biotransformation functions was ascertained using the quantitative real time PCR techniques show in Figure 1. The results of the present investigation showed similar pattern of gene expression among the four groups receiving different dietary treatments for the catalase (CAT).

However, super oxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) and epoxide hydrolase (EH) genes exhibited a decreased activity in animals treated with 1 ppm AFB1 (Group III). These results may be interpreted as the effects of AFB1are neutralized by inclusion of curcumin in the diet (Group IV). Increased expression of CYP1A1 and CYP2H1 genes may also be attributed to curcumin’s alleviation of the toxic effects of AFB1. The present results may be due to the presence of TMP stimulating the antioxidant system in the livers of albino mice in order to counteract the oxidative damage caused by AFB1 (Dwivedi, 2013, Cleveland et al., 2009). The animals fed on diet containing AFB1exhibited an increased liver peroxide level and a decrease in SOD, GPx, and CAT activities, and some studies have shown the supplementation of diets with the phenolic compounds of plants origin have reduced the free radical production and apoptosis in human hepatoma cells induced by AFB1 (Helal et al., 2012).

![Quantitative Real Time PCR Curves of antioxidant genes CAT, SOD, GPx, GST, biotransformation genes, and GAPDH with threshold (177.8)](image)

Some other studies have demonstrated the carbonyl functional group of curcuminoids to be responsible for its antimutagenic and anticarcinogenic effects (Buchau and Gallo, 2007), and curcumin also has inhibitory effects on superoxide anion generation and the biotransformation of Aflatoxin B1 to aflatoxicol in liver (Buchau and Gallo, 2007). Supplementation of turmeric is known to reduce the formation of adducts through modulation of cytochrome P450 function (Shivanoor et al., 2016). The above findings demonstrated the possible mode of action of curcumin as an antioxidant and the results we obtained in the present study suggest that curcumin in TMP gave partial protection against aflatoxicosis. Current findings also suggest that curcumin may need to be supplemented at levels higher than 74mg/kg to achieve optimum protection against 1.0 ppm AFB1.

4. Discussion

In the present study, expression of gene for super oxide dismutase (SOD) was down-regulated in albino mice fed a diet containing AFB1 and this reduced expression of gene has been attributed to the superoxide anions accumulated within the mitochondria, thus leading to an oxidative stress and thereby hindering the cellular processes (Ahmeda et al., 2014). Curcumin is known to boost the antioxidant activity especially through SOD (Thinarayanan et al., 2017). The animals receiving dose of AFB1 together with curcumin had greater expression of SOD gene compared to those receiving AFB1 dose alone, an indication of ameliorative effects of curcumin in improving the antioxidant status in aflatoxin fed mice. Similarly, the expression of the GPx gene was decreased in mice fed on diet containing AFB1 (Group III) compared to the Control. Such a decrease in GPx expression may result in impaired conversion of hydrogen peroxide to water and thus maintaining hydroxyl radicals within hepatocytes (Buchau and Gallo, 2007). Decreased expression of GPx due to AFB1 was normalized in animals containing in group IV, receiving curcumin in the diet (Group III). The addition of curcumin seems to support the role of GPx in protecting against high cellular concentrations of hydrogen peroxide (Nouri et al., 2015). Supplementation of curcumin, however, was not completely protective against the toxic effects of AFB1 since catalase levels remained low in these mice compared to controls. Like other genes, the expression of Glutathione S-transferase (GST) was decreased in mice exposed to AFB1 in their diet and potentially it was due to the ability of hepatic tissue to conjugate reactive metabolites1. As a result, curcumin in the diet alleviated the negative effect of AFB1 on GST expression. Studies have established that the curcumin reduced iron-induced hepatic damage, AFB1 induced mutagenicity and hepatocarcinogenicity by inhibiting cytochrome P450 in the liver and also induction of antioxidant enzymes (Ahmeda et al., 2014). The expression of Epoxide hydrolase (EH), GST and Cytochrome P450 genes show that there was an increase in the expression of hepaticCYP1A1 and CYP2H1 genes in the albino mice fed on diet containing AFB1.
CYP450 isoforms have previously been shown to be overexpressed, leading to hepatocellular injury and inducing death through chronic oxidative stress, excess ROS and transformation of aflatoxin B1 to toxic metabolite aflatoxin (Jesuthasan et al., 2005). This toxic metabolite is produced from the oxidation of AFB1 by the CYP450 isoforms reactive intermediates, AFB1 -8,9-epoxide (AFBO), and aflatoxin M1 (aflatoxin M1) The fact that, in the present study, CYP450 isoforms genes were up-regulated and epoxide hydrolase and GST genes were down-regulated in AFB1-receiving group, compared to the control suggests that there is a greater chance of the formation of more toxic intermediate metabolites such as aflatoxin 8, 9 epoxide. Furthermore, down-regulation of these detoxification genes could reduce the ability of the mice to detoxify AFB1 which could lead to various toxicological effects. The present study highlights the antioxidant role of curcumin in different parameters investigated and it is linked to decrease CYP1A gene expression compared to mice fed on AFB1. It further suggests chemo protective action against the negative effects of aflatoxin B1 (Haas et al., 2006).

There are important interactions among the activities of several antioxidant enzymes and various ROS and cellular reactions, all of which could be responsible for some of the observations in the present study. The decrease in the expression and activity of SOD, GST and GPx observed in the present study are additive with respect to oxidative damage. On-enzymatic decomposition of hydrogen peroxide involving transition metals, such as iron, in a Fenton-type reaction can be more damaging to the cell than the production of the hydroxyl radical species (Giray et al., 2008). Furthermore, increased levels of hydrogen peroxide within the cells reduces SOD activity (Mathuria et al.,2007), thereby increasing superoxide levels within the cell and reducing catalase activity. It is evident from the results of the present study that transcriptional activation ofCYP1A1 and CYP2H1 isoforms, in response to aflatoxin has the potential to increase oxidative stress. Also, these CYP 450 isoforms are involved in biotransformation of aflatoxin B1 to the highly toxic metabolite aflatoxin 8,9 epoxide (Buchau and Gallo, 2007). CYP 450 isoforms oxidize Aflatoxin B1 into two metabolites: the reactive intermediate, 71Aflatoxin B1 -8,9-epoxide (AFBO), and aflatoxin M1 (AFM1). Because of the importance of AFBO and AFM1 in the toxicity of AFB1, CYP450 isoforms play an important role in the well-known hypersensitivity of mice to Aflatoxin B1 (Magnoli et al., 2011). Since genes coding for CYP 450 isoforms were up regulated and epoxide hydrolase and GST genes were downregulated in aflatoxin fed mice compared to controls in the present study, there is a greater chance for formation of more toxic intermediate metabolites such as aflatoxin 8, 9 epoxide. Furthermore, down-regulation of these detoxification genes could reduce the mice ability to detoxify Aflatoxin B1 which could lead to various toxicological effects. The inclusion of butylated hydroxyl toluene, an antioxidant in the diet has any chemo protective effects in Aflatoxin B1 fed mice (Osawa, 2007). "They observed decreased activity of hepatic microsomal CYP1A as well as conversion of Aflatoxin B1 to the putative toxic metabolite, AFB1-8,9-epoxide (AFBO), compared to controls (Matur et al.,2007). Similar to the above findings, the antioxidant, curcumin in the current study decreased CYP1A gene expression compared to mice fed Aflatoxin B1 suggesting chemo protective effects.

5. Conclusion

The above findings demonstrate the possible mode of action of curcumin as an antioxidant, and the results obtained in the present study suggests that curcumin present in TMP gave partial protection against aflatoxicosis. Results also suggest that curcumin may need to be supplemented at levels higher than 74 mg/kg in order to achieve optimum protection against 1.0 ppm AFB1. These results suggest that mice fed AFB1 had impaired antioxidant activities along with decreased growth, development, and detoxification mechanisms, making them susceptible to various other stressors. Furthermore, addition of TMP containing curcumin to the AFB1-contaminated diet partially protected mice against AFB1.

Acknowledgment

The authors would like to thank Dr. Anaam Fuad Hussain for the help in the research.

References

Molecular Phylogeny of *Trametes* and Related Genera from Northern Namibia

Isabella S. Etuhole Ueitele¹*, Percy M. Chimwamurombe² and Nailoke P. Kadhila¹, ²

¹MRC: Zero Emissions Research Initiative, ²Department of Biological Sciences, University of Namibia, Namibia

Received June 16, 2017; Revised September 25, 2017; Accepted October 14, 2017

Abstract

Trametes Fr. is widely characterized as a polyporoid cosmopolitan genus which is presented in almost any type of forest environments. It is characterized by a combination of pileate basidiocarp, porous hymenophore, trimitic hyphal system and thin-walled basidiospores which do not react in Melzer’s reagent. Dry polypores were collected from Northern Namibia and identified as *Trametes* species based on morphology. Molecular analysis of Internal Transcribed Spacer region 1 (ITS 1) and Internal Transcribed Spacer region 2 (ITS 2) of the collected material revealed inconsistency with morphological identification. The phylogenetic tree was reconstructed using the Neighbour Joining method and reliability for internal branches Assessment was done using the ML bootstrapping method with 500 ML bootstrap replicates applied to 44 identification. The phylogenetic tree was reconstructed using the Neighbor Joining method and reliability for internal branches Assessment was done using the ML bootstrapping method with 500 ML bootstrap replicates applied to 44 unpublished sequences and sequences from GenBank database. Only specimens such as D1 – D9, D11 and D13 and branches were grouped in the trametoid clade together with *Pycnoporus sanguineus* and *Coriolopsis gallica*. The close relationships of *Pycnoporus* and *Trametes* were confirmed by grouping of *Pycnoporus sanguineus* in to trametoid clade. Alignment with GenBank sequences revealed identity to *Trametes* species with up to 99%. These results suggest that it is better to keep a single generic name of *Trametes* for the trametoid clade.

Key words: *Trametes* species, Phylogeny, Polyporoid, Namibia.

1. Introduction

Traditionally, fungal taxonomy was based mainly on morphological description of the fruit body, host specificity, and geographical distribution (Seo and Kirk, 2000; Olusegun, 2014). However, polyporoid fungi in the *Trametes* genus have a similar morphology and have proved to be challenging to identify based on this traditional technique (Ofodile et al., 2007). Ever since, mycologists have turned to molecular techniques to explain the taxonomic challenges in *Trametes* and related genera (Zakaria et al., 2009; Olusegun, 2014).

The *Trametes* classification has undergone extensive study and deliberation (Zhao et al., 1983). Although the Friesian (1835) description is widely accepted, there are ongoing studies to find a clear species delimitation for this Polyporoid group (Justo and Hibbett, 2011). *Trametes* Fr. is widely characterized as a polyporoid cosmopolitan genus which is presented in almost any type of forest environment. It is characterized by a combination of pileate basidiocarp, porous hymenophore, trimitic hyphal system and thin walled spores which do not react in Melzer’s reagent (Tomovsky et al., 2006; Carlson et al., 2014). *Trametes* Fr. was first named by Fries in 1835 because the hymenophore was considered a distinctive feature of the *Poriporus* genus and Fries wanted to accommodate Coriaceous species with a poroid hymenophore characterized by context continuously descending into the hymenophoral trama. At this stage, genera were created according to the hymenophore structure and were either grouped as lamellate, daedaleoid or regular (Trametoid) pores (Welti et al., 2012).

In 1886, Quélet initially separated species by the shape of their pores but later considered other morphological features relevant to define new genera from the classical *Trametes*. The abhyemenal surface of the tomentum was considered as a distinctive feature of the *Coriolus* group. Another description was suggested for a *Trametes* group consisting of all genera with di- or trimitic hyphal system with colorless, smooth and not amyloid basidiospores. This group included Cerrena, Daedalea, Hexagonia, Pycnoporus, Coriolopsis, Dattronia, Lenzites, Megasporoporus, Microporus, Trichaptum and *Trametes* (Ko and Jung, 1999). Kavina and Pilát in 1936 also supported the view that hymenophoral morphology suggested by the Fries is devoid of generic systematic value. Therefore, species with lamellate, daedaleoid and poroid hymenophore were grouped into one, combining Lenzites and Daedalea. Lenzites betulina was combined with *Trametes sensu Pilát* (Welti et al., 2012).

Nobles (1958) further considered the significant role of wood rot type caused by the fungi as a distinguishing feature between the polypores. The white rot *Trametes* group was delineated from Daedalea, a brown rot fungus. In 1967, David argued that the heterocytic nuclear
behavior with bipolar mating system separates *Funalia* and *Cerrena* from *Trametes* and *Coriolopsis* (Welti et al., 2012). In 1989, Corner observed many tropical species whose intermediate characters could change subject to basidiocarp conditions. The white flesh of *Trametes pubescens* would become brown due to age and mistakenly identified as *Coriolopsis polypyzon* which has a brown context. As a result, Corner reported that pigment and rot type alone are not sufficient characters for species delimitation (Justo and Hibbett, 2011; Ko and Jung, 1999). Ryvarden’s classification in 1991, corresponded with the widely accepted Friesian description of pileate basidiocarps, poroid hymenophore, trimitic hyphal system, smooth thin-walled basidiospores and white rot (Ko and Jung, 1999). Ryvarden also included all the genera synonymized by Corner in 1989, but excluded brown rot causing genera, such as *Daedalea* and *Fomitopsis* (Justo and Hibbett, 2011; Welti et al., 2012).

In 1995, Hibbet and Donoghue used the mitochondrial SSU rDNA to study the phylogeny of *Trametes* and related genera. It was found that trimitism in white rots was a common feature for all genera in the *Trametes* clade (Welti et al., 2012).

Ko (2000) used SSU mtDNA and ITS sequences to divide the Polyporaceae into two subgroups, where subgroup A contained: Cryptoporus, Daedaleopsis, *Datronia, Funalia, ‘Coriolopsis’ gallica, ‘Tramella’ trogi, Gano derma, Lentinus, Microporus and Polyporus. Subgroup B only had *Coriolopsis polypyzon*, *Lenzites, Pycnoporus* and *Trametes*. Context pigmentation was also considered to be a distinctive feature for the identification of *Coriolopsis Murril*, which is now *Coriolopsis polypyzon*. In 1881, *Pycnoporus* P. Karsten was created to distinguish trametoid specimens which had a brown or red (cinnabar) colour (Ko and Jung, 1999).

These different concepts on the generic limits of *Trametes* have led to confusion and unresolved species delimitation in the genus (Carlson et al., 2014; Olusegun, 2014). It is not clear whether closely related genera, such as *Coriolopsis, Coriolus, Lenzites* and *Pycnoporus* in subgroup A, should be recognized as independent monophyletic genera or if they should be included in an enlarged *Trametes* genus (Welti et al., 2012).

Furthermore, during the past decade, researchers in Namibia developed an interest in studying the indigenous mushrooms of Namibia. Studies by Kadhiela-Muandingi and Chimwamumorebe (2012) and Ekando and Chimwamumorebe (2012) focused mostly on medicinal mushrooms, specifically *Ganoderma* species. The problem remains that most Basidiomycetes in Namibia still need to be explored in order to document and preserve the Namibian mushrooms biota and biodiversity (Chang and Mshigeni, 2004).

Lastly, the incorrect taxonomy of many medicinal mushrooms jeopardizes the validity of current and future investigations of these mushrooms and their derivatives (Wasser, 2011; Zmitrovich et al., 2012). The use of general names like Turkey tail (*Trametes versicolor*) makes room for mistaken identity of specific species and type material (Wasser, 2011; Wasser, 2014). Therefore, there is a need for consistency in the identification of medicinal mushrooms, like *Trametes* species, to ensure that future investigations of their medicinal properties, composition and effectiveness are done on the right species. This study characterizes indigenous *Trametes* species from Northern Namibia in order to generate information on its genetic diversity. This study endeavors to confirm the identity of *Trametes* representatives from Northern Namibia using ITS region. The present work also attempts to reconstruct the phylogeny of indigenous Namibian *Trametes* using sequences from GenBank Database.

2. Materials and Methods

2.1. Material Studied

Dry mushrooms were collected from dead wood in three regions, namely Ohangwena, Omusati, and Oshana regions in Northern Namibia during late March and early April 2014. The samples were identified with pictures from Van der Westhuizen and Eicker (1994). The samples were recorded and kept in khaki paper bags labeled with name of village, region and host substrate type.

The collected mushrooms were dried in a cool shade for 6 hours and kept in a cool dry place. All visible sand and wood particles were removed before grinding the mushrooms to powder using sterilized mortar and pestles. For this study, samples C1-C4, C21, D1-D7, D9, D11, D13, I2-I4, J1-J4, J6-J9 and K3-K6 were collected from Ohalushu in Ohangwena region, while E1-E5 where collected from Okalumbi in Omusati region and M6 and M7 were collected from Omakango in Ohangwena region.

2.2. DNA Extraction

A Qiagen DNeasy® Plant Mini Kit (Hilden, Germany) and protocol was used to extract fungal genomic DNA from indigenous Namibian *Trametes* species and according to manufacturer’s instruction. An adjustment was made to the protocol by reducing Buffer AE from 100 µL to 50 µL.

2.3. PCR and Sequencing

PCR amplification was performed in a 25 µl reaction consisting of 12.5 µL DreamTaq Green PCR Master Mix (2X), 10.5 µL nuclease free water, 1 µL ITS1-F primer (CTTGGTCTATTAGAGGAAGTA), 1 µL ITS2 primer (GCTGCCGTCTCTCATCGATGC) and 1 µL DNA. PCR conditions were as follows: Pre-denaturation at 95°C for 4 mins, denaturation at 95°C for 30 s, annealing at 55°C for 1 min and elongation at 72°C for 2 mins for 35 cycles. This was followed by a final extension of 72°C for 7 mins. PCR products were viewed using gel electrophoresis. Gel electrophoresis was performed in 0.5 % Tri-Borate EDTA (TBE) buffer. The DNA gel was prepared by dissolving 1 g agarose gel in 100 mL TBE buffer (1 %) and completely dissolving it by heating in the microwave. After slight cooling, 2.5 µL ethidium bromide was added to the gel before casting in a tray. Gel electrophoresis was run at 110 V for 60 minutes after which the gel was visualized under Ultra-Violet (UV) light. Sequencing of PCR product was performed in both directions using ITS1 and ITS2 primers at Inqaba Biotechnical Industries (Pty) Ltd in South Africa. 88 pairs of sequences of 200-250 base pairs were produced.
2.4. Alignment of Sequences

Sequences were analyzed and predicted by utilizing Chromas Lite201 version 2.1.1 (Queensland, Australia). A Local Alignment of the ITS1 and ITS2 sequences was performed in Bioedit to create contig sequences. A BLAST search was performed on the resulting 44 contig sequences using the NCBI GenBank database. The unpublished sequences as well as the sequences obtained from GenBank were aligned with Bioedit and Clustal W.

2.5. Phylogenetic Analysis

The Maximum Likelihood (ML) analysis was performed in MEGA version 6 (Tempe, USA). The phylogenetic tree was reconstructed using the Neighbour Joining method and reliability for internal branch assessment. It was done using the ML bootstrapping method with 500 ML bootstrap replicates.

3. Results

The mushrooms collected presented a morphology characteristic of *Trametes* species, although a high variation was observed in size and color of fruit bodies, size of pores, concentric zones and rigidity of mushroom upon breaking or tearing. Based on these morphological differences, at least four *Trametes* species were identified (Figure 1). Specimen A has a grey basidiocarp with 73 mm diameter with 1 to 2 mm wide pores underneath. Specimen B has a thin and dark brown basidiocarp 70 mm in diameter with black prickly ‘hairs’ on the top surface and 1mm sized pores on the hymenium. Specimen C was the smallest of the four types observed with 25 mm diameter basidiocarp and 1 mm sized pores. The basidiocarp was covered with distinct zones with different shades of grey, white and black. Specimen D basidiocarp was 45 to 75 mm in diameter with zones that have shades of tan, grey, black and white colour. The hymenium was covered with many small white pores ranging from 2-3 pores/millimeter. The mushrooms lacked a distinct pileus as they were attached directly to their host.

The ITS region of nuclear rDNA from 40 *Trametes* species from Northern Namibia was used for molecular identification. The sequences obtained were aligned with sequences from GenBank. Alignment with GenBank sequences revealed a variety of identities, with most sample species scoring 95-99 % similarity to the *Trametes* and *Coriolopsis* genera. The rest of samples showed similarity scores of 92-94 % to genera, such as *Hexagonia*, *Truncospora* and *Fomes*. For example, samples C1- C4 and C21 showed 99 % similarity to *Coriolopsis caperata* and D1-D7, D9, D11 and D13 are 99 % identical with *Trametes polyzona*. Samples E1, E3 and E4 showed 93 % similarity with *Truncospora macrospora*. Specimens F1, I2-I4, K3-K6 and M6 are 93-99 % identical with *Trametes* species, while E2, G6, J2, J6 and J7 resemble *Hexagonia* species with 92-94 % identity (Table 1).

The phylogenetic tree generated from the unpublished sequences and sequences from GenBank showed some variations. The phylogenetic tree has 8 major clades in total. Clade 1 contains specimens D1-D9, D11 and D13, and specimens F1, I2-I4 and K3-K6 as well as GenBank sequences *Trametes polyzona* (JN164979.1), *Coriolopsis polyzona* (FJ627248.1), *Trametes gibbosa* (FJ481048.1), *T. villosa* (KF573031.1), *T. hirsuta* (GU062274.1), *T. maxima* (JN164918.1), *T. cinnabaria* (AB735965.1), *Pycnoporus sanguineus* (AJ537499.1), *Trametes cubensis* (KJ654513.1), *T. orientalis* (AB735966.1), *T. elegans* (EU661879.1), *T. jiubarski* (GU731579.1) and *T. marianna* (KC848334.1). Clade 2 contains specimens E1, E3 and E4 alongside *Truncospora macrospora* (JX941573.1). Clade 3 has specimens *E2, G6, J2, J6 and J7* resemble *Hexagonia* sequences and sequences from GenBank showed some variations.

Coriolopsis species are distributed in 6 clades mainly alongside *Trametes* species. Specimens F1, G9, while clade 5 contains specimens C1-C4, C21, M6, M7 and GenBank sequences *Coriolopsis caperata* (AB158316.1), *C. trogii* (KJ093492.1), *Funalia trogii* (EU273516.1), *Coriolopsis gallica* (JN165013.1), *Trametes suaveolens* (FJ478094.1) and *T. trogii* (HM989941.1). Clade 6 has *Hexagonia hirta* (KC867359.1), *C. aspera* (KP013018.1) and *H. apiaria* (KC867362.1). Clade 7 has specimens E2, E5, J1 and J3-J9, while Clade 8 only contains specimen J2. The specimens collected from Northern Namibia were distributed in 6 clades mainly alongside *Trametes* species *Truncospora* and more distantly *Coriolopsis* species.

![Figure 1. Trametes samples collected from Northern Namibia. The mushrooms collected had four distinct morphologies. Mushroom A had a grey basidiocarp with daedalean like pores. Mushroom B had black hair like structures with fine regular pores. Mushrooms C and D had distinct zones on the basidiocarp with different shades of tan, grey, white and black.](image-url)
Table 1. Molecular identification of *Trametes* species from Northern Namibia based on ITS region

<table>
<thead>
<tr>
<th>Sample</th>
<th>Organism name</th>
<th>Accession Number</th>
<th>Identity scores (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Coriolopsis caperata</td>
<td>KF564288.1</td>
<td>99</td>
</tr>
<tr>
<td>C2</td>
<td>Coriolopsis caperata</td>
<td>KF564288.1</td>
<td>99</td>
</tr>
<tr>
<td>C3</td>
<td>Coriolopsis caperata</td>
<td>HQ323692.1</td>
<td>99</td>
</tr>
<tr>
<td>C21</td>
<td>Coriolopsis caperata</td>
<td>HQ323692.1</td>
<td>99</td>
</tr>
<tr>
<td>D1</td>
<td>Trametes polyzona</td>
<td>JN164979.1</td>
<td>99</td>
</tr>
<tr>
<td>D2</td>
<td>Trametes polyzona</td>
<td>JN164979.1</td>
<td>99</td>
</tr>
<tr>
<td>D3</td>
<td>Trametes polyzona</td>
<td>JN164979.1</td>
<td>99</td>
</tr>
<tr>
<td>D4</td>
<td>Trametes polyzona</td>
<td>KJ654516.1</td>
<td>99</td>
</tr>
<tr>
<td>D5</td>
<td>Trametes polyzona</td>
<td>JN164977.1</td>
<td>98</td>
</tr>
<tr>
<td>D6</td>
<td>Trametes polyzona</td>
<td>JN164980.1</td>
<td>99</td>
</tr>
<tr>
<td>D7</td>
<td>Trametes polyzona</td>
<td>JN164980.1</td>
<td>99</td>
</tr>
<tr>
<td>D9</td>
<td>Trametes polyzona</td>
<td>JN164978.1</td>
<td>99</td>
</tr>
<tr>
<td>D11</td>
<td>Trametes polyzona</td>
<td>KP013053.1</td>
<td>99</td>
</tr>
<tr>
<td>D13</td>
<td>Trametes polyzona</td>
<td>JX941573.1</td>
<td>99</td>
</tr>
<tr>
<td>I3</td>
<td>Trametes marianna</td>
<td>JQ806418.1</td>
<td>99</td>
</tr>
<tr>
<td>K3</td>
<td>Trametes sp</td>
<td>KP013021.1</td>
<td>99</td>
</tr>
<tr>
<td>M7</td>
<td>Coriolopsis caperata</td>
<td>AB158316.1</td>
<td>99</td>
</tr>
<tr>
<td>C4</td>
<td>Coriolopsis caperata</td>
<td>GQ372861.1</td>
<td>98</td>
</tr>
<tr>
<td>D5</td>
<td>Trametes polyzona</td>
<td>JN164977.1</td>
<td>98</td>
</tr>
<tr>
<td>M6</td>
<td>Trametes trogii</td>
<td>HM989941.1</td>
<td>98</td>
</tr>
<tr>
<td>I4</td>
<td>Trametes ljubarski</td>
<td>HM136871.1</td>
<td>97</td>
</tr>
<tr>
<td>K4</td>
<td>Trametes ljubarski</td>
<td>JQ806418.1</td>
<td>96</td>
</tr>
<tr>
<td>F1</td>
<td>Trametes villosa</td>
<td>KC414233.1</td>
<td>95</td>
</tr>
<tr>
<td>I2</td>
<td>Trametes villosa</td>
<td>KC848334.1</td>
<td>95</td>
</tr>
<tr>
<td>E2</td>
<td>Hexagonia apiiaria</td>
<td>JX941573.1</td>
<td>94</td>
</tr>
<tr>
<td>J1</td>
<td>Fomes sp.</td>
<td>KC867359.1</td>
<td>94</td>
</tr>
<tr>
<td>J3</td>
<td>Fomes sp.</td>
<td>KF541332.1</td>
<td>94</td>
</tr>
<tr>
<td>J4</td>
<td>Fomes sp.</td>
<td>KC867362.1</td>
<td>94</td>
</tr>
<tr>
<td>J6</td>
<td>Hexagonia apiiaria</td>
<td>KC867359.1</td>
<td>94</td>
</tr>
<tr>
<td>J8</td>
<td>Fomes sp.</td>
<td>KF541332.1</td>
<td>94</td>
</tr>
<tr>
<td>J9</td>
<td>Fomes sp.</td>
<td>KF541332.1</td>
<td>94</td>
</tr>
<tr>
<td>K6</td>
<td>Trametes villosa</td>
<td>JN164970.1</td>
<td>94</td>
</tr>
<tr>
<td>E1</td>
<td>Truncospora macrospora</td>
<td>KC867362.1</td>
<td>93</td>
</tr>
<tr>
<td>E3</td>
<td>Truncospora macrospora</td>
<td>JX941573.1</td>
<td>93</td>
</tr>
<tr>
<td>E4</td>
<td>Truncospora macrospora</td>
<td>HM136871.1</td>
<td>93</td>
</tr>
<tr>
<td>E5</td>
<td>Fomes sp.</td>
<td>KF573031.1</td>
<td>93</td>
</tr>
<tr>
<td>J2</td>
<td>Hexagonia hirta</td>
<td>HM136871.1</td>
<td>93</td>
</tr>
<tr>
<td>J7</td>
<td>Hexagonia hirta</td>
<td>KF541332.1</td>
<td>93</td>
</tr>
<tr>
<td>K5</td>
<td>Trametes hirsuta</td>
<td>JF439511.1</td>
<td>93</td>
</tr>
<tr>
<td>G6</td>
<td>Hexagonia tenuis</td>
<td>JN164995.1</td>
<td>92</td>
</tr>
<tr>
<td>G9</td>
<td>Coriolopsis trogii</td>
<td>JN164970.1</td>
<td>92</td>
</tr>
</tbody>
</table>
Figure 2. Evolutionary relationships of taxa. The evolutionary history was inferred using the Neighbour-Joining method [1]. The optimal tree with the sum of branch length = 1.40518603 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown next to the branches [2]. The evolutionary distances were computed using the p-distance method [3] and are in the units of the number of base differences per site. The analysis involved 69 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 162 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 [4].
4. Discussion

Dry *Trametes* specimens were collected from dead wood in three regions of Northern Namibia. The samples were identified positively with pictures from Van der Westhuizen and Eicker (1994). The fungi collected presented a morphology characteristic of *Trametes* species, although a high variation was observed in size and color of fruit bodies, size of pores, concentric zones and rigidity of the context upon breaking or tearing. Based on these morphological differences, at least four *Trametes* species were identified (Figure 1). Although these poly pores were positively identified as *Trametes* species using morphologic features, molecular results show that not all the samples collected were indeed *Trametes* species. This proves that, although the traditional taxonomy of *Trametes* species was based on morphological features, it is not always reliable because these features are affected by nutrient status and growth conditions. Some species are so similar in their morphology that it is difficult to delineate them based on morphology alone (Gilbertson and Ryvarden 1987; Yang et al., 2010).

Maximum Likelihood and Neighbour Joining analysis was used to reconstruct a phylogenetic tree of *Trametes* species from Northern Namibia. The resulting phylogenetic tree showed 8 major clades in total. The placement of unpublished sequences into these different clades indicates that these sequences are not from the same ancestral origin as the sequences in GenBank (Olusegun, 2014). Sequences placed in the same clade share a common ancestor from whom they have inherited a set of unique characters (Baldauf, 2003).

It is interesting to observe that specimen D1-D9, D11 and D13 and specimens F1, I2-I4 and K3-K6 were all collected from Ohalushu village in Ohungwena region. However, specimens E2, E5, J1 and J3-J9 were also collected from Ohalushu village in Ohungwena region but they formed a separate clade. According to Olusegun (2014), these differences might occur because of geographical and environmental factors. Geographic factors are responsible for fungal diversity at a regional level in a radius of 1000-4000 km, while environmental factors may cause diversity at a local level within a radius of less than 1000 km.

In the phylogenetic tree obtained in the present study, specimens D1-D9, D11 and D13 and specimens F1, I2-I4 and K3-K6 were grouped in the trametoid clade together with *Trametes* species, such as *T. polyzona*, *T. gibbosa*, *T. villosa*, *T. hirsuta*, *T. maxima*, *T. cinnabarina*, *T. cubensis*, *T. orientalis*, *T. elegans* and *T. martiana*. These results are similar to those reported by Welti et al. (2012) and Carlson et al. (2014). Welti et al. (2012) reconstructed the phylogeny of the *Trametes* group using Bayesian analysis of ITS1-5.8S-ITS2 region and RPB2 protein coding gene to confirm the close relationship between the genera *Trametes*, *Coriolopsis* (*polyzona*) and *Pycnoporus*. One of the most recent and comprehensive works on *Trametes* is phylogeny using molecular data from the ribosomal Large Subunit (LSU) rRNA and ITS region as well as the other RPB1, RPB2 and TEF1-alpha protein coding genes. Similar to the results obtained, the five-marker molecular analysis strongly supported a Trametoid clade which includes most *Trametes* species (*T. suaveolens*, *T. versicolor*, *T. maxima*, *T. cubensis*) and *Lenzites*, *Pycnoporus* and *Coriolopsis polyzona* species. Furthermore, the position of *T. trogii* (*Trametes trogii*) was confirmed to be outside the Trametoid clade and more closely related to *C. gallica* (Tomíovsky et al., 2006; Justo and Hibbett, 2011). The genus *Coriolopsis* is currently defined as polyphylectic with type species in the trametoid clade and two additional lineages in the core Polyporoid clade (Carlson et al., 2014). This explains why *Trametes trogii* was placed in a clade much further from other *Trametes* species but closer to *Coriolopsis gallica* and *C. trogii* (Figure 2). Except for the red color of *Pycnoporus* basidiocarp, it is morphologically similar to *Trametes*. Other biochemical characters between the two genera do not differ and molecular analysis of the ribosomal DNA groups the two genera in one clade (Tomíovsky et al., 2006), just as confirmed in the present study by grouping *Pycnoporus sanguineus* in the trametoid clade with *Trametes* species (Figure 2).

The authors support the decision to keep a single generic name of *Trametes* for the trametoid clade because, according to Justo and Hibbett (2011), which allows the preservation of the morphological concept of *Trametes*, the classification of additional species which may not yet be sampled or analysed and the classification of *Trametes* species using morphological features alone.

Any other decision to divide the trametoid clade is deemed extremely difficult or even impossible (Justo and Hibbett, 2011). Therefore, the question whether closely related genera, such as *Coriolopsis*, *Coriolus*, *Lenzites* and *Pycnoporus*, should be recognized as independent monophyletic genera, or whether they should be included in an enlarged *Trametes* genus (Welti et al., 2012) has been answered, albeit temporarily.

5. Conclusion

In conclusion, the present study is able to confirm for the first time, the identity of *Trametes* mushrooms from Northern Namibia using ITS region and to reconstruct the phylogeny of these indigenous *Trametes* using sequences from GenBank Database. From the results above, the authors identify specimens C1-C4, C21, D1-D7, D9, D11, D13, F1, I2-I4, K3-K6 as well as M6 and M7 to be *Trametes* species. Specimens E1, E3 and E4 are identified as *Pycnoporus* species.

Acknowledgements

The present study was funded by the Namibia Government Scholarship Training Program (NGSTP). Additional funding was provided by the Zero Emissions Research Initiative and the Department of Biological Sciences at the University of Namibia. Finally, the authors also acknowledge Fimanekezi Mhanda for her assistance with sampling the mushroom fruit bodies.
References

Fries E. 1835. Corpus Florarum provincialium Sueciae I. Floram Scanicam. 349.

Determination of Water Quality and Detection of Extended Spectrum Beta-Lactamase Producing Gram-Negative Bacteria in Selected Rivers Located in Ibadan, Nigeria

Olutayo I. Falodun*, Yetunde M. Morakinyo and Obasola E. Fagade

Department of Microbiology, University of Ibadan, Ibadan, Nigeria.

Received August 22, 2017; Revised October 10, 2017; Accepted October 15, 2017

Abstract

The present study is designed to determine the occurrence of Extended Spectrum β-Lactamase (ESBL)-producing Gram-negative bacteria in water samples from selected rivers in Ibadan, Nigeria. Water samples were collected from three rivers and physicochemical analysis carried out. Isolated Gram-negative bacteria were identified using conventional biochemical method. Antimicrobial susceptibility test of the isolates was by disc diffusion technique while ESBL detection was by double disc synergy method. Physicochemical analysis showed that turbidity ranged between 17.7-164.7NTU; total suspended solids between 0.45 -1.3mg/L; total dissolved solids between 246 - 735mg/L. The conductivity, Biological Oxygen Demand and Chemical Oxygen Demand were between 367 -1061mg/L, 267.8- 385.2mg/L, and 395.8-563.3mg/L, respectively; oil and grease was between 272.8 - 2067.9mg/L. A total of 207 β-lactam resistant Gram-negative bacteria were isolated, out of which 37 (17.9%) produced ESBL; 9(24.3%) were from Yemetu, 14 (37.8%) from Kudeti and 14 (37.8%) from Alaro rivers. Among the ESBL-producers, 35.1% were Klebsiella pneumoniae, while 91.9%, 73.0% and 64.9% of ESBL isolates showed resistance to Cefotaxime, Cefepime and Aztreonam, respectively; while resistance to Ciprofloxacin and Gentamicin was 8.1% and 18.9% respectively. The present study reveals the need for continuous pollution monitoring and proper management program of the rivers to prevent indiscriminate discharge of wastes harboring ESBL-producing bacteria into water bodies.

Keywords: Rivers, Extended spectrum β-lactamase, Gram-negative bacteria, Antibiotics, Resistance.

1. Introduction

One of the factors responsible for the global emergence of antibiotic resistance among enteric bacteria during the recent decades is the misuse of antibiotics (Chitanand et al., 2010). More so, the occurrence of Extended-Spectrum β-Lactamase (ESBL) production has been due to the use of cephalosporin in both clinical practices and animal husbandry (Canton et al., 2008; Castanheira et al., 2008). These strains of bacteria produce beta-lactamase enzymes that cleave to the beta-lactam ring thereby disrupting the action of antimicrobials leading to the development of resistance to most beta-lactam antibiotics including the first, second, third and fourth generation cephalosporins. The increase in the number of ESBL producing Gram-negative bacteria is a threat to healthcare because infections caused by these strains of organisms are difficult to treat, leads to increased medical costs and limited therapeutic options (Harris et al., 2015; Upadhyay and Joshi, 2015). Production of ESBL is common with many species of Gram-negative bacteria but is mainly detected in the family Enterobacteriaceae (Falagas and Karageorgopoulos, 2009).

One of the main sources of transmission of pathogenic organisms including antibiotic resistant bacteria is water. Moreover, multiple antibiotic resistant bacteria have been isolated from different water sources, such as rivers, groundwater, drinking water and recreation water (Martí et al., 2013; Ramirez-Castillo et al., 2013). The possibilities of human exposure to water bodies contaminated with ESBL–producing bacteria when used for recreation, irrigation, drinking and other domestic purposes is very high (Zhang et al., 2015). In Nigeria, most studies on ESBL producing bacteria focused on isolates from clinical origin particularly E. coli. Meanwhile, there is dearth of information on isolates from environmental samples. The present study is, therefore, aimed at evaluating the water quality of selected rivers in Ibadan as well as determining the occurrence of ESBL production in Gram negative bacteria isolated from selected rivers within Ibadan metropolis. These rivers are used for domestic purposes, such as washing and bathing.

* Corresponding author. e-mail: falod2013@gmail.com.
2. Materials and Methods

2.1. Description of the Study Area

The sites of the present study include: Alaro, Yemetu and Kudeti Rivers. Alaro River (with geographical position of 0812901N, 00593332E) is located in an industrialized environment, in Ibadan South West Local Government Area of Oyo State. There is discharge of effluents from industries into the river. Yemetu River (with geographical position of 0723318N, 00354303E) is along Oje Street behind Adeoyo hospital, in Ibadan North Local Government Area and Kudeti River (with geographical position of 0721909N, 00353845E) is along Idi-arere Kudeti road, in Ibadan South East Local Government Area of Oyo state. Yemetu and Kudeti rivers are located within residential areas, where open defecation is highly practised and domestic wastes are dumped in the rivers and along the river banks.

2.2. Sample Collection

Water samples were randomly collected between the months of May and July, 2015 into sterile containers and transported in an ice pack to the Laboratory, Department of Microbiology, University of Ibadan, for microbiological analysis. The geographical position of the sampling sites was determined and recorded.

2.3. Physico-Chemical Analysis of the Water Samples

The physico-chemical analysis of the water samples was carried out using standard analytical methods. Parameters, such as temperature and pH, were determined on the field using thermometer and pH meters respectively while turbidity was determined using turbidity meter. Total dissolved solid, electrical conductivity and dissolved oxygen were determined using an Extech digital meter (Extech Instruments, USA). Chemical Oxygen Demand (COD), suspended solids, acidity, alkalinity, chloride, Biochemical Oxygen Demand (BOD); and oil and grease were determined using standard methods (APHA, 2005).

2.4. Isolation of Beta-Lactams Resistant Gram-Negative Bacteria

Isolation of beta-lactams resistant Gram-negative bacteria was carried out as described by Lu et al. (2010) using MacConkey agar supplemented with filter-sterilised solution of ampicillin. Pour plate method was used for the inoculation as the supplemented media were dispensed into Petri dishes containing 1ml of the appropriate dilution of the samples. The plates were incubated at 37°C for 18-24 hours. Distinct colonies presumptive of the target organisms were picked and further sub-cultured to obtain pure cultures. The isolates were characterized and identified using conventional biochemical method (Cheesbrough, 2008).

2.5. Antibiotic Susceptibility Tests

Antibiotic susceptibility test was carried out using the disc diffusion technique as described by Bauer et al. (1966). The antibiotics discs used were Cefotaxime (CXM, 30mg), Cefazidime (CAZ, 30mg), Cefepime (FEP, 30mg), Aztreonam (AZ, 30mg), Imipenem (IMP, 10mg), Amoxicillin-Clavulanate (AMX, 30mg), Ciprofloxacin (CIP, 5mg), Gentamicin (CN, 10mg) and Florfenicol (FFL, 30mg) (Oxoid, UK). The susceptibility test was carried out using an overnight culture suspension of the test isolates adjusted to 0.5 McFarland Standard. The culture suspensions were inoculated onto the surface of Mueller Hinton agar plates with sterile swab sticks. The antibiotic discs were carefully placed on the inoculated plates with the aid of sterile forceps and incubated at 35±2°C for 18-24 hours. The zones of inhibition were measured and interpreted based on Clinical and Laboratory Standards Institute (2017).

2.6. Detection of ESBL-Producing Bacteria Using Double Disc Synergy Test (DDST)

All the Ceftazidime (30mg) and Cefotaxime (30mg) resistant isolates were selected for ESBL detection using double disc synergy test previously described by Lu et al. (2010). The test was carried out using discs of amoxicillin-clavulanate and discs of cefazidime (30mg) and cefotaxime (30mg) which were placed around amoxicillin-clavulanate disc at a distance of 15 to 20 mm from each other (center to center). The plates were incubated at 37°C and after 18-24 hours of incubation, the plates were observed. Isolates producing ESBL were those with zones of inhibition around any of the cephalosporin discs with a clear-cut increase towards the amoxicillin-clavulanate disc. ESBL-positive Klebsiella pneumoniae ATCC 700603 and ESBL negative Escherichia coli ATCC 25922 strains were used as control.

3. Results

The physico-chemical analysis of the water samples from the rivers showed that Kudeti River had the highest temperature values (29°C) while the pH ranged between 9.3 and 9.4. Except for the pH and DO, Yemetu River had the highest values for all the physico-chemical tested parameters (Table 1).

Out of the 207 beta-lactam resistant Gram-negative bacteria isolated from the rivers, 79 (38.2%) were from Alaro river, 62 (30.0%) from Kudeti river and 66 (31.9%) from Yemetu river while Klebsiella spp. had the highest occurrence rate (Table 2). The results of the susceptibility profile of the Gram-negative bacteria showed that resistance of bacteria from Yemetu, Kudeti and Alaro Rivers to cefotaxime were 68%, 58% and 48% respectively, while to cefepime, it was 55% (Yemetu), 40% (Kudeti) and 41% (Alaro). However, resistance of the bacteria was 3% (Yemetu and Kudeti) and 1% (Alaro) to imipenem (Table 3).
Table 1. Results of the Physico-chemical analysis of the water samples

<table>
<thead>
<tr>
<th>Physicochemical parameters</th>
<th>Sampling points</th>
<th>Alaro</th>
<th>Kudeti</th>
<th>Yemetu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td></td>
<td>17.7</td>
<td>17.7</td>
<td>164.7</td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td>26</td>
<td>29</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>9.4</td>
<td>9.4</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Alkalinity (mg/L)</td>
<td></td>
<td>18.7</td>
<td>16.1</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>Acidity (mg/L)</td>
<td></td>
<td>2.0</td>
<td>1.6</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Total Solids (mg/L)</td>
<td></td>
<td>246.5</td>
<td>652.6</td>
<td>736.3</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids (mg/L)</td>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td></td>
<td>246</td>
<td>652</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity (µS/cm)</td>
<td></td>
<td>367</td>
<td>945</td>
<td>1061</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/L)</td>
<td></td>
<td>8.4</td>
<td>8.4</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>Biological Oxygen Demand (mg/L)</td>
<td></td>
<td>267.8</td>
<td>296.4</td>
<td>385.2</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand (mg/L)</td>
<td></td>
<td>395.8</td>
<td>424.5</td>
<td>563.3</td>
<td></td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td></td>
<td>33.7</td>
<td>38.2</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td></td>
<td>38.6</td>
<td>27.5</td>
<td>78.2</td>
<td></td>
</tr>
<tr>
<td>Oil and grease (mg/L)</td>
<td></td>
<td>272.9</td>
<td>1400.1</td>
<td>2067.9</td>
<td></td>
</tr>
</tbody>
</table>

Key: NTU – Nephelometric Turbidity Unit, µS/cm - micro-Siemens per centimeter, mg/L – Milligram per Litre

Table 2. Occurrence of Beta-Lactam resistant Gram-negative bacteria isolates obtained from the rivers n(%)

<table>
<thead>
<tr>
<th>Genus</th>
<th>Alaro</th>
<th>Kudeti</th>
<th>Yemetu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia spp.</td>
<td>8(10%)</td>
<td>19(31%)</td>
<td>5(8%)</td>
<td>32(15%)</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>31(39%)</td>
<td>14(23%)</td>
<td>27(41%)</td>
<td>72(35%)</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>13(17%)</td>
<td>15(24%)</td>
<td>7(10%)</td>
<td>35(17%)</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>8(10%)</td>
<td>3(4%)</td>
<td>7(10%)</td>
<td>18(9%)</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>4(5%)</td>
<td>5(8%)</td>
<td>11(17%)</td>
<td>20(10%)</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>15(19%)</td>
<td>6(10%)</td>
<td>9(14%)</td>
<td>30(14%)</td>
</tr>
<tr>
<td>Total</td>
<td>79(38.2%)</td>
<td>62(30.0%)</td>
<td>66(31.9%)</td>
<td>207(100%)</td>
</tr>
</tbody>
</table>

Table 3. Susceptibility profile of Gram-negative bacteria isolated from the rivers to selected beta-lactam antibiotics

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Yemetu River, n=66(31.9%)</th>
<th>Kudeti River, n=62(30%)</th>
<th>Alaro River, n=79(38.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP</td>
<td>14(21%)</td>
<td>3(4.8%)</td>
<td>10(13.1%)</td>
</tr>
<tr>
<td>CXM</td>
<td>55(83%)</td>
<td>11(17%)</td>
<td>14(17.7%)</td>
</tr>
<tr>
<td>CAZ</td>
<td>32(48%)</td>
<td>34(54%)</td>
<td>27(34%)</td>
</tr>
<tr>
<td>FEP</td>
<td>38(58%)</td>
<td>38(61%)</td>
<td>26(32%)</td>
</tr>
<tr>
<td>AZ</td>
<td>38(58%)</td>
<td>28(45%)</td>
<td>27(34%)</td>
</tr>
<tr>
<td>AMX</td>
<td>47(71%)</td>
<td>19(30%)</td>
<td>39(49%)</td>
</tr>
</tbody>
</table>

Out of the beta-lactam resistant Gram-negative bacteria, 37 (17.9%) were positive for ESBL production. These isolates belonged to the following genera: Pseudomonas, Enterobacter, Klebsiella, Escherichia and Proteus (Table 4). Exactly 37.8%, 24.3% and 37.8% ESBL producers from the rivers were from Alaro, Yemetu and Kudeti, respectively.

Furthermore, the resistance patterns of the ESBL-producing isolates to combinations of antibiotics showed that there were 19 different antibiotic types. The highest was 5(13.5%) in which three K. pneumonia and two P. Mirabilis showed resistant to a combination of both CXM and FEP. This was followed by 4(10.8%) antibiotic types that included a combination of CXM, FEP, AZ and FFC with one each of K. pneumonia, P. mirabilis, E. aerogenes and P. putida; one P. mirabilis also showed resistant to a combination of seven antibiotics that included CXM, FEP, AMX, AZ, CIP, FFC and CN (Table 5).

Table 4. Detection of ESBL-producing Isolates

<table>
<thead>
<tr>
<th>Genus</th>
<th>Alaro</th>
<th>Kudeti</th>
<th>Yemetu</th>
<th>Total ESBL detected n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia spp.</td>
<td>32</td>
<td>2 (6.3)</td>
<td>2 (6.3)</td>
<td>207(100%)</td>
</tr>
<tr>
<td>Klebsiella sp.</td>
<td>72</td>
<td>4(5.6)</td>
<td>4(5.6)</td>
<td>13(18.1)</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>35</td>
<td>4(11.4)</td>
<td>1(2.9)</td>
<td>8(22.9)</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>18</td>
<td>3(16.7)</td>
<td>1(5.6)</td>
<td>7(38.9)</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>20</td>
<td>3(15.0)</td>
<td>1(3.3)</td>
<td>7(35.3)</td>
</tr>
<tr>
<td>Proteus sp.</td>
<td>30</td>
<td>3(10.0)</td>
<td>1(3.3)</td>
<td>7(23.3)</td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td>14(6.7)</td>
<td>14(6.7)</td>
<td>9(4.3)</td>
</tr>
</tbody>
</table>

Table 4. Detection of ESBL-producing Isolates

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Numbers screened</th>
<th>Alaro</th>
<th>Kudeti</th>
<th>Yemetu</th>
<th>Total ESBL detected n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia spp.</td>
<td>32</td>
<td>2 (6.3)</td>
<td>2 (6.3)</td>
<td>207(100%)</td>
<td></td>
</tr>
<tr>
<td>Klebsiella sp.</td>
<td>72</td>
<td>4(5.6)</td>
<td>4(5.6)</td>
<td>13(18.1)</td>
<td></td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>35</td>
<td>4(11.4)</td>
<td>1(2.9)</td>
<td>8(22.9)</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>18</td>
<td>3(16.7)</td>
<td>1(5.6)</td>
<td>7(38.9)</td>
<td></td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>20</td>
<td>3(15.0)</td>
<td>1(3.3)</td>
<td>7(35.3)</td>
<td></td>
</tr>
<tr>
<td>Proteus sp.</td>
<td>30</td>
<td>3(10.0)</td>
<td>1(3.3)</td>
<td>7(23.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>207</td>
<td>14(6.7)</td>
<td>14(6.7)</td>
<td>9(4.3)</td>
<td></td>
</tr>
</tbody>
</table>

37(17.9%)
4. Discussion

The physico-chemical analysis of the water samples that showed pH values within the range 9.3 and 9.4 for the three rivers were within the international permissible limit of 6.5-9.5 (WHO, 2008). Likewise, the temperature of the rivers (26°C-29°C) was within the temperature permissible limit of less than 40°C as recommended by the Federal Ministry of Environment of Nigeria (FMENV, 2001). While the turbidity (17.7 NTU) of the water samples collected from Alaro and Kudeti rivers were above the Standard Organisation of Nigeria (SON) permissible limits of 5.0 NTU (SON, 2007) the turbidity (164.7 NTU) obtained from Yemetu river was geometrically above the limit. The reason for this difference could be as a result of the location of the rivers. Yemetu River, for instance, receives inputs from a tertiary hospital, residents and the domestic wastes which could have led to the high turbidity value. The turbidity of both Alaro and Kudeti rivers were lower but comparably similar to the range of 24 and 28 NTU previously reported from another study conducted on a river in the same city of Ibadan (Adekambi and Falodun, 2015).

The pH range (9.3-9.4) of the rivers in the present study were higher compared to the pH range of 7.04 - 7.11 reported by Adekanmbi and Falodun (2015). The disparity in the pH values may be as a result of less anthropogenic activities impacting on the latter river compared to the rivers in the present study. These high pH values imply that the presence of basic salts (such as sodium and potassium salts) is likely to be prevalent in the river waters (John De Zuane, 1990). However, the pH range obtained in the present study is similar to a previous report from Turkey (Atici et al., 2008). The range of chloride quantity in the three rivers (38.6-78.2 mg/l) is below the WHO permissible limit of 250 mg/l chloride in water samples (WHO, 2008). Although, the range of Nitrate (33.7 - 45.7 mg/l) observed in the present study fell within the acceptable limit allowed (50 mg/l) in river water (WHO, 2008), the health implication associated with elevated concentrations of nitrate greater than 11mg/l in water is blue-baby syndrome (Methemoglobinemia) in children and Insulin-Dependent Diabetes Mellitus (IDDM) in adult when concentration exceeds 25 mg/l (Kostraba et al., 1992; Ward et al., 2005).

The total suspended solids (0.5-1.3 mg/l) and total dissolved solids (246-735 mg/l) obtained from the present study were within the permissible limit of 30 mg/l and 2000 mg/l, respectively (FMENV, 2001). However, the total suspended solids in the present study were lower while the total dissolved solids were higher compared to the 200mg/l and 320mg/l, respectively reported from the study carried out on another river (Ona River) in Ibadan, Nigeria (Osibanjo et al., 2011). The reason for the disparity could be as a result of an increasing measure of dissolved inorganic salts in Ona River. Moreover, the results of the biological oxygen demand (BOD) of the three rivers (267.8 mg/l -385.2 mg/l) were far above the permissible limit of 50 mg/l set by Federal Ministry of Environment (FMENV, 2001). Furthermore, the values of the Chemical Oxygen Demand (COD) of 563.3 mg/l, 395.8 mg/l and 424.5 mg/l obtained from Yemetu, Alaro and Kudeti Rivers, respectively, were all above the Federal Ministry of Environment permissible limit of 150 mg/l (FMENV, 2001) for surface waters. In addition, the value of the Dissolved Oxygen (DO) of 8.4 mg/l obtained from each river was above the permissible limit (5.0 mg/l) of the Federal Ministry of Environment (FMENV, 2001). Control
of indiscriminate discharge of wastes into these rivers is, therefore, imperative to forestall further deterioration of the river water.

The results of the oil and grease of the rivers (272.9-2067.86 mg/l) were far above the Federal Ministry of Environment permissible limit of 10mg/l (FMENV, 2001). The reason for this may be due to the urban runoff which conveys great amount of oil and grease from various auto-repair workshops within the vicinity of the sampling areas. For instance, close to Yemetu River bank is a large auto-repair workshop from where oil and grease discharges into the river. The results of the present study also showed that the most polluted of the three rivers was Yemetu River as revealed by the results obtained from the physicochemical analysis. The reason for the high level of pollution of the rivers could hence be largely attributed to anthropogenic activities that impacts on the river such as high practice of open defecation, improper disposal of wastes into the rivers as well as the release of industrial discharge into the Alaro River which is located in an industrialized locale.

Singal et al. (2005) and Reich et al. (2013) reported an increased prevalence of ESBL-producing Enterobacteriaceae. In the present study, 17.9% ESBL-producing Gram-negative bacteria predominantly of the family Enterobacteriaceae were detected and are similar to the recently reported 15.2% ESBL-producing bacteria of which, all the isolates belonged to the Enterobacteriaceae family from a study conducted on untreated hospital wastewater in the southern part of Nigeria (Egbule, 2016). In a study conducted in China, a higher prevalence of ESBL-producing isolates (69.6%) of the Enterobacteriaceae, from water samples collected from urban river, was reported (Lu et al., 2010). Klebsiella pneumonia having the highest occurrence rate among the ESBL-producing organisms in the present study is of great public health concern because it has been reported that the most common causative agent of nosocomial and community acquired infections are the members of the Enterobacteriaceae (Coque et al., 2008). The persistent and contagious nature of Klebsiella spp. may be as a result of resistance to harsh conditions due to the presence of capsules that gives protection to the cells (Paterson and Bonomo, 2003).

The observation from the present study that none of the ESBL-producing bacteria were resistant to imipenem except one of the Enterobacter species is similar and comparable to a previous study conducted in Malaysia in which all the 19 ESBL-producing bacteria from four different rivers were reported to be susceptible to imipenem (Tissera and Lee, 2013). It has been found that ESBL isolates are usually resistant to most β-lactam antibiotics and the implication of this is that few options are left for the treatment of ESBL-associated infections. Antibiotics susceptibility result that showed high resistance of the ESBL-producing isolates to cefepime, a fourth generation cephalosporin, is in agreement with previous reports of increasing emergence of resistance to fourth generation cephalosporins (Naumiuk et al., 2001; Grover et al., 2006). It was observed in the present study that all ESBL-producing E. coli, P. mirabilis and Pseudomonas spp. were resistant to cefepime, a fourth generation cephalosporin. Meanwhile, resistance to this antibiotic has been previously reported to be linked to the hydrolysis by blaCTX-M gene coded β-lactam enzyme (Paterson and Bonomo, 2003). However, ESBL-producing bacteria that exhibited high resistance to Cefotaxime (91.9%), Cefepime (73.0%) and Aztreonam (64.9%) and Ceftazidime (37.8%), in the present study, is not in agreement with the total (100%) resistant to Cefotaxime and Ceftazidime and no resistant to Aztreonam reported from another study on surface water that included samples from various ponds, lakes and river in Dhaka city, Bangladesh (Nasreen et al., 2015). The reason for the differences may be as a result of the studied samples.

Gundogan and Yakar (2007) had previously reported a low resistance of the ESBL-producing isolates to ciprofloxacin and gentamicin which is also similar to the results of the present study. This, therefore, corroborates the assertion that ciprofloxacin and gentamicin can be effective in the treatment of infections caused by ESBL-producing bacteria. The resistance patterns of the ESBL producing isolates against the antibiotics tested in the present study showed that the majority were multidrug resistant (resistant to three or more classes of antibiotics); such multiple antibiotic resistance has been reported to be the outcome of the acquisition of resistance genes through genetic exchange and mutation as well as physiological mechanisms, such as the possession of specific proteins and efflux pump.

5. Conclusion

In conclusion, the present study shows that the studied rivers were not only contaminated with chemical impurities, they also contain ESBL-producing bacteria some of which harbor multidrug resistance features. These organisms could serve as potential risks of infection outbreaks on exposure; hence the need to put in place appropriate measures to prevent contamination of local surface waters. Furthermore, imipenem, ciprofloxacin and gentamicin showed good effect on the ESBL-producing isolates in the present study.

References

111

113

115

117

119

121

Arсенный Воздействием от Бобовых Семян Существующих в Оверри Муниципал, Имб Стейт, Нигерия: Использование Вредителей для Детоксикации Металла в Инфестации?

Луи К. Нвосу1*, Усман Закка1, Безерстая О. Чина1 и Геральд М. Угагу2

1Отделение Сельского Садоводства и Плодородия, Факультет Агрономии, Университет Порта Харкорт, П.М.Б. 5323, Порта Харкорт, Риверс Стейт, 2Отделение Лаборатории Непрерывного Обучения, Имб Стейт Политехнический Оверри, Нигерия

Получено 31 мая 2017 года; Ревизия: 17 сентября 2017 года; Принято: 21 сентября 2017 года

Сводка

Масличное зерно, Phaseolus vulgaris (L.) является одной из наиболее важных источников белка в мире. Потребление бобовых в Нигерии, особенно из-за высоких цен на рис в стране. Этот исследование определяет концентрации общего арсинка в образцах семян бобовых, собранных на улицах города Оверри, Имб стейт, Нигерия, используя стандартные протоколы. Семена бобовых, продаваемые в закрытых и открытых контейнерах, рассмотрены. Оцениваются концентрации общего арсинка. Общее потребление арсинка значительно варьирует между точками отбора пробы. Средний пул арсинка был 0,47 µg/g, а среднекитайский суточный потребительский арсинка для взрослого человека был оценен в 32,9 µg/g, что ниже предельно допустимого уровня 18 - 480 µg/day для взрослого человека, средний вес 60 кг установлен Европейским Советом по Безопасности Питания. Это свидетельствует о том, что семена бобовых, продаваемые и потребляемые в муниципалитете Оверри, не имеют инвадирующих и приобретающих арсинковых рисков. Семена бобовых, экспонированные к бобовой молшке, Acanthoscelides obtectus Say (Col., Bruchidae) на 60 дней в лаборатории при температуре 29,7ºC и RH 71,7%, показали потенциал для детоксикации с помощью пищевого механизма. Оценка потенциалов инвазии A. obtectus в детоксикации бобовых с семенами, загрязненными арсинком, подчеркивает необходимость длительного хранения.

Ключевые слова: Phaseolus vulgaris, Оценка безопасности, Арсинок, Здоровье рисков, Acanthoscelides obtectus, Детоксикация.

1. Введение

Масличное зерно, Phaseolus vulgaris (L.), является одним из самых важных источников белка в мире. Потребление бобовых значительно увеличились в Нигерии, особенно из-за высоких цен на рис в стране. Этот исследование определяет концентрации общего арсинка в образцах семян бобовых, собранных на улицах города Оверри, Имб стейт, Нигерия, используя стандартные протоколы. Семена бобовых, продаваемые в закрытых и открытых контейнерах, рассмотрены. Оцениваются концентрации общего арсинка. Общее потребление арсинка значительно варьирует между точками отбора пробы. Средний пул арсинка был 0,47 µg/g, а среднекитайский суточный потребительский арсинка для взрослого человека был оценен в 32,9 µg/g, что ниже предельно допустимого уровня 18 - 480 µg/day для взрослого человека, средний вес 60 кг установлен Европейским Советом по Безопасности Питания. Это свидетельствует о том, что семена бобовых, продаваемые и потребляемые в муниципалитете Оверри, не имеют инвадирующих и приобретающих арсинковых рисков. Семена бобовых, экспонированные к бобовой молшке, Acanthoscelides obtectus Say (Col., Bruchidae) на 60 дней в лаборатории при температуре 29,7ºC и RH 71,7%, показали потенциал для детоксикации с помощью пищевого механизма. Оценка потенциалов инвазии A. obtectus в детоксикации бобовых с семенами, загрязненными арсинком, подчеркивает необходимость длительного хранения.

* Корреспондирующий автор. E-mail: luke2007ambition@yahoo.com.
convulsions. Most times, the human skin, kidneys and liver are affected (Mazumder and Dasgupta, 2011). Considering the increase in human activities that potentially release arsenic to the environment, there is a need to carryout safety assessment for this toxic metalloid element. Most previous studies on dietary intake of arsenic used total arsenic in making inference (Roychowdhury et al., 2003; Marti-Cid et al., 2008). This has been confirmed in a recent study by Adeyemi et al. (2017). Therefore, the first two objectives of the present study are to determine the total arsenic levels in bean from different locations in Owerri city, Imo State, Nigeria and to estimate its daily dietary intake through bean consumption.

In literature, it has been recorded that postharvest insects cause nutrient loss during feeding (Lale, 2002; Nwosu, 2016). Unfortunately, the potential uses of insects in the detoxification of metalloids, such as arsenic, are still largely untested. Given that insect-association with stored beans is inevitable, it is worth investigating if insects can help to detoxify the toxic elements contaminating bean seeds. Thus, as a third objective, the present study sought to examine the potential of insects using the bean bruchid, Acanthoscelides obtectus Say (Col., Bruchidae) in the detoxification of arsenic. A. obtectus is one of the most important storage pests in Africa (Giga et al., 1992). Dry weight losses during storage of bean seeds are between 10-40% but where management is poor losses can be above 50% (Paul, 2007). This scientific communication on the detoxification of arsenic by A. obtectus could provide new insights in the use of insects in detoxification of toxic elements.

2. Materials and Methods

2.1. Sample Collection

Two bean samples were taken from markets/stores in each of the five prominent streets (n = 10) in Owerri Municipal, Imo State (5° 28’ 35.6” (5.4766°) N; 7° 1’ 0.6” (7.0168°) E). The streets sampled were Douglas, Wheteral, Rotibi, Okigwe Road and World Bank area. These streets (Douglas and Wheteral in particular) are exclusive points where commercial activities hold due to concentration of business outfits, such as markets, banks, mini shops and offices. During sample collection, bean sold in enclosed (sample coded a) and open containers (sample coded b) were considered. Samples were transferred immediately into clean plastic cork-containers and labeled also immediately according to point of collection. Sample digestion and determination of total arsenic were achieved the next day.

2.2. Determination of Total Arsenic

Total arsenic in each bean sample was determined using the method of Nardi et al. (2009). We added 1 mL 20 % (v/v) HNO3 and 2 mL 30 % (v/v) H2O2 to 50 mg of the milled (electric mill) and sieved (0.4 mm screen) bean samples. The mixtures were digested for 40 min in a microwave oven. The digests were allowed to cool and their volumes brought up to 15 mL with distilled water. Arsenic was determined using an atomic absorption spectrometer (Varian Spectr AA 220FS). The accuracy and precision of the results were verified using four replications from each of the ten samples. Quality control using certified reference material (containing 1000 µg/mL arsenic) was achieved through arsenic re-run as guided by Adeyemi et al. (2017).

2.3. Estimation of Daily Intake of Arsenic through Bean Consumption

The daily intake of arsenic was estimated using the formula explained in Adeyemi et al. (2017). The Estimated Daily Intake (EDI) in mg/day/individual or µg/day/individual = Cm X Mg, where Cm is the average concentration of element in a cereal sample (ng/g or µg/g) and Mg is the mass of bean consumed daily.

The quantity of bean consumed daily by a typical Nigerian adult (average weight 60 kg) was assumed to be 70 g which is the quantity of rice consumed daily by a typical Nigerian adult (Africa Rice Center, 2005).

2.4. Safety Evaluation

The estimated daily intake of arsenic was compared to the benchmark dose lower confidence limit value for arsenic. The standard is 0.3-8.0 µg arsenic per kg body weight/day. This is equivalent to 18-480 µg/day for an adult at the average weight of 60 kg (EFSA, 2009; Adeyemi et al., 2017). If the observed mean value falls within the range, it implied there is no arsenic health risks associated with bean consumption. On the contrary, if the observed mean value exceeds the range, it implied there is arsenic health risks associated with bean consumption.

2.5. Insect Culture

The bean bruchid, A. obtectus adults were isolated from naturally infested bean in Port Harcourt, Rivers State, Nigeria and authenticated using morphological characteristics (Lale, 2002). A total of 400 unsexed adults were identified and used to start the culture. Two plastic containers (height 28 cm; diameter 18 cm) with 300 g of landrace bean seeds were used and each received 200 beetles. Each container was covered immediately with muslin net (held in place with cut container-lid) for protection and ventilation. The parent beetles were allowed to feed on the culture seeds and lay eggs for a period of 8 days and thereafter, they were sieved out of the containers. The two set-ups were kept for 4 weeks for new adults to emerge under ambient temperature and RH of 29.7°C and 71.7%, respectively. Two-week old emerged adults were used for the detoxification assay.

2.6. Insect Detoxification Assay

The experiments were conducted in the Crop Protection Laboratory of the Department of Crop and Soil Science, University of Port Harcourt, Rivers State, Nigeria. The mean ambient temperature and relative humidity of the laboratory were 29.7°C and 71.7%, respectively. Fifty grammes of each of the 10 bean samples were weighed into ten different containers. Ten unsexed A. obtectus adults were introduced into each container and covered immediately with muslin net (held in place with cut container-lid) for protection and ventilation. These were arranged in a completely randomized design on laboratory bench. A control (without insects) of four replicates was designated. The bruchids were allowed to feed on the samples for 60 days. Post-infestation arsenic was determined using the above methods. Pre- and post-infestation arsenic levels were compared statistically to
ascertain the occurrence and extent of detoxification caused by the insect. Comparable weights of infested and un-infested bean samples were used to accommodate the weight loss in infested samples. The experiments were repeated four times.

2.7. Statistical Analysis

The assumption for homogeneity of group variance was tested prior to analysis of variance using Levene’s test (Somta et al., 2008) for equality of variances. The outcome of Levene’s test eliminated the need for data transformation. Data on total arsenic levels in the bean samples were statistically analyzed using one-way analysis of variance. Upon significance of the F-test, means were separated (at posthoc test) using Honestly Studentized range (HSD). The student t-test was used to compare the difference between pre- and post-infestation arsenic levels. Statistical inference was based on α level of 0.05 and the difference between pre- and post-infestation arsenic levels.

Results and Discussion

Table 1 presents the results for total arsenic concentrations in the bean samples. Total arsenic differed significantly ($P < 0.05$) among the samples collected at different locations in major commercial streets in Owerri Municipal, Imo State, Nigeria. The location-specific mean values of total arsenic ranged from < 0.001 to 1.08 µg/g. These values are much lower than those reported for rice grains of cereals planted in arsenic-rich soils appear to have higher concentration of arsenic (Sahoo and Mukherjee, 2014). Anthropogenic sources of arsenic are location-specific and probably, bean samples exposed and sold in locations with more sources of arsenic are potentially more vulnerable to environmental contamination. Therefore, it is not surprising that bean samples collected from the streets of Douglas and Whetheral had higher concentrations of total arsenic. Briefly, there are sources of arsenic pollution near the two streets that could lead to higher arsenic concentrations. As the centre of commercial activities with high human population and activities, the environmental quality of soil, air and water (which is obviously lower than the other streets) probably account for the higher arsenic concentrations observed. This analysis is supported by literature (Amayo et al., 2016; Adeyemi et al., 2017).

Reports of human exposure from the ingestion of food contaminated with arsenic are considerably documented (Roychowdhury et al., 2003). Exposure to toxic arsenic is inevitably associated with health problems for humans. At chronic exposure, human lungs, buccal cavity, pharynx and other important organs face increased chances of cancer (Adeyemi et al., 2017). These malicious effects of arsenic can be preventable through routine testing for contamination. The results of the present study show that the estimated daily dietary intake of total arsenic through bean consumption by typical adults in the area is 32.9 µg. This reveals that the total arsenic intake linked to the consumption of beans in major commercial streets in Owerri Municipal, Imo State, Nigeria does not constitute threat to the health of the residents.

Table 1. Levels of total arsenic in bean samples (n = 10) sold in major commercial streets in Owerri Municipal, Imo State, Nigeria during March 2017

<table>
<thead>
<tr>
<th>Sample codes</th>
<th>Streets sampled</th>
<th>Total arsenic (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a and 1b</td>
<td>Douglas</td>
<td>1.08±0.01</td>
</tr>
<tr>
<td>2a and 2b</td>
<td>Whetheral</td>
<td>0.76±0.05</td>
</tr>
<tr>
<td>3a and 3b</td>
<td>Rotibi</td>
<td>0.02±0.03</td>
</tr>
<tr>
<td>4a and 4b</td>
<td>Okigwe road</td>
<td><0.001±0.00</td>
</tr>
<tr>
<td>5a and 5b</td>
<td>World Bank</td>
<td><0.001±0.00</td>
</tr>
</tbody>
</table>

Data are means ± standard error of the means of four replications. Means in a column followed by the same letter are not significantly different ($α = 0.05$) by HSD. Pooled mean = 0.47 µg/g (used subsequently to compute the estimated daily intake of arsenic).

a = bean samples sold in enclosed container.
b = bean samples sold in open container.

After a two-month storage duration, some of the bean samples infested with A. obtectus lost some concentration of total arsenic (Table 2). However, loss of total arsenic due to insect feeding was not significant ($P > 0.05$). The highest percent detoxification that occurred in the study is 14.18 and on the contrary, some samples did not experience change in total arsenic level even when the insect fed for 60 days. Generally, it appears the beetles had an effect but only when arsenic values were higher (at Douglas and Whetheral) (Table 2). The other three sites had low arsenic values ($≤ 0.02$), that the beetles could not make much difference. From the observations above, there may be a threshold level of toxin that must be present for there to be any discernible effect of detoxification by the beetles. However, the result shows that the test insect can be potentially employed in achieving detoxification of bean contaminated with arsenic. At short exposure period, insect feeding was beneficial in reducing arsenic contamination especially added the fact that the test variety of bean was not broken down. Thus, there is a need to extend the storage duration beyond 60 days to observe what happens at prolonged storage conditions. Having the beetles feed longer may not make a difference at sites with low arsenic values but might make a difference on beans containing high arsenic concentrations (the present study provided the hint). Under the influence of insecticides and storage containers commonly used to protect stored bean seeds against beetle attacks in Nigeria, seeds can be successfully preserved for one year without being broken down. So, extension of the storage duration to examine the extent of detoxification may not be such a wasteful idea, the present study concludes.

© 2018 Jordan Journal of Biological Sciences. All rights reserved - Volume 11, Number 1
Table 2. Pre- and post-infestation total arsenic and extent of detoxification caused by the bruchid insect, Acanthoscelides obtectus Say

<table>
<thead>
<tr>
<th>Sample Streets</th>
<th>Pre-infestation total arsenic (µg/g)</th>
<th>Post-infestation total arsenic (µg/g)</th>
<th>Total arsenic lost (µg/g)</th>
<th>Percent Detoxification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a and 1b Douglas</td>
<td>1.06±0.01<sup>a</sup></td>
<td>0.92±0.01<sup>a</sup></td>
<td>0.14±0.01<sup>a</sup></td>
<td>14.81±0.01<sup>a</sup></td>
</tr>
<tr>
<td>2a and 2b Whetfield</td>
<td>0.76±0.05<sup>a</sup></td>
<td>0.70±0.05<sup>a</sup></td>
<td>0.06±0.05<sup>a</sup></td>
<td>7.89±0.05<sup>b</sup></td>
</tr>
<tr>
<td>3a and 3b Rotibi</td>
<td>0.02±0.03<sup>a</sup></td>
<td>0.02±0.03<sup>a</sup></td>
<td>0.00±0.03<sup>a</sup></td>
<td>0.00±0.03<sup>a</sup></td>
</tr>
<tr>
<td>4a and 4b Okgwe</td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
</tr>
<tr>
<td>5a and 5b World Bank</td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
<td><0.001±0.00<sup>a</sup></td>
</tr>
</tbody>
</table>

t-values were not significant at *P > 0.05.

Data are means ± standard error of the means of four replications. Means in a column followed by the same letter are not significantly different (α = 0.05) by HSD.

4. Conclusion

In conclusion, beans consumed in the main commercial streets of Owerri Municipal at the time of the present study are safe for human health in regard to arsenic level. Total arsenic concentrations varied significantly among the locations sampled. Intra-spatial variation was linked to differences in the number and intensity of anthropogenic sources of the toxic element in these commercial streets. Variation in the concentration of arsenic (arsenic in soils where the bean was grown) may not be excluded. The present study found that the total arsenic contamination varies from place to place and this provides the rationale for location-specific analysis. The geographical variation is strongly related to environmental quality of soil, air, water and human activities. The present study has provided an important hint in the use of insects in the detoxification of toxic elements contaminating stored products. Further studies are suggested at long time storage duration.

References

Nwosu LC, Adedire CO, Ogunwolu EO and Ashamo MO. 2017. Toxicological and histopathological effects of *Dennettia tripetala* seed used as grain protectant, food, and medicine. *Food Quality and Safety, pages 1 - 9, DOI:10.1093/fqsafe/fyx019.*

Appendix B

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>SJR</th>
<th>H index</th>
<th>Total Docs. (2016)</th>
<th>Total Docs. (3years)</th>
<th>Total Cites</th>
<th>Citable Docs. (3years)</th>
<th>Cites / Doc. (2years)</th>
<th>Ref. / Doc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan Journal of</td>
<td>journal</td>
<td>0.146</td>
<td>3</td>
<td>30</td>
<td>102</td>
<td>974</td>
<td>30</td>
<td>97</td>
<td>0.31</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2017 Jordan Journal of Biological Sciences. All rights reserved - Volume 10, Number 4
Subscription

Jordan Journal of Biological Sciences

An International Peer Reviewed Research Journal

Published by the deanship of Research & Graduate Studies, The Hashemite University, Zarqa, Jordan

Name: ...

Specialty: ...

Address: ..

P.O. Box: ...

City &Postal Code: ..

Country: ..

Phone: ..

Fax No.: ..

E-mail: ..

Method of payment: ..

Amount Enclosed: ...

Signature: ...

Cheques should be paid to Deanship of Research and Graduate Studies – The Hashemite University.

I would like to subscribe to the Journal

For

☐ One year

☐ Two years

☐ Three years

One Year Subscription Rates

<table>
<thead>
<tr>
<th></th>
<th>Inside Jordan</th>
<th>Outside Jordan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td>JD10</td>
<td>$70</td>
</tr>
<tr>
<td>Students</td>
<td>JD5</td>
<td>$35</td>
</tr>
<tr>
<td>Institutions</td>
<td>JD 20</td>
<td>$90</td>
</tr>
</tbody>
</table>

Correspondence

Subscriptions and sales:

Prof. Ali Z. Elkarmi
The Hashemite University
P.O. Box 330127-Zarqa 13115 – Jordan
Telephone: 00 962 5 3903333 ext. 5157
Fax no.: 0096253903349
E. mail: jjbs@hu.edu.jo
المجلة الأردنية للعلوم الحياتية
مجلة علمية عالمية محكمة

المجلة الأردنية للعلوم الحياتية: مجلة علمية عالمية محكمة و مفرسة و مصنفة، تصدر عن الجامعة الهاشمية و بدعم من صندوق البحث العلمي - وزارة التعليم العالي والبحث العلمي.

هيئة التحرير

رئيس التحرير:
الأستاذ الدكتور خالد حسين أبو الثين
الجامعة الهاشمية، الزرقاء، الأردن

الأعضاء:

الأستاذ الدكتور جمیل نمر اللحام
جامعة اليرموك
الأستاذ الدكتور حكم فائق الحديدي
جامعة العلوم والتكنولوجيا الأردنية
الأستاذ الدكتور خالد أحمد الطروانة
جامعة مؤتة
الأستاذ الدكتور شتيروي صالح عبد الله
جامعة الطليعة التقنية

فريق الدعم:

المحرر اللغوي
الدكتور قصي الديبان

تُرسل البحوث الى العنوان التالي:

رئيس تحرير المجلة الأردنية للعلوم الحياتية
الجامعة الهاشمية
الزرقاء - الأردن

 هاتف: 333 0096253903333
فرعي: 5157
Email: jjbs@hu.edu.jo, Website: www.jjbs.hu.edu.jo
المجلة الأردنية للعلوم الحياتية

مجلة علمية عالمية معاقبة

تصدر بدعم من صندوق دعم البحث العلمي

http://jibs.hu.edu.jo/

ISSN 1995-6673